
1Programmation dynamique

1 Un premier exemple : la chasse au trésor

1.1 Présentation du problème

Afin d’illustrer les difficultés concrètes que les méthodes dites de « programmation dyna-
mique » tentent de résoudre, intéressons-nous tout d’abord à un cas concret. Considérons
un jeu à un joueur dont les règles sont les suivantes : on dispose d’un tableau de hauteur H
et de largeur L contenant des entiers positifs 1, représentant des « gains ». Par exemple, le
tableau représenté ci-dessous, pour lequel H= 4 et L= 5 :

22 14 42 17 9

37 54 29 19 5

2 27 4 1 12

78 8 34 7 31

On débute le jeu dans la case en haut à gauche, et on se déplace dans le tableau de case
en case, mais les seuls mouvements possibles sont vers la case immédiatement à droite
ou en-dessous de celle où l’on se trouve. Le jeu s’arrête lorsque l’on atteint la case dans le
coin en bas à droite. On remporte alors les gains de l’ensemble des cases visitées, le but
étant de maximiser ces gains. Sur notre exemple, le chemin permettant un gain maximal
est celui représenté ci-dessous :

22 14 42 17 9

37 54 29 19 5

2 27 4 1 12

78 8 34 7 31

On peut essayer de se convaincre qu’il n’existe pas de solution triviale pour déterminer le
chemin optimal. Comme on peut le voir sur l’exemple du dessus, une stratégie gloutonne
maximisant le gain à chaque déplacement ne donne pas le meilleur résultat (on se serait
déplacé vers la droite depuis la case 54 plutôt que vers le bas, et le gain total aurait été
moindre), et chercher à passer par la case contenant le plus grand gain non plus (le meilleur
chemin ne passe pas par la case contenant 78).

1. Par simple convention, des entiers relatifs ne changeraient rien dans la pratique.

1.2 Exploration exhaustive

Pour déterminer ce chemin optimal, on peut naturellement envisager de construire tous
les chemins possibles, déterminer le gain pour chacun, et choisir le plus profitable. Pour ce
faire, on va commencer par écrire une fonction chemins(H, L) permettant de construire
tous les chemins possibles, sous la forme d’une liste de chemins, chaque chemin étant
représenté par une liste de caractères, 'B' correspondant à un déplacement vers le bas,
'D' un déplacement vers la droite.

Fort heureusement, c’est un problème pour lequel la récursion peut grandement nous
aider ! Si le tableau contient au moins deux lignes et deux colonnes, les seuls moyens
d’accéder à la dernière case en bas à droite consistent à venir de la case immédiatement à
gauche ou de la case immédiatement au-dessus.

Les chemins allant de la case en haut à gauche à la case immédiatement à gauche de
la case en bas à droite sont exactement les chemins possibles dans un tableau de taille
H× (L−1), que l’on peut construire avec un appel récursif. Il suffira d’ajouter un 'D' à la
fin des listes correspondant à ces chemins pour construire les chemins possibles dans le
tableau de taille H×L passant par la case immédiatement à gauche de la case finale. De
même pour les chemins (distincts) passant par la case immédiatement au-dessus de la
case finale.

Reste à considérer les cas particuliers où H et/ou L valent 1 : sur un tableau à une seule
case, il n’existe qu’un seul chemin, sans aucun déplacement, si le tableau est de largeur 1,
on ne peut atteindre l’arrivée en venant de la gauche, et si le tableau est de hauteur 1, on
ne peut le faire en venant du haut. Cela donne :

def chemins(H, L):
if H==1 and L==1: # Sur un tableau de taille 1x1, il existe

return [[]] # un seul chemin possible, le chemin vide
res = []
if H>=2: # si l'on peut terminer avec un mouvement vers le bas

for ch in chemins(H-1, L):
ch.append('B')
res.append(ch)

if L>=2: # si l'on peut terminer avec un mouvement vers la droite
for ch in chemins(H, L-1):

ch.append('D')
res.append(ch)

return res

On peut s’arrêter un instant pour étudier la complexité de cette fonction. On remarque
aisément qu’en dehors des appels récursifs, les opérations effectuées sont toutes de com-
plexité constante (O (1)). Durant toute l’exécution de l’algorithme, l’opération effectuée le
plus fréquemment est la fonction append. C’est donc le nombre total de ces append qui

1

donnera la complexité temporelle de la fonction chemins.

Il nous faut donc estimer le nombre d’appels à append effectués durant l’ensemble des
appels. On peut remarquer qu’il y a exactement deux fois plus d’append en général qu’il
y a d’append d’un caractère ('B' ou 'D'). Or ces derniers, il est possible de les compter !
Chaque 'B' ou 'D' apparaissant dans les listes retournées par la fonction provient en
effet d’un tel append, et tous les append('B') et append('D') ont bien pour résultat un
élément d’une des listes retournées.

Or on peut voir que chaque chemin a une longueur (H−1)+ (L−1) = H+L−2 (il faut
nécessairement se déplacer exactement H−1 fois vers le bas et L−1 fois vers la droite), et
qu’il y a

(L+H−2
H−1

)
chemins différents, puisque tout chemin se déplaçant H−1 fois vers le bas

et L−1 fois vers la droite conduit bien au but, aussi cela revient-il à se poser la question de
placer H−1 déplacements vers le bas parmi H+L−2 déplacements au total.

On a donc 2× (L+H−2
H−1

)× (H+L−2) appels à append, ce qui donne une complexité consi-
dérable ! Pour une grille de taille 10×10, cela représente environ 1,75 millions d’appels
à append, et pour une grille de taille 100×100, on parle de 9×1060 appels, ce qui excède
déjà très largement les capacités de la machine. La liste sera également trop vaste pour la
mémoire. Laissons cependant ces problèmes de côté pour le moment.

On écrit ensuite une fonction donnant le gain d’un chemin (liste de 'B' et 'D') :

def gain(tab, chemin):
i, j = 0, 0
g = tab[0][0]
for depl in chemin:

if depl=='B':
i=i+1

else:
j=j+1

g = g + tab[i][j]
return g

Pour déterminer le plus grand gain possible, il suffit d’itérer tous les chemins obtenus
avec chemins, et de faire appel pour chacun à gain pour déterminer ce qu’il permet de
récolter, en mémorisant dans gain_max le plus grand gain observé (on pourra l’initialiser à
0 puisque tous les gains sont positifs) :

def solution(tab):
H, L = len(tab), len(tab[0])
gain_max = 0
for chemin in chemins(H, L):

gain_max = max(gain_max, gain(tab, chemin))
return gain_max

Si l’on veut également le chemin qui a permi d’obtenir le gain optimal, la fonction peut
être modifiée de la sorte :

def solution(tab):
H, L = len(tab), len(tab[0])
gain_max = 0
meilleur_chemin = None
for chemin in chemins(H, L):

g = gain(tab, chemin)
if g >= gain_max:

gain_max = g
meilleur_chemin = chemin

return meilleur_chemin, gain_max

On obtient bien avec la fonction solution le résultat attendu (T étant le tableau défini
dans l’introduction) :

In []: solution(T)
Out[]: (['B', 'D', 'B', 'B', 'D', 'D', 'D'], 220)

Cette dernière fonction solution mérite une remarque : il est important que la compa-
raison entre le gain g du chemin examiné et gain_max soit une comparaison large avec
>=, car dans le cas, certes pathologique, où toutes les valeurs sont nulles, les gains de tous
les chemins seront nuls, donc une comparaison stricte retournerait None comme chemin
optimal, ce qui n’est probablement pas le résultat souhaité 2.

La complexité de la fonction solution est la même que chemins, le calcul des coûts des
chemins étant de complexité comparable à leur construction, et le calcul du maximum
négligeable devant ces coûts. Malheureusement, comme nous l’avons dit, cette approche
n’est pas assez efficace pour résoudre le problème, même pour des tableaux de taille
raisonnable, et il va falloir trouver d’autres approches.

1.3 Une approche récursive

On peut envisager une autre approche pour écrire une fonction déterminant le meilleur
chemin et le gain associé, utilisant la récursion. Rappelons que lorsque l’on parvient à la
case (H−1,L−1) de la grille, on ne peut venir que de deux cases : celle immédiatement à
gauche, (H−1,L−2) et celle immédiatement au-dessus, (H−2,L−1). Le meilleur chemin
menant à (H−1,L−1) sera naturellement le plus fructueux entre le chemin arrivant à
(H−1,L−2) et celui arrivant à (H−2,L−1). Le gain, quant à lui, correspondra au gain
menant à cette voisine, plus le contenu de la case (H−1,L−1).

2. Alternativement, on aurait pu initialiser gain_max avec une valeur strictement négative.

2

Le raisonnement peu être appliqué à nouveau aux cases (H−1,L−2) et (H−2,L−1),
puisqu’on ne peut, à nouveau, arriver sur ces cases qu’en provenance de deux cases
(immédiatement à gauche et au-dessus) puisque l’on ne peut se déplacer que vers la droite
et vers le bas.

Ainsi, le gain maximal possible, que l’on notera Gain_max
(
i , j

)
, pour un chemin dans un

tableau tab partant de la case en haut à droite et se terminant sur la case
(
i , j

)
(avec i > 0

et j > 0) s’exprime donc à partir des gains maximaux possibles pour des chemins arrivant
sur la case immédiatement au-dessus et sur la case immédiatement à gauche, de la sorte :

Gain_max
(
i , j

)= max
(
Gain_max

(
i −1, j

)
,Gain_max

(
i , j −1

))+tab[i][j]

Lorsque i = 0 (resp. j = 0), il faut simplement prendre garde au fait qu’il n’y a pas de
case au-dessus (resp. à gauche) de la case

(
i , j

)
considérée, ce qui donne les trois relations

suivantes (toujours pour i > 0 et j > 0) :
Gain_max(i ,0) = Gain_max(i −1,0)+tab[i][0]

Gain_max
(
0, j

)= Gain_max
(
0, j −1

)+tab[0][j]

Gain_max(0,0) = tab[0][0]

Si seul le gain optimal nous intéresse, et non le chemin associé, on peut donc écrire une
fonction solution_partielle(tab, i, j) prenant en argument la grille et déterminant
Gain_max

(
i , j

)
de la sorte :

def solution_partielle(tab, i, j):
if i==0 and j==0: # Case initiale

return tab[0][0]
if i==0: # Case de la première ligne

return solution_partielle(tab, 0, j-1) + tab[0][j]
if j==0: # Case de la première colonne

return solution_partielle(tab, i-1, 0) + tab[i][0]
Autres cases
return max(solution_partielle(tab, i-1, j),

solution_partielle(tab, i, j-1)) + tab[i][j]

Il ne reste alors, pour répondre au problème, qu’à appeler cette fonction pour déterminer
le gain optimal pour un chemin rejoignant la case en bas à droite :

def solution(tab):
H, L = len(tab), len(tab[0])
return solution_partielle(tab, H-1, L-1)

1.4 Analyse de la complexité

Pour déterminer si la complexité de cette nouvelle approche est meilleure, on peut
étudier par exemple les appels récursifs effectués sur une grille de taille 3×4 représentés
ci-dessous 3 :

...(tab, 3, 4)

...(tab, 2, 4)

...(tab, 3, 3)

...(tab, 1, 4)

...(tab, 2, 3)

...(tab, 2, 3)

...(tab, 3, 2)

...(tab, 0, 4)

...(tab, 1, 3)

...(tab, 1, 3)

...(tab, 2, 2)

...(tab, 1, 3)

...(tab, 2, 2)

...(tab, 2, 2)

...(tab, 3, 1)

Dans cette séquence arborescente, chaque « branche » partant de l’appel initial, re-
présentant une séquence d’appel récursif, correspond en fait exactement à un chemin
possible de la case en haut à gauche à la case en bas à droite. Il y a donc autant de branches
que de chemins possibles, autant de « traits » que de déplacements à effectuer dans tous
ces chemins.

Même si le contenu de la fonction solution_partielle, si l’on excepte le coût des
appels récursifs, est bien O (1), la complexité totale de la fonction solution reste en

O
((H+L−2

H−1

)× (H+L−2)
)
. En dehors d’une écriture potentiellent plus simple, on n’a pour

l’instant rien gagné en terme d’efficacité (mais cela viendra dans un second temps).

1.5 Obtention du chemin

Si l’on souhaite obtenir le chemin correspondant au gain optimal, en plus ce celui-ci, on
peut modifier la fonction solution_partielle pour qu’elle retourne non pas seulement
le gain, mais un couple (un tuple) contenant à la fois le chemin et le gain.

3. On a omis le nom de la fonction, solution_partielle, pour ne pas surcharger le graphe, et seuls les
premiers appels sont représentés, le graphe d’appel est incomplet.

3

On y retrouve les quatres cas de la version précédente, même si chaque cas est un peu
plus long à traiter.

def solution_partielle(tab, i, j):
if i==0 and j==0: # Case initiale

return [], tab[0][0]
if i==0: # Case de la première ligne

chemin, gain = solution_partielle(tab, 0, j-1)
chemin.append('D')
return chemin, gain+tab[0][j]

if j==0: # Case de la première colonne
chemin, gain = solution_partielle(tab, i-1, 0)
chemin.append('B')
return chemin, gain+tab[i][0]

Autre cases
chemin_b, gain_b = solution_partielle(tab, i-1, j)
chemin_d, gain_d = solution_partielle(tab, i, j-1)
if gain_b > gain_d:

chemin_b.append('B')
return chemin_b, gain_b+tab[i][j]

else:
chemin_d.append('D')
return chemin_d, gain_d+tab[i][j]

La fonction solution n’a, quant à elle, pas besoin d’être modifiée.

En dehors des appels récursifs, les différentes opérations dans la fonction
solution_partielle sont toutes en temps constant (O (1)), et l’arbre d’appel est identique
à celui de la fonction originale. La complexité de cette version modifiée est donc la même
que celle de la fonction originale qui ne retournait que le gain. Obtenir le chemin n’est pas
ici plus coûteux.

1.6 Mémoïsation des résultats

À y regarder de plus près, cependant, on peut remarquer que la raison du coût important
de la fonction précédente est que l’on calcule de nombreuses fois la même chose. Par
exemple, solution_partielle(tab, 1, 3) apparaît plusieurs fois dans l’arbre des ap-
pels représenté précédemment 4. Si l’on est en mesure de mémoriser le résultat obtenu lors
du premier appel pour ces paramètres, on pourra s’abstenir de le recalculer (avec moults

4. En fait, un appel solution_partielle(tab, i, j) apparaît autant de fois qu’il y a de chemins menant de(
i , j

)
à l’arrivée, trois chemins dans le cas du passage de la case (1,3) à la case (3,4),

(i ′+ j ′−i− j
i ′−i

)
dans le cas du

passage de la case
(
i , j

)
à la case

(
i ′ j ′

)
.

appels récursifs coûteux) les fois suivantes, ce qui permettra d’économiser grandement
sur les calculs à effectuer.

Cette idée de mémoriser, pour une fonction, les résultats obtenus pour un ensemble de
paramètres donnés afin d’accélérer les choses la prochaîne fois que l’on fera appel à cette
fonction avec les mêmes paramètres est appelé, en informatique, mémoïsation.

La solution la plus simple pour implémenter un tel mécanisme en Python est d’utiliser
un dictionnaire. Un dictionnaire, rappelons-le, est une structure de données associant des
valeurs à des clés, de la même façon qu’un dictionnaire, dans la vie courante, associe des
mots à leur définition ou traduction. Par exemple, on peut vouloir associer à la chaîne de
caractères « "PSI" » la valeur entière 42, au couple (4, 9) la fonction sin, et à la valeur
37.0 cette même fonction sin, de la sorte :

Clés Valeurs

"PSI"

(4, 9)

37.0

42

sin

Comme on le voit, les clés et valeurs peuvent être des objets Python quelconques, la
seule condition étant que les clés doivent être des objets immuables (valeurs numériques,
booléennes, chaînes de caractères, tuples, etc., mais pas des listes par exemple). Il n’y a
pas de condition sur les clés. Les clés sont naturellement toutes distinctes, mais les valeurs
peuvent éventuellement ne pas l’être.

Pour définir une telle association en Python, on procède de la sorte :

D = {"PSI": 42, (4, 9): sin, 37.0: sin }

La manipulation des dictionnaires ressemblent grandement à celle des listes. Par
exemple, on peut obtenir le nombre d’associations mémorisées dans le dictionnaire D
(ici trois) en écrivant simplement « len(D) ». Pour obtenir la valeur associée à une clé, on
utilise la même notation à base de crochets que pour les listes, en indiquant la clé entre les
crochets. Ainsi, « D["PSI"] » donnera 42, et « D[(4, 9)] 5 » comme « D[37.0] » donneront
tous deux la fonction sin.

L’association est à sens unique : il n’est pas possible de déterminer une clé à partir d’une
valeur (comme dans un vrai dictionnaire on ne peut aisément retrouver un mot à partir de
sa définition!)

5. Rappelons que les parenthèses autour d’un tuple ne sont généralement pas requises, et on pourrait écrire
également « D[4, 9] ».

4

On peut ajouter une association supplémentaire à un dictionnaire également très simple-
ment 6. Pour ajouter l’association liant l’entier 17 au booléen True, on écrira simplement :

D[17] = True

Cela permet aussi de modifier une association existante pour une clé déjà présente dans
le dictionnaire. En écrivant par exemple

D["PSI"] = 54

la chaîne de caractère « "PSI" » sera désormais associée à la valeur 54 plutôt qu’à la
valeur 42.

Comme on peut ajouter librement des associations à un dictionnaire, il est utile de
pouvoir créer un dictionnaire vide, ce qui s’écrit simplement « {} ».

Enfin, on peut tester si une clé est présente ou non dans le dictionnaire en utilisant
l’opérateur « in ». Ainsi, « "PSI" in D » sera évalué à True pour notre dictionnaire, tandis
que « "MP" in D » sera évalué à False. Là encore, on peut le faire pour les clés, mais
il n’existe pas de méthode pour tester efficacement la présence d’une valeur dans le
dictionnaire.

Cette structure de donnée a ceci de remarquable que la plupart des opérations (calcul de
la longueur, ajout d’une association, vérification de la présence d’une clé, obtention d’une
valeur associée à une clé...) sont toutes effectuées en un temps que l’on peut considérer
comme constant lorsque l’on souhaite effectuer des calculs de complexité, temps en
particulier indépendant du nombre d’associations déjà présentes dans le dictionnaire 7

Signalons qu’il est possible d’utiliser la construction « for ... in ... » sur un diction-
naire, et qu’elle permet d’itérer sur les clés d’un dictionnaire 8. Ainsi, le programme suivant
affiche toutes les associations mémorisées dans D :

for k in D:
print(k, "->", D[k])

Revenons à notre problème de mémorisation des résultats des appels effectués. Pour
ce faire, nous allons donc utiliser un dictionnaire, où les clés seront les paramètres de la
fonction (ici les coordonnées

(
i , j

)
) et les valeurs associées seront les résultats correspon-

dant de la fonction, soit le gain optimal, soit le couple composé du chemin et du gain. Ce
dictionnaire doit être créé en-dehors de la fonction, car il doit être préservé d’un appel

6. De même, on peut supprimer l’association liée à la clé 17 en écrivant « del D[17] », mais c’est une opération
que l’on fera bien plus rarement.

7. En réalité, il peut arriver qu’une opération prenne occasionnellement plus de temps, c’est un temps en
moyenne, comme c’est aussi le cas de l’opération append sur une liste.

8. Dans les versions récentes de Python, l’itération se fait dans l’ordre chronologique des ajouts des clés, mais
cela n’a pas toujours été le cas. Aussi est-il recommandé de considérer que les clés peuvent être énumérées dans
un ordre quelconque.

sur l’autre. Il peut par exemple être transmis à la fonction à chaque appel comme un
paramètre. Ainsi, dans le cas d’une fonction mémoïsée, lorsqu’on lui passe un argument :

• si cet argument est une clé du dictionnaire, alors la valeur qui lui est associée est le
résultat, on peut retourner directement cette valeur

• si cet argument n’est pas une clé du dictionnaire, alors on n’a jamais été amené à
calculer la valeur à retourner dans ce cas; on effectue donc le calcul, et avant de
renvoyer le résultat, on le mémorise, dans le dictionnaire, en l’associant à l’argument
utilisé comme clé.

On peut utiliser deux approches pour la mémoïser une fonction foo prenant un (ou
plusieurs) arguments args à l’aide d’un dictionnaire memo passé en argument :

def foo(args, memo):
if args in memo: # déjà calculé ?

return memo[args] # on retourne le résultat mémorisé
res = ... # calcul du résultat (pour la première fois)
memo[args] = res # mémorisation du résultat pour la prochaine
return res # fois

Ou bien, de façon totalement équivalente :

def foo(args, memo):
if args not in memo: # pas encore calculé ?

res = ... # calcul du résultat (pour la première fois)
memo[args] = res # mémorisation du résultat

return memo[args] # on retourne le résultat mémorisé

Dans le cas de notre jeu à un joueur, si seul le gain nous intéresse, la fonction
solution_partielle devient donc :

def solution_partielle(tab, i, j, memo):
if (i, j) not in memo:

if i==0 and j==0:
memo[0, 0] = tab[0][0]

elif i==0:
memo[0, j] = solution_partielle(tab, 0, j-1) + tab[0][j]

elif j==0:
memo[i, 0] = solution_partielle(tab, i-1, 0) + tab[i][0]

else:
memo[i, j] = max(solution_partielle(tab, i-1, j),

solution_partielle(tab, i, j-1)) + tab[i][j]
return memo[i,j]

Petite subtilité ici : tab, qui est toujours le même, n’est pas utilisé comme clé (de toute

5

façon, seul les objets immuables peuvent figurer comme clé de dictionnaire), seul le couple(
i , j

)
est utile. Par contre, il faudra avoir un dictionnaire différent pour chaque tableau !

Pour répondre au problème du gain maximal sur l’ensemble de la grille, pour une grille
donnée, il ne reste donc qu’à créer un dictionnaire vide pour contenir les valeurs calculées,
et faire appel à la fonction précédente :

def solution(tab):
H, L = len(tab), len(tab[0])
memo = {}
return solution_partielle(tab, H-1, L-1, memo)

1.7 Gain en complexité

La complexité de cette fonction mémoïsée n’est pas évidente à obtenir. On peut toutefois
voir qu’en dehors des coûts liés aux appels récursifs, les opérations ont un coût unitaire
(O (1)). La complexité de la fonction sera donc directement liée au nombre d’appels à la
fonction.

Or, ce nombre a été réduit du fait de la mémoïsation : pour des paramètres
(
i , j

)
donnés,

on n’effectue des appels récursifs que la première fois que l’on rencontre ces paramètres
(lors des appels ultérieurs, on récupère directement et simplement le résultat mémorisé
dans le dictionnaire). L’arbre des appels a ainsi été considérablement élagué. Les appels,
pour des paramètres

(
i , j

)
pour lesquels la réponse est directement tirée du dictionnaire

(et donc n’entraînent plus d’appels récursifs), ont été mis en évidence ci-dessous :

...(tab, 3, 4)

...(tab, 2, 4)

...(tab, 3, 3)

...(tab, 1, 4)

...(tab, 2, 3)

...(tab, 2, 3)

...(tab, 3, 2)

...(tab, 0, 4)

...(tab, 1, 3)

...(tab, 1, 3)

...(tab, 2, 2)

...(tab, 2, 2)

...(tab, 3, 1)

Il est ainsi possible de montrer que la fonction n’est plus appelée, dans le pire des cas,
que deux fois 9 pour chaque coordonnée

(
i , j

)
. La complexité temporelle de la fonction

sera réduite en O (H×L), ce qui est considérablement mieux que la complexité précédente !

La mémoïsation est une stratégie faisant partie des outils de ce que l’on qualifie de
« programmation dynamique ». Le nom n’est guère parlant 10 mais la programmation dyna-
mique regroupe essentiellement les sratégies de programmation permettant de mémoriser,
directement ou indirectement, les résultats intermédiaires des calculs afin de réduire la
complexité des algorithmes.

Si l’on souhaite obtenir à la fois le gain et le chemin correspondant, il faut que les valeurs
associées aux clés

(
i , j

)
dans le dictionnairent contiennent ces deux mêmes données. On

peut modifier la fonction solution_partielle de la manière suivante :

def solution_partielle(tab, i, j, memo):
if (i, j) not in memo:

if i==0 and j==0:
memo[0, 0] = [], tab[0][0]

elif i==0:
chemin, gain = solution_partielle(tab, 0, j-1, memo)
memo[0, j] = chemin+['D'], gain+tab[0][j]

elif j==0:
chemin, gain = solution_partielle(tab, i-1, 0, memo)
memo[i, 0] = chemin+['B'], gain+tab[i][0]

else:
chemin_b, gain_b = solution_partielle(tab, i-1, j, memo)
chemin_d, gain_d = solution_partielle(tab, i, j-1, memo)
if gain_b > gain_d:

memo[i, j] = chemin_b+['B'], gain_b+tab[i][j]
else:

memo[i, j] = chemin_d+['D'], gain_d+tab[i][j]
return memo[i,j]

La fonction solution, cette fois encore, n’est pas à modifier.

Le lecteur attentif aura remarqué une différence mineure mais notable dans la fonction
solution_partielle mémoïsée par rapport à la solution originale : les ajouts avec append
ont laissé place à une concaténation de listes. C’est en effet indispensable ici, car les
appels successifs à solution_partielle(tab, i, j) retourneront toujours la même liste
représentant le chemin optimal arrivant à la case

(
i , j

)
. Cette liste ne doit pas être modifiée

pour obtenir le chemin arrivant par exemple en (i +1, j), car cette même liste pourrait

9. Plus précisément, une seule fois pour les cases de la dernière ligne et de la dernière colonne, deux fois pour
chacune des autres cases, ce qui peut se montrer par induction.

10. La légende voudrait qu’il ait été choisi pour son caractère « vendeur » auprès des autorités américaines
distribuant les crédits de recherche plus que pour exprimer une démarche bien précise.

6

également être utilisée pour construire le chemin arrivant en (i , j +1). Il est donc cette fois
indispensable de créer une nouvelle liste pour ces cases.

Cette modification rend la version retournant le chemin optimal un peu plus coû-
teuse que celle ne retournant que le gain. En effet, les opérations dans la fonction
solution_partielle, appels récursifs mis à part, ne sont plus en temps constant, mais
peuvent du fait des concaténations avoir un coût de l’ordre des dimensions de la grille,
puisque les listes ainsi construites peuvent avoir une longueur allant jusque H+L−2. La
complexité devient dorénavant O (H×L× (H+L)), plus importante que précédemment 11,
mais toujours considérablement plus raisonnable que dans la version non mémoïsée.

1.8 Une autre approche « dynamique »

Parfois, on sait déterminer à l’avance très exactement la liste des paramètres qu’il faudra
fournir à la fonction et l’ordre dans lequel les fournir pour qu’il soit toujours possible de
les calculer directement à partir des résultats déjà obtenus.

C’est le cas ici : on peut tout d’abord déterminer Gain_max(i , j) pour tous les couples
de la forme

(
0, j

)
pour des valeurs croissantes de j de 0 à L−1, puis pour tous les couples(

1, j
)
, toujours pour des valeurs croissantes de j , et ainsi de suite. Pour chaque couple(

i , j
)
, on aura déjà déterminé le résultat pour les couples (i −1) j et

(
i , j −1

)
On peut mémoriser les Gain_max

(
i , j

)
dans un dictionnaire comme précédemment,

mais on peut profiter de connaître par avance les i et j et ranger les résultats dans un
tableau de taille H×L. Ainsi, si l’on cherche le gain maximal, on peut écrire :

def solution(tab):
H, L = len(tab), len(tab[0])
G = [[0 for j in range(L)] for i in range(H)]
for i in range(H): # On remplit le tableau G des Gain_max

(
i , j

)
for j in range(L):

if i==0:
if j==0:

G[i][j] = tab[i][j]
else:

G[i][j] = tab[i][j]+G[i][j-1]
else:

if j==0:
G[i][j] = tab[i][j]+G[i-1][j]

else:
G[i][j] = tab[i][j]+max(G[i-1][j], G[i][j-1])

return G[H-1][L-1] # On retourne Gain_max(H−1,L−1)

11. Un stockage plus astucieux du chemin, comme nous le verrons dans la section suivante, aurait permis
d’éviter ce surcoût.

La fonction précédente construit donc le tableau des Gain_max
(
i , j

)
, qui correspond,

pour notre exemple, à

22 36 78 95 104

59 113 142 161 166

61 140 146 162 178

139 148 182 189 220

On y retrouve notamment le gain maximal recherché en bas à droite. Contrairement à ce
qui se passait dans le cas de la fonction récursive mémoïsée, il est aisé de voir ici que la
complexité est en O (H+L). En fait, on effectue les mêmes calculs, seul l’ordre change, et il
n’est pas surprenant que les complexités sont identiques.

Si l’on souhaite obtenir le chemin, on pourrait stocker également quelle case a permis
d’atteindre quelle autre case. Mais on peut aussi procéder différemment, et reconstruire le
chemin à rebours, de manière gloutonne, en partant de la dernière case et en remontant
jusqu’à la case en haut à gauche, en se déplaçant de case en case vers la gauche ou vers le
haut, toujours en direction de la plus grande valeur, comme illustré ci-dessous :

22 36 78 95 104

59 113 142 161 166

61 140 146 162 178

139 148 182 189 220

Pour obtenir ce résultat, il suffit alors de remplacer le return G[H-1][L-1] dans la
fonction précédente par ce morceau de code :

def solution(tab):
...
i, j = H-1, L-1 # Départ en bas à droite
chemin = []
while i!=0 or j!=0:

if i == 0 or j != 0 and G[i][j-1] > G[i-1][j] :
j = j-1
chemin.append('D')

else : # On remonte
i = i-1
chemin.append('B')

return chemin[::-1] # On renverse le chemin

Le principal inconvénient de cette solution, qualifiée « de bas en haut », est qu’il est
nécessaire pour pouvoir l’appliquer de pouvoir déterminer par avance les sous-problèmes
qu’il nous faudra résoudre, et connaître l’ordre dans lequel il est possible de les résoudre.
Pour certains problèmes, ce peut être difficile.

7

En revanche, on sait alors précisément ce qu’il faut calculer, mais également à quel
moment un résultat d’un sous-problème n’est plus utile. On peut alors s’en débarasser, et
économiser de la mémoire.

Par exemple, pour le problème qui nous occupe, si l’on n’a besoin que du gain maximal,
il n’est pas nécessaire de conserver la ligne i −1 dès lors qu’on a terminé le calcul de la
ligne i . On peut donc ne conserver à tout instant que deux listes 12

def solution(tab):
H, L = len(tab), len(tab[0])
Construction de la première ligne
ligne = [tab[0][0]]
for j in range(1, L):

ligne.append(ligne[j-1]+tab[0][j])
Construction des lignes suivantes
for i in range(1, H):

ligne_prec = ligne
ligne = [ligne_prec[0]+tab[i][0]]
for j in range(1, L):

ligne.append(max(ligne[j-1], ligne_prec[j])+tab[i][j])
return ligne[L-1]

2 Vente de ruban

2.1 Présentation du problème

Pour illustrer davantage la notion de programmation dynamique et les deux approches
possibles, prenons un autre exemple. Un grossiste dispose d’une longueur L Ê 0 de ruban.
Il propose à la vente plusieurs longueurs de rubans, au nombre de p : le produit numéro i
correspond à une longueur li de ruban. Par exemple, il propose à la vente des morceaux
de ruban de longueur l0 = 8 m, l1 = 12 m et l2 = 17 m. Chacun de ces produits a un prix ci ,
par exemple c0 = 7 euros, c1 = 11 euros et c2 = 15 euros.

Dans un premier temps, nous allons nous demander s’il est possible de découper la
longueur L de rubans en un ensemble de morceaux de longueur li (tous les morceaux
n’ayant pas nécessairement la même longueur li) de façon à ce qu’il n’y ait pas de chute
sans nous préoccuper du prix de vente. Par exemple, il est possible de découper un ruban

12. On peut même aller un peu plus loin et n’en conserver qu’une seule à tout instant, car le contenu d’une case
devient inutile dès que l’on a déterminé le contenu de la case à sa droite et sous elle, mais la fonction est un peu
plus complexe à écrire. Notons aussi que si les colonnes sont plus courtes que les lignes, il peut être intéressant,
en terme de mémoire, de travailler colonne par colonne.

de longeur L = 50 m en 17+17+8+8, mais il n’est pas possible de découper un ruban de
longueur L = 55 m en morceaux de longueur 8 m, 12 m et 17 m sans aucune chute.

Dans un second temps, nous regarderons comment une fonction peut nous proposer une
telle découpe, si elle existe. Puis nous étudierons combien de telles découpes différentes
sont possibles pour une longueur L donnée. Enfin, nous regarderons comment découper la
longueur L de ruban pour obtenir le prix de vente le plus élevé, quitte à avoir une « chute ».

2.2 Possibilité d’une découpe sans chute

On suppose que l’ensemble des longueurs li des différents produits est mémorisé dans
une liste, par exemple :

options = [8, 12, 17]

Pour savoir s’il existe une découpe possible du ruban de longueur L Ê 0 en un ou plu-
sieurs morceaux de longueurs li (possiblement distinctes) sans chute, la solution la plus
simple est d’utiliser une fonction récursive. En effet :

• si L = 0, c’est évidemment possible ;
• s’il existe un i ∈ �0 . . p −1� tel que L Ê li et qu’il est possible de découper L− li sans

chute, alors il est possible de découper le ruban L sans chute ;
• sinon, c’est impossible.

L’écriture de la fonction est alors simple :

def possible(L, options):
if L==0:

return True
for l_i in options:

if L>=l_i and possible(L-l_i, options):
return True

return False

La fonction semble bien retourner les résultats attendus :

In []: possible(50, [8, 12, 17])
Out[]: True

In []: possible(55, [8, 12, 17])
Out[]: False

L’ennui, c’est que chaque appel à la fonction peut conduire à p appels récursifs. Cela
peut conduire, pour des L grands devant les li , à un nombre déraisonnablement grands
d’appels. Mais beaucoup de ces appels sont effectués pour de mêmes paramètres (par
exemple, on risque d’appeler la fonction possible pour L− l0 − l1 et pour L− l1 − l0). Une

8

mémoïsation de la fonction est donc bienvenue. On modifie donc la fonction précédente
de la manière suivante :

def possible_memo(L, options, memo):
if L not in memo:

if L==0:
memo[L] = True

else:
memo[L] = False
for l_i in options:

if L>=l_i and possible_memo(L-l_i, options, memo):
memo[L] = True
break

return memo[L]

def possible(L, options):
return possible_memo(L, options, {})

2.3 Obtenir une solution de découpe

On peut à présent vouloir obtenir, lorsque la découpe est possible sans chute, un exemple
de découpe qui convient. Pour ce faire, nous allons modifier la fonction pour qu’elle ne
retourne plus True lorsque la découpe est possible, mais une liste de longueurs correspon-
dant à une découpe possible du ruban. Cela devient par exemple :

def decoupe_memo(L, options, memo):
if L not in memo:

if L==0:
memo[L] = []

else:
memo[L] = False
for l_i in options:

if L>=l_i:
res = decoupe_memo(L-l_i, options, memo)
if res != False:

memo[L] = res + [l_i]
break

return memo[L]

def decoupe(L, options):
return decoupe_memo(L, options, {})

On remarquera que l’on a utilisé une concaténation, plutôt qu’un append, dans la fonc-
tion précédente, pour les mêmes raisons que dans la section précédente : la liste retournée
par decoupe_memo pour un L donné est toujours la même, et il convient donc de ne pas la
modifier !

Grâce à la mémoïsation, la solution proposée ici est raisonnablement efficace, et fournit
bien les résultats attendus :

In []: decoupe(50, [8, 12, 17])
Out[]: [17, 17, 8, 8]

In []: decoupe(55, [8, 12, 17])
Out[]: False

2.4 Nombre de découpes possibles

Cherchons à présent à déterminer combien de découpes sans chutes sont possibles.
On peut imaginer, cette fois encore, une approche récursive. On pourrat imaginer le
raisonnement 13 suivant :

• si L = 0, il existe un unique découpage possible ;
• sinon, on considère chacun des li , et on détermine le nombre de découpages de

LL− li , puis on somme les différents résultats obtenus.

Bien évidemment, pour des raisons d’efficacité, comme précédemment, il nous faut
mémoïser cette fonction récursive, faute de quoi le nombre d’appels deviendrait vite
prohibitif. Cela s’écrirait par exemple de la sorte :

def denombre_memo(L, options, memo): # Attention, cette solution n'est
if L not in memo: # pas tout à fait correcte !

if L==0:
memo[L] = 1

else:
memo[L] = 0
for li in options:

if L >= l_i: # Nombre de découpes de L-l_i ?
nb_li = denombre_memo(L-l_i, options, memo)
memo[L] = memo[L] + nb_li

return memo[L]

def denombre(L, options):
memo = {}
return denombre_memo(L, options, memo)

13. Pas tout à fait correct, nous le verrons.

9

La fonction semble, à première vue, donner les résultats attendus :

In []: denombre(16, [8, 12, 17])
Out[]: 1

In []: denombre(24, [8, 12, 17])
Out[]: 2

In []: denombre(55, [8, 12, 17])
Out[]: 0

En effet, pour L = 16 m, la seule découpe possible sans chute est 8+8, pour L = 24 m on
peut imaginer 8+8+8 ou 12+12, et on a déjà déterminé que pour L = 55 m, il n’y avait pas
de découpe sans chute possible. Malheureusement, il y a un problème :

In []: denombre(20, [8, 12, 17])
Out[]: 2

La fonction retourne 2 car elle a identifié deux solutions : 8+12 et 12+8. Or il s’agit
techniquement de la même solution, avec simplement un ordre différent. De la même
façon, pour L = 37 m, la fonction retourne 6 alors que la seule solution est 8+12+17, mais
pour laquelle on peut envisager 6 variations possibles dans l’ordre.

Pour contourner ce problème, on peut modifier notre fonction de la façon suivante :
lorsque l’on détermine le nombre de découpages de L− li , on s’interdit d’utiliser toute
longueur l j avec j < i . Cela permet de s’assurer que l’on ne pourra pas compter de façon
distincte les solutions qui ne diffèrent que par une permutation. En pratique, on passera
seulement une partie de la liste options dans les appels récursifs.

Par exemple, lorsque l’on essaie de déterminer le nombre de découpes possibles de 20
avec les longueurs li dans [8, 12, 17], on va chercher :

• le nombre de découpes de 20−8 = 12 avec les longueurs dans [8, 12, 17] (il y en a
une seule, réduite à 12) ;

• le nombre de découpes de 20−12 = 8 avec les longueurs dans [12, 17] (il n’y en a
aucune, car 8 n’est plus une option envisageable) ;

• le nombre de découpes de 20−17 = 3 avec les longueurs dans [17] (il n’y en a aucune,
à nouveau).

Il n’y a donc bien qu’une seule solution ! De même, 37 tentera de décomposer 37−8 = 29
avec [8,12,17] (une solution, 12+17), 37−12 = 25 dans [12,17] (aucune solution), et
37−17 = 20 dans [17] (aucune solution).

En Python, si l’on utilise l’élément d’index i de options, on ne conservera donc que
les éléments d’index supérieurs ou égaux à i pour les appels récursifs (soit options[i:]).
L’ennui, lorsque l’on implémente cette solution, c’est que L n’est plus seul paramètre qu’il

faut prendre en compte dans le dictionnaire memo : les paramètres sont dorénavant L et
options, puisque le second paramètre peut changer d’un appel à l’autre.

La fonction peut alors s’écrire de la sorte :

def denombre_memo(L, options, memo):
key = L, tuple(options)
if key not in memo:

if L==0:
memo[key] = 1

else:
memo[key] = 0
for i in range(len(options)):

l_i = options[i]
if L >= l_i:

opt_restantes = options[i:]
nb_li = denombre_memo(L-l_i, opt_restantes, memo)
memo[key] = memo[key] + nb_li

return memo[key]

def denombre(L, options):
memo = {}
return denombre_memo(L, options, memo)

On remarquera que l’on transforme la liste options en tuple, pour construire la clé du
dictionnaire, car les clés d’un dictionnaire sont nécessairement des objets immutables !
Dorénavant, on obtient bien le résultat recherché :

In []: denombre(20, [8, 12, 17])
Out[]: 1

In []: denombre(37, [8, 12, 17])
Out[]: 1

In []: denombre(24, [8, 12, 17])
Out[]: 2

2.5 Optimisation du prix de vente

Dorénavant, on tolère les chutes, et on cherche à obtenir le prix de vente le plus élevé
possible. En général, on souhaiterait vendre des produits maximisant ci /li (le prix au mètre
le plus élevé). Dans notre exemple, où les longueurs sont l0 = 8 m, l1 = 12 m et l2 = 17 m

10

et les prix de vente c0 = 7 euros, c1 = 11 euros et c2 = 15 euros, le produit le plus rentable
serait celui de 12 m.

Mais pour L = 35 m, un découpage en deux morceaux de 17 m (avec une chute de 1 m
invendable) rapporte 30 euros, plus que toute autre découpe possible.

Pour déterminer le découpage permettant d’obtenir le prix de vente le plus élevé, à
nouveau, on envisage une approche récursive :

• on peut toujours jeter tout ce qui reste de ruban (aucun produit) pour un prix de
vente total nul ;

• sinon, on considère chacun des li , et on détermine récursivment le prix de vente
d’un morceau L− li auquel on ajoute le prix de vente ci du morceau de longueur li ,
et on choisit parmi les possibilités celle offrant le prix de vente le plus élevé.

Outre le prix de vente total maximal, on aimerait obtenir la découpe qui permet de
l’obtenir. Pour ce faire, toujours avec la mémoïsation indispensable aux performances, la
fonction s’écrira par exemple :

def optimal_memo(L, options, memo):
if L not in memo:

prix_max = 0
decoupe_max = []
for l_i, c_i in options:

if L >= l_i:
prix, decoupe = optimal_memo(L-l_i, options, memo)
if prix + c_i > prix_max:

prix_max = prix + c_i
decoupe_max = decoupe + [l_i]

memo[L] = prix_max, decoupe_max
return memo[L]

def optimal(L, options):
memo = {}
return optimal_memo(L, options, memo)

La fonction retourne ainsi le prix de vente maximal, et une liste précisant la découpe qui
permet de l’obtenir :

In []: optimal(35, [(8, 7), (12, 11), (17, 15)])
Out[]: (30, [17, 17])

In []: optimal(40, [(8, 7), (12, 11), (17, 15)])
Out[]: (36, [12, 12, 8, 8])

On remarquera que dans la solution précédente, on ne se préoccupe pas d’éviter l’écueil
possible d’une découpe d’un morceau de 8 m suivi d’un morceau de 12 m, d’une découpe
d’un morceau de 12 m suivi d’un morceau de 8 m, comme précédemment. Ce n’est pas
gênant ici, car même si l’ordre diffère, le prix que l’on obtient est le même.

Cela dit, cela peut amener à considérer davantage de découpages, donc une approche
comme précédemment réduisant le nombre d’options pourrait être intéressante.

2.6 Approche « du bas vers le haut »

Si les approches récursives avec mémoïsation présentent l’avantage de ne pas être trop
complexes à écrire, est-il possible de procéder différemment, et de calculer, par exemple
pour ce dernier problème, les découpages optimaux pour différentes longueurs jusqu’à
trouver le découpage optimal pour la longueur souhaitée?

Même si c’est faisable, c’est fréquemment beaucoup plus difficile. Toutefois, si toutes les
longueurs li sont entières, et que la longueur L l’est aussi, on peut chercher à déterminer
le découpage optimal pour 1 m,2 m,3 m,. . . jusqu’à parvenir à L.

Cela s’écrira par exemple :

def optimal(L, options):
L doit être entier, arr[i] contient
le gain maximal pour L=i et la découpe correspondante
arr = [[0, []] for _ in range(L+1)]
On remplit le tableau arr
for i in range(1, L+1):

for l_i, c_i in options:
if i>=l_i and arr[i-l_i][0]+c_i > arr[i][0]:

arr[i][0] = arr[i-l_i][0]+c_i
arr[i][1] = arr[i-l_i][1]+[l_i]

return arr[L]

La fonction donne évidemment les mêmes résultats que la version récursive :

In []: optimal(40, [(8, 7), (12, 11), (17, 15)])
Out[]: [36, [12, 12, 8, 8]]

Par contre, la complexité est différente. Ici, elle peut s’écrire O
(
L×p

)
(on rappelle que

L est ici un entier !). Elle peut parfois être beaucoup plus grande que dans l’approche
récursive, car cette dernière ne tentera pas nécessairement de déterminer les découpages
optimaux pour tous les i entiers entre 0 et L, mais seulement ceux qui lui sont utiles. Si L
ou un des li n’est pas un entier, il faudra également procéder différemment.

11

3 Distance d’édition

3.1 Présentation du problème

Intéressons-nous à un dernier exemple : l’estimation de la « distance » entre deux chaînes
de caractères. C’est un problème fréquemment utile, par exemple lorsqu’un programme
de correction automatique doit remplacer un mot incorrect par un mot présent dans son
dictionnaire. Il doit donc chercher, parmi tous les mots de son dictionnaire, le mot le « plus
proche » du mot incorrect. Le problème est de définir la notion de « plus proche » sur les
chaînes de caractères.

Une solution consiste à déterminer la distance d’édition (ou distance de Levenshtein)
entre deux chaînes. Elle correspond au nombre minimal d’opérations élémentaires que
l’on doit effectuer sur une chaîne pour obtenir la seconde.

Ces opérations sont généralement 14 :

• ajout d’un caractère ;
• suppression d’un caractère ;
• substitution d’un caractère à un autre.

Par exemple, pour les chaines PYTHON et YOUHOU, on peut suivre le chemin suivant :

PYTHON 7→ YTHON 7→ YOTHON 7→ YOUHON 7→ YOUHOU

soit une suppression, une ajout, et deux substitution, et donc au total quatre opérations.

Il n’existe pas de méthode permettant d’effectuer la transformation avec moins d’opéra-
tions, aussi la distance entre les deux mots est-elle de 4.

3.2 Calcul de la distance

Pour déterminer cette distance, on peut remarquer les propriétés suivantes :

• si les dernières lettres des chaînes ch1 et ch2 sont identiques, la distance entre ch1 et
ch2 ne peut pas être plus grande que celle entre les chaînes privées de leur dernier
caractère ;

• si les dernières lettres des chaînes ch1 et ch2 sont différentes, la distance entre ch1 et
ch2 ne peut pas être plus grande que celle entre les chaînes privées de leur dernier
caractère augmentée de 1 (substitution) ;

• la distance entre ch1 et ch2 ne peut excéder la distance entre ch1 privée de son
dernier caractère et la chaîne ch2 augmentée de 1 (ajout) ;

• la distance entre ch1 et ch2 ne peut excéder la distance entre ch1 et la chaîne ch2
privée de son dernier caractère augmentée de 1 (suppression).

14. On y ajoute parfois l’échange de deux caractères successifs, et on considère parfois des « coûts » différents
pour chacune des opérations, voire fonction des caractères impliqués.

Par ailleurs, la distance entre ch1 et ch2 correspond nécessairement à l’un des cas
précédents. En effet, on peut remarquer que quelle que soit la transformation amenant la
chaîne ch1 vers la chaîne ch2, il est possible d’ordonner les opérations de la gauche vers la
droite. Pour ce faire, on identifie les caractères qui se « correspondent » (ceux qui seront
conservés ou substitués) comme sur l’exemple ci-dessous :

P Y T H O N

Y O U H O U

Dans cet exemple de transformation de la chaine PYTHON en la chaîne YOUHOU, la suite
d’opérations peut donc être ordonnée de la sorte :

• suppression d’un P ;
• ajout d’un O ;
• substitution du T de PYTHON en U ;
• substitution du N de PYTHON en U ;

Une fois cet ordonnancement fait (qui ne change pas le nombre d’opérations dans la
transformation), on peut aisément voir que la dernière opération est bien nécessairement
l’une des quatre opérations décrites ci-dessus 15.

Pour déterminer la distance entre deux chaînes ch1 et ch2 de longueur respectives
n et p, on va utiliser le principe de la programmation dynamique, en se basant sur les
propriétés précédentes qui permettent de réécrire le problème du calcul de la distance
entre deux chaînes à partir du résultat des calculs de distances entre des paires de chaînes
plus courtes.

3.3 Implémentation

Ce problème, cette fois, se prête fort bien à une approche de bas en haut 16. Pour mémo-
riser les résultats, il nous faut un tableau tab à deux dimensions conservant, sur la ligne i
et la colonne j , la distance entre la chaîne constituée des i premiers caractères de la chaîne
ch1 et celle constituée des j premiers caractères de la chaîne ch2 (i et j pouvant être nuls).
Le tableau doit donc comporter une ligne de plus que le nombre de caractères dans ch1, et
une colonne de plus que de caractères dans ch2.

La première ligne du tableau se remplit aisément : puisque la première sous-chaîne est
de longueur nulle, la seule solution consiste à ajouter tous les caractères de la seconde
sous-chaîne, soit sa longueur. Les cases tab[0][j] contiennent donc la valeur j. Un rai-
sonnement similaire sur la première colonne montre que les cases tab[i][0] contiennent
la valeur i.

15. Sous réserve que l’on évite les séquences d’opérations qui ne font qu’augmenter la distance, comme la
suppression d’un caractère suivi d’un ajout, que l’on peut remplacer avantageusement par une substitution.

16. Une approche récursive avec mémoïsation reste toutefois parfaitement possible

12

Ensuite, il suffit d’écrire que :

• si le caractère au rang i −1 de ch1 est égal au caractère au rang j −1 de ch2, alors

tab[i][j] = min
(
tab[i-1][j-1], tab[i-1][j-1]+1, tab[i-1][j-1]+1

)
.

• si le caractère au rang i −1 de ch1 est différent du caractère au rang j −1 de ch2, alors

tab[i][j] = min
(
tab[i-1][j-1]+1, tab[i-1][j-1]+1, tab[i-1][j-1]+1

)
.

Pour la distance entre les chaînes PYTHON et YOUHOU, le tableau, rempli, contient les
valeurs suivantes :

Y O U H O U
0 1 2 3 4 5 6

P 1 1 2 3 4 5 6
Y 2 1 2 2 3 4 5
T 3 2 2 3 4 5 6
H 4 3 3 3 3 4 5
O 5 4 3 4 4 3 4
N 6 5 4 4 5 4 4

La distance d’édition entre les deux chaînes est alors simplement la valeur se situant en
bas à droite dans le tableau. Le calcul de la distance entre deux chaînes peut donc s’écrire
ainsi en Python :

def distance(ch1, ch2):
n, p = len(ch1), len(ch2)
On crée un tableau de taille (n+1)*(p+1)
tab = [[0 for j in range(p+1)] for i in range(n+1)]
On remplit la première ligne et la première colonne
for i in range(1, n+1):

tab[i][0] = i
for j in range(1, p+1):

tab[0][j] = j
On renseigne les autres valeurs du tableau, ligne par ligne
for i in range(1, n+1):

for j in range(1, p+1):
if ch1[i-1] == ch2[j-1]:

tab[i][j] = min(tab[i-1][j-1],
tab[i-1][j] + 1,
tab[i][j-1] + 1)

else:
tab[i][j] = min(tab[i-1][j-1] + 1,

tab[i-1][j] + 1,
tab[i][j-1] + 1)

return tab[n][p]

De façon évidente, la complexité de cette fonction est O
(
(n +1)× (

p +1
))

, correspondant
au produit des longueurs des deux chaînes incrémentées d’une unité, puisque toutes les
opérations dans la double boucle, qui représente l’essentiel du temps de calcul de la
fonction, sont de coût constant (O (1)).

Il est par ailleurs possible de retrouver une séquence d’opérations permettant de trans-
former une chaîne en l’autre en partant de cette case et en remontant jusqu’en haut à
gauche, en s’assurant que la série de valeurs traversées forme une suite décroissante. Le
long de ce chemin, un déplacement vers la droite correspond à un ajout de caractère, vers
le bas à une suppression de caractère, et en diagonale une éventuelle substitution.

Pour notre exemple, le chemin suivant, en gras dans le tableau, est une chaîne de
modifications possibles (elle correspond à la suppression du premier P, à la conservation
du Y, à l’ajout d’un O, à la transformation d’un T en U, à la conservation des H et O, et à la
conversion d’un N en U) :

Y O U H O U
0 1 2 3 4 5 6

P 1 1 2 3 4 5 6
Y 2 1 2 2 3 4 5
T 3 2 2 3 4 5 6
H 4 3 3 3 3 4 5
O 5 4 3 4 4 3 4
N 6 5 4 4 5 4 4

Notons pour terminer que si l’on n’a pas besoin du chemin, comme dans notre tout
premier exemple de chasse au trésor, il est parfaitement possible de ne conserver, à tout
instant, que deux lignes 17 du tableau lors du remplissage, plutôt que tableau dans son
entièreté.

17. Voire, avec quelques efforts supplémentaire, une seule ligne.

13

14

2Apprentissage supervisé

1 Introduction à l’apprentissage supervisé

1.1 Buts poursuivis

L’augmentation de la puissance de calcul des ordinateurs a progressivement ouvert la
voie à la réalisation de tâches complexes. Parmi celles-ci, la classification de données, où
un ordinateur est capable d’identifier des objets (nous le verrons, dans un sens très large)
qu’on lui présente, a pris une grande importance dans notre vie quotidienne.

Afin d’être en mesure d’y parvenir, l’ordinateur doit apprendre à reconnaître lesdits objets.
Parmi les techniques d’apprentissage existantes, la plus élémentaire est l’apprentissage
supervisé. Dans cette situation, on a présenté préalablemement à l’ordinateur une grande
quantité d’objets dont la nature est connue (on dit qu’ils ont été préalablement étiquetés),
afin que la machine puisse établir des règles qui lui permettront, lorsqu’on lui montre un
nouvel objet inconnu, de l’identifier comme appartenant à l’une des catégories utilisées
lors de la phase d’apprentissage.

Les exemples d’utilisation d’une telle technique sont très nombreuses. On y trouve par
exemple (la liste n’étant pas du tout exhaustive) :

• de la classification (identification de plantes, reconnaissance d’obstacles et de pan-
neaux pour la conduite autonome ou assistée, outils de surveillance...) ;

• de la reconnaissance de caractères ou de schémas, pour la numérisation de docu-
ments par exemple ;

• de l’identification de musique, tant pour proposer ce service à un particulier qui
souhaite connaître le titre d’une chanson que pour détecter l’utilisation « abusive »
d’œuvres soumises à des droits d’auteur ;

• de la reconnaissance pour des utilisations notamment liés à la sécurité (à partir de
caractéristiques du visage, d’iris, d’empreintes, de voix, de forme d’oreille...) ;

• de l’assistance aux diagnostics médicaux à partir de symptômes ou de résultats
d’examen;

• d’identification de la langue d’un texte pour des outils de traduction automatique ;
• de reconnaissance de phonèmes pour permettre le sous-titrage ou la traduction

simultanée, ou bien encore permettre une interface vocale à un service...

1.2 Données

Les données que l’on peut utiliser dans un tel cadre peuvent se trouver également sous
bien des formes. Il peut s’agir :

• de données numériques « brutes », comme la représentation binaire d’une image (on
parle de codage rétinien), d’une piste audio... ;

• de paramètres spécifiques mesurés ou extraits de l’objet (par exemple ses dimensions,
son poids...) ;

• d’informations colorimétriques, par exemple la distribution statistique des couleurs
de l’objet

• de points d’intérêt particuliers (parfois appelés marqueurs), et plus précisément leur
nombre, leur position absolue et relative (par exemple les coins des yeux, commis-
sures des lèvres, extrémité du nez et autre dans la reconnaissance de visage) et leur
nature ;

• de paramètres descriptifs (qui peuvent être du simple texte, comme la description
d’un symptôme)...

Cette fois encore, la liste est loin d’être exhaustive, et la nature des données disponibles
aura naturellement un impact important sur la manière de traiter les objets.

1.3 Un exemple

Afin de tester différentes techniques d’apprentissage, il existe des bases de données qui
ont été créées spécifiquement pour les mettre à l’épreuve. Elles contiennent un grand
nombre d’objets étiquetés, dont une partie pourra être utilisée pour un apprentissage, et
le reste, nous le verrons, servira à tester les performances.

Parmi les plus anciennes, on trouve une base de données proposant de classifier des iris.
Il s’agit de plantes pour lesquelles il existe plusieurs variétés, représentées ci-dessous :

Iris setosa Iris virginica Iris versicolor

L’objectif est de classer une plante a priori inconnue comme membre de l’une de ces
trois espèces. On n’utilise pas pour cela directement les images (ce qui est dorénavant
possible, mais bien plus difficile), mais quatre données numériques extraites de chacune
des plantes : la longueur et la largeur des pétales, et la longueur et la largeur des sépales
de la plante. Les sépales (ou calice) correspondent à ce qui se trouve juste en-dessous des

15

pétales d’une fleur. Si généralement ils sont de moindre taille et usuellement verts pour la
plupart des fleurs, ils ressemblent à un autre type de pétale dans le cas des iris : il s’agit, sur
les photos ci-dessus, des éléments colorés les plus grands (les plus petits étant les pétales).

Il a été montré que l’on pouvait se servir de ces grandeurs pour classifier les différentes
espèces d’iris, et c’est ce que nous allons nous-même tenter dans ce chapitre.

1.4 Méthodes de classification

Les méthodes à notre disposition sont nombreuses. On peut par exemple citer :

• les arbres de décisions (« cuts ») où l’identification est faite grâce à un logigramme
où l’on est amené à répondre à une série de questions, conduisant à un résultat (les
questions peuvent être définies à la main, mais peuvent également être obtenues
procéduralement via des techniques d’apprentissage) ;

• les réseaux neuronaux qui, compte tenu de leur souplesse et de leurs résultats ont
été très populaires ces trente dernières années, même s’ils peuvent représenter des
coûts algorithmiques important et que l’on ne comprend pas forcément toujours
bien pour quelle raison ils fonctionnent bien ou mal ;

• les classifieurs bayésiens naïfs ;
• les machines à vecteurs de support (SVM) ;
• des algorithmes plus élémentaires mais néanmoins potentiellement efficaces comme

celui des k-plus proches voisins...

C’est cet algorithme des « k-plus proches voisins » que nous allons étudier à présent, afin
d’illustrer le principe bien plus général de l’apprentissage supervisé.

1.5 Préparation des données

Lorsque l’on souhaite tester un algorithme de classification, il nous faut diviser les don-
nées étiquetées en deux groupes distincts : une partie des données servira à l’apprentissage
(ce sont ces données qui permettront à l’algorithme d’en apprendre plus sur la classifica-
tion), le reste des données servant à tester le bon fonctionnement de l’algorithme. Il est
important de disposer de données étiquetées également pour cette seconde étape, car, en
comparant les étiquettes aux prédictions de l’algorithme, nous pourrons évaluer son taux
de réussite sur des données qu’il n’a pas déjà examinées lors de l’apprentissage.

Le cardinal de chacun des deux ensembles n’est pas toujours simple à choisir. Il doit y
avoir suffisamment de données pour l’entraînement, afin que l’algorithme puisse se fami-
liariser avec les variations possibles dans les données, mais il faut également suffisamment
de données de tests pour que l’on puisse considérer significatives les statistiques sur les
résultats. Dans le cas de notre base d’iris, on dispose de 150 données étiquetés, nous allons
en utiliser 60 pour l’apprentissage et 90 pour effectuer les tests.

Cette répartition ne peut pas être faite sans aucune précaution, cependant : il est né-
cessaire d’avoir des représentants de chaque catégorie (on parle généralement de classe
dans le domaine de l’apprentissage supervisé) en nombre suffisant dans chacun des deux
groupes (apprentissage et contrôle). Il y a 50 données pour chacune des trois espèces, nous
allons donc nous arranger pour qu’il y en ait 20 de chaque utilisées pour l’apprentissage,
et 30 de chaque pour le contrôle.

Les données (fournies par le module Python sklearn.datasets) se présentent sous
la forme de deux listes : une tableau data contenant 150 tableaux de quatre flottants,
correspondant aux quatre dimensions précédemment décrites, et une tableau target de
150 entiers dans �1 . . 3�, chaque entier correspondant à une espèce. Ainsi, les données
data[i] correspondent à un iris de l’espèce target[i]. Pour la répartition, on commence
donc par créer un dictionnaire classes avec pour clé les identifiants des espèces et pour
valeurs associées une liste de données de plantes de cette espèce :

classes = {}
for elem, typ in zip(data, target):

if typ not in classes:
classes[typ] = []

classes[typ].append(elem)

Dans un second temps, on utilise la fonction random.shuffle pour réordonner aléatoi-
rement le contenu de chacune des listes. En effet, on ne sait pas, a priori, si les données
dans la base sont rangées dans un ordre particulier (par exemple les petites fleurs avant les
plus grandes). Cette étape est donc nécessaire pour que les deux ensembles puisse être
considérés statistiquement « équivalents ».

for k in classes:
random.shuffle(classes[k])

Enfin, on construit quatre listes, data_ref, data_tst, target_ref et target_tst, dont
le contenu est similaire à data et target, mais scindé en un groupe d’entraînement (_ref)
avec 40% des données, et un groupe de contrôle (_tst) avec le reste des données :

Q = 0.4 # Part (dans [0,1] des données pour l'apprentissage)
data_ref, data_tst, target_ref, target_tst = [], [], [], []
for k in bins:

nb_ref = int(Q*len(bins[k]))
nb_tst = len(bins[k])-nb_ref
data_ref.extend(bins[k][:nb_ref])
target_ref.extend([k]*nb_ref)
data_tst.extend(bins[k][nb_ref:])
target_tst.extend([k]*nb_tst)

16

2 Méthode des k-plus proches voisins

2.1 Plus proche voisin

Dans un premier temps, nous allons mettre en œuvre une méthode de classification très
simple, celle du « plus proche voisin ». Pour une donnée inconnue à classifier, nous allons
raisonner par similarité, et simplement chercher parmi les données d’apprentissage (dont
on connaît la classe) celle qui en est la plus proche.

Pour ce faire, il nous faut pouvoir déterminer la distance entre deux données. Le choix
de la distance est un point crucial pour que l’algorithme fonctionne bien. Nous allons
simplement utiliser la distance euclidienne 1. Comme les données sont des tableaux de
grandeurs numériques, il est aisé de calculer la distance entre deux données. On définit
donc une fonction dist2 prenant en argument deux données et retournant leur distance :

def dist2(elem1, elem2):
res = 0
for i in range(len(elem1)):

res += (elem1[i]-elem2[i])**2.0
return res

On remarquera que l’on ne retourne pas exactement la distance euclidienne mais le
carré de cette distance. En effet, comme nous allons simplement comparer des distances
entre elles et que la fonction racine carrée est une fonction strictement croissante, calculer
la racine de chacune des distances est un calcul qui ne nous est pas indispensable.

L’algorithme déterminant la classe par la méthode du plus proche voisin n’est alors guère
plus qu’un calcul de minimum. Par exemple :

def ppv(elem, data_ref, target_ref):
meilleur, meilleure_dist = None, None
for i in range(len(data_ref)):

elem_ref = data_ref[i]
typ_ref = target_ref[i]
d = dist2(elem, elem_ref)
if meilleur is None or d < meilleure_dist:

meilleure_dist = d
meilleur = typ_ref

return meilleur

Grâce à la fonction ppv précédente, on peut déterminer la classe probable d’une donnée
elem, connaissant les données data_ref et target_ref qui servent de référence. Par

1. Qui a des défauts en pratique, mais est une bonne base de travail, et suffira pour illustrer les principes de
l’algorithme

exemple, la fleur numérotée 42 est identifiée comme appartenant à la classe 1, Ce que l’on
peut aisément vérifier, puisque l’on dispose d’un étiquetage pour les données servant aux
tests. Dans le cas présent, c’est un succès :

In []: ppv(data_tst[42], data_ref, target_ref)
Out[]: 1

In []: target_tst[42]
Out[]: 1

On remarquera que dans le cadre de cette méthode, il n’y a pas d’étape d’apprentissage
à proprement parler 2 : on utilise les données d’entraîntement telles quelles !

2.2 Préparations spécifiques

Compte tenu de l’usage présent de la distance euclidienne, il convient d’être prudent.
En physique, on est sensibilisé au besoin de ne pas additionner des mètres et des secondes,
ou même des mètres et des millimètres sans une conversion préalable. Or c’est ce que l’on
fait éventuellement allégrement ici dans le calcul de la distance, puisque l’on additionne
des carrés de paramètres qui ne sont pas forcément comparables entre eux.

On peut donc se heurter à un souci : si une grandeur affiche une plus grande variabilité
que les autres, elle risque de jouer un rôle prépondérant dans le calcul de la distance, et
la classification ne se fera que sur cette unique grandeur 3. Il convient donc de s’assurer
préalablement que les grandeurs sont bien comparables, par exemple en effectuant une
transformation affine pourque chaque paramètre suive une distribution avec une même
moyenne et un même écart-type, ce qui peut s’écrire ainsi :

def normalisation(data):
for i in range(len(data[0])): # pour tous les paramètres

s, s2 = 0.0, 0.0
for elem in data:

s += elem[i]
s2 += elem[i]**2

moy = s / len(data) # moyenne
etp = (s2/len(data) - moy**2)**0.5 # écart-type
for elem in data:

elem[i] = (elem[i]-moy)/etp # normalisation

2. On pourrait organiser les données plus efficacement pour accélérer la classification, mais notre objectif
étant d’illustrer le principe, les performances ne sont pas notre principal souci.

3. C’est le même problème qui peut intervenir dans le classement d’un concours si certaines disciplines ont
des épreuves pour lesquelles l’étalement des notes est plus important !

17

La fonction normalisation précédente s’assure ainsi que tous les paramètres sur les-
quelles on va travailler (calculés à partir des quatres dimensions dans le cas des iris) ont une
moyenne nulle et un écart-type unitaire 4. Précisons que, comme elle travaille sur le tableau
data, elle est à appeler avant la répartition des données en un groupe d’apprentissage et
un groupe de contrôle !

2.3 Interprétation du fonctionnement

Pour mieux appréhender comment se passe la classification, prenons un exemple plus
simple. Même si la classification des iris ne fait intervenir que quatre dimensions, la re-
présentation d’un espace à quatre dimensions sur une feuille de papier reste délicate.
Considérons donc un ensemble d’objets, appartenant à deux classes distinctes, et pouvant
être décrits par deux paramètres. Dans le graphe ci-dessous, les objets servant à l’appren-
tissage ont été placés en fonction de la valeur de leurs deux paramètres, les classes étant
représentées respectivement par des triangles et des disques :

On devine, sur l’exemple précédent, que la classification doit être possible : les disques
sont regroupés dans un une zone en bas à droite largement distincte des triangles qui
forment un arc par-dessus. Cependant, comme les deux zones ne sont pas clairement
séparées, il est raisonnable de s’attendre aussi à quelques erreurs de classification.

L’algorithme du plus proche voisin a pour effet d’attribuer une classe à n’importe quel
point du plan : la classe associée à un point

(
x, y

)
donnée est celle du point, parmi les

4. Les valeurs pour la moyenne et l’écart-type peuvent être choisies arbitrairement, on souhaite juste qu’elles
soient similaires pour chacun des paramètres.

objets ayant servi à l’apprentissage, qui se trouve le plus proche des coordonnées
(
x, y

)
. Si

l’on colorie le morceau de plan en tout point en fonction de la classe obtenue, on obtient
le résultat suivant 5 :

k=1

Le résultat est d’ores et déjà satisfaisant avec deux zones distinctes, mais on remarque
que la frontière est très accidentée, et que l’on a quelques « incursions » d’une zone
dans l’autre, alors que l’on pourrait espérer un frontière plus lisse entre les deux groupes.
La raison est simple à comprendre : la présence d’un seul point a une influence très
importante sur son voisinage immédiat.

2.4 Matrice de confusion

Avant d’essayer de résoudre la difficulté précédente, essayons d’estimer l’efficacité de ce
premier classifieur sur la base des iris. Pour ce faire, il nous faut savoir combien d’iris, dans
la base de test, ont été correctement classés (il serait idiot d’essayer de classer les iris de
la base d’entraînement qui, par construction, seraient de façon évidente nécessairement
tous bien classés, puisqu’il n’y a rien plus proche d’un iris que cet iris lui-même !)

En général, on détermine ce que l’on appelle la matrice de confusion. Pour un classifieur
à n classes, il s’agit d’une matrice Ci , j de taille n ×n où le coefficient Ci , j correspond au
nombre d’objets dont la classe réelle est i qui ont été reconnus comme un objet de la classe
j .

5. En mathématiques, ce résultat est lié à ce que l’on appelle les zones de Voronoï des données servant à
l’apprentissage.

18

Elle est très aisée à construire en Python, il suffit de créer une « matrice » de taille n ×n
(une liste de listes dans le cas présent, pour éviter le recours au module numpy), de prendre
tous les objets de la base de test, et d’incrémenter le coefficient adéquat de la matrice :

C = [[0 for j in range(len(classes))] for i in range(len(classes))]
for i in range(len(data_tst)):

C[target_tst[i]][ppv(data_tst[i], data_ref, target_ref)] += 1

Dans le cas des iris, on obtiendra par exemple le résultat suivant 6 :

[[29, 1, 0],
[0, 28, 2],
[0, 3, 27]]

Chaque iris bien classé est comptabilisé sur la diagonale (un objet de classe i classé
comme i). On a donc déjà un résultat remarquable 7 avec un algorithme très élémentaire :
sur les 30 iris de la première espèce dans l’ensemble de contrôle, 29 ont été classés cor-
rectement. 28 et 27 l’ont été pour les 30 iris des deux autres espèces. Au total, le taux de
succès dépasse les 93% !

La matrice nous donne en fait davantage de renseignements : elle a plus de difficulté
à faire la différence entre les espèces 2 et 3, car on peut remarquer que 5 des 6 erreurs
de classifications ont été des confusions entre ces deux espèces. L’analyse de la matrice
de confusion est donc très utile pour déterminer ce qui fonctionne bien dans un classi-
fieur et les difficultés qu’il rencontre (par exemple dans le but de trouver des paramètres
supplémentaires permettant de différencier les classes souvent confondues).

2.5 k plus proches voisins

Revenons à notre problème de frontière trop accidentée. Comme nous l’avons dit, cela
est du au fait que l’on ne considère que la plus proche donnée parmi les données de la
base de test, ce qui donne un caractère trop local à la classification. Pour améliorer les
choses, on peut considérer les k > 1 plus proches données. La décision se fera ensuite, par
exemple, à la majorité parmi les classes de ces k données. C’est la méthode dite des « k
plus proches voisins ».

Un classifieur, pour une donnée elem, peut fonctionner de la sorte : à tout moment,
on conserve une liste nommée meilleurs contenant des couples (typ, d), associés
aux objets de la base d’entraînement les plus proches de l’élément à classer que l’on ait

6. Compte tenu de la répartition aléatoire entre le groupe destiné à l’entraînement et celui servant au contrôle,
les résultats obtenus pour la matrice de confusion peuvent être légèrement différents.

7. La base des iris est un peu ancienne, et il se trouve qu’il est bien trop simple de classifier correctement les
données, et nous l’avons choisie d’abord parce qu’elle permet de se faire une image plus claire du principe de la
classification, et non pour réellement tester les performances d’un algorithme.

identifiés, typ représentant la classe de l’objet en question et d la distance à laquelle il se
trouve. On gardera par exemple cette liste triée par ordre croissant de distance.

On s’assure que la longueur de la liste meilleurs ne dépasse jamais k. Pour chaque
nouvel objet considéré dans la base d’entraînement, plusieurs cas peuvent se présenter :

• si la liste ne contient pas encore k couples, on ajoute le couple (typ, d) correspon-
dant à ce nouvel objet à la fin de la liste ;

• si la liste contient déjà k couples et que le dernier d’entre eux correspond à une
distance plus grande que la distance entre l’objet à classer et l’objet de la base
d’entraînement considéré, on retire le dernier couple de la liste avant d’ajouter le
couple (typ, d) correspondant au nouvel objet en fin de liste ;

• si la liste contient déjà k couples plus proches de l’élément à classer (il suffit de
vérifier le dernier puisqu’ils sont classé !), alors on ignore le nouvel objet de la base
d’entraînement.

Dans les deux premiers cas, l’ajout d’un couple en fin de liste a pu rompre l’ordonnan-
cement de la liste. On rétablit l’ordre par une insertion (similaire à celle vue en première
année dans le tri du même nom), en faisant progresser le couple en question vers la gauche
par échanges jusqu’à ce que la liste soit à nouveau triée.

Une fois tous les éléments de la base d’entraînement considérés, on construit la liste des
types des k éléments les plus proches identifiés. Il ne reste alors plus qu’à choisir le plus
fréquent 8 (on a pris ici un raccourci en utilisant la classeCounter du module collections
pour ne pas alourdir la fonction). Cela donne par exemple :

def kppv(elem, data_ref, target_ref, k):
meilleurs = []
for i in range(len(data_ref)):

elem_ref = data_ref[i]
typ_ref = target_ref[i]
d = dist(elem, elem_ref)
if len(meilleurs) < k:

meilleurs.append((typ_ref, d))
elif meilleurs[-1][1] > d:

meilleurs[len(meilleurs)-1] = (typ_ref, d)
j = len(meilleurs)-1
while j>0 and meilleurs[j][1] < meilleurs[j-1][1]: # insertion

meilleurs[j], meilleurs[j-1] = meilleurs[j-1], meilleurs[j]
j = j-1

typs = [typ for (typ, d) in meilleurs]
return Counter(typs).most_common()[0][0]

8. En cas d’égalité, il faudra trouver des règles pour faire un choix, mais dans la majorité des situations, cela
n’aura guère d’importance.

19

2.6 Résultats et influence de k

Sur notre exemple à deux classes dans le plan, on peut remarquer que l’augmentation
de k lisse bien la frontière entre les deux classes, comme on le souhaitait 9 :

k=1 k=3

k=7 k=25

Pour savoir si l’augmentation de k améliore les résultats fournis par le classifieur, on
peut tracer l’évolution du pourcentage d’éléments correctement classés en fonction de
k. On l’a fait à la fois pour les objets de la base d’entraînement et de la base de contrôle
ci-dessous :

0 20 40 60 80
k

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

%
 c

or
re

ct

Données
Test

9. Il y a des variations parfois importantes sur les bords, mais comme peu d’objets devraient se trouver dans
cette zone, c’est sans importance.

Bien évidemment, la courbe pour la base de contrôle débute à 100% pour k = 1, et
décroit lorsque l’on augmente k (les quelques « anomalies » isolées et entourées d’élément
d’une autre classe ne sont plus classés correctement lorsque k > 1). Mais c’est les résultats
sur la base de test qui sont intéressant : l’augmentation de k conduit à une augmentation
du pourcentage d’objets bien classés. De 81.5% environ pour k = 1, on monte à 86.5% pour
k = 25. La modification à l’algorithme a donc bien l’effet souhaité.

Si l’on continue à augmenter k, les performances cependant commencent à reculer.
Ce n’est guère surprenant : plus k est grand, plus les k plus proches voisins forment un
ensemble étendu, et on perd progressivement le caractère « local » de la classification.

Aussi, les tests ne servent pas seulement à contrôler le bon fonctionnement de l’algo-
rithme : ils permettent aussi de choisir convenablemnt la valeur de k qui conduira aux
meilleures performances possibles pour le classifieur. Il n’existe en effet pas de valeur
idéale universelle pour le choix de k, car elle dépend de beaucoup de facteurs, dont le
nombre d’éléments dans la base de référence !

Lorsque l’on ne travaille qu’avec deux classes, autre manière d’envisager le choix de k est
de tracer une courbe dite « courbe ROC ». On trace alors le taux d’identification correcte
d’objets la classe 1 en fonction du taux d’objets de la classe 2 reconnus comme objets de
la classe 1 à tort, pour toutes les valeurs possibles du paramètre k. On peut imaginer par
exemple le cas d’un test médical : si la classe 1 correspond à une personne malade et la
classe 2 à une personne saine, on compare la capacité du test à identifier correctement une
personne malade, et à ne pas déclarer malade une personne qui ne l’est pas. On souhaite
donc être le plus en haut à gauche du graphe!

0 20 40 60 80 100
% B incorrects

0

20

40

60

80

100

%
 A

 c
or

re
ct

s

Courbe ROC

Reste ensuite à choisir le k qui répondra le mieux aux besoins. Le même principe s’ap-
plique à quantité d’autres tests, car ils nécessitent généralement de comparer une quantité
à un « seuil » pour conclure. Selon les situations, il peut être préférable de n’avoir que 50%
de détection des personnes malades mais de garder un taux de faux positifs très faible, mais

20

dans d’autres situations on voudra un tests qui identifie correctement 99% des malades
quitte à avoir un grand nombre de faux positifs... De la même façon, dans un système de
conduite autonome, on souhaite un taux très élevé d’identification des piétons, même
si cela signifie des faux positifs fréquents : mieux vaut ralentir parce qu’un objet lointain
pourrait être une personne en train de traverser que de provoquer un accident faute d’un
classement correct !

Si l’on applique la méthode des k plus proches voisins à nos iris, on peut voir qu’en
choisissant par exemple k = 5, les résutats sont améliorés, avec la matrice de confusion
suivante :

[[30, 0, 0],
[0, 29, 1],
[0, 3, 27]]

On a atteint un taux de classements corrects de 95%, avec en outre 100% de réussite sur
les objets de la classe 1. Seules les classes 2 et 3 sont encore parfois confondues, mais il est
difficile, voire impossible, d’obtenir une classification toujours juste de ces deux classes,
même avec d’autres méthodes, tant les caractéristiques des pétales et sépales considérées
pour ces deux espèces peuvent parfois être similaires.

2.7 Intérêt de la méthode

On l’a vu, en dépit de sa grande simplicité, la méthode des k plus proches voisins donne
des résultats déjà très satisfaisants sur les exemples considérés, et il en sera de même sur
des problèmes raisonnablement difficiles (comme la reconnaissance de chiffres manuscrits
par exemple). Parmi ses principaux avantages, on peut citer :

• la simplicité de l’idée et de l’algorithme ;
• la facilité d’interprétation des résultats obtenus (ce qui n’est pas toujours le cas, par

exemple avec des réseaux neuronaux) ;
• le fait de pouvoir se dispenser d’une phase d’apprentissage ;
• la possibilité d’ajouter des exemples à la base de référence au fil de l’eau ;
• et enfin le nombre très réduit de paramètres à ajuster, à savoir principalement l’entier

k (outre un éventuel choix de la distance).

Cela dit, la méthode présente aussi quelques inconvénients, parmi lesquels :
• une grande sensibilité aux bruit, aux « données anormales », ainsi qu’aux données

manquantes ;
• un besoin de mise à l’échelle des paramètres pour donner de bons résultats ;
• une incapacité à traiter autre chose que des données numériques;
• un coût algorithmique élevé (en raison du calcul d’un grand nombre de distances)

si les données de références sont nombreuses (même s’il est possible de choisir des
structures adéquates et d’utiliser par exemple l’inégalité triangulaire pour réduire le
nombre de calculs à effectuer) et si le nombre de paramètres considérés est élevé.

Lorsque l’on est confronté à un problème de classification, il est donc toujours intéres-
sant d’envisager les très nombreuses méthodes de classifications dont on dispose (dont
certaines ont été listées en début de chapitre) et de peser les avantages et inconvénients
de chacune en fonction du problème auquel on est confronté.

21

22

3Apprentissage non supervisé

1 Introduction

1.1 Buts poursuivis

Supposons à présent que l’on dispose d’un volume de donnnées conséquent, mais que
ces données n’aient pas fait l’objet d’un étiquetage (pour reprendre le cas des iris évoqué
au chapitre précédent, nous aurions collecté les dimensions des pétales et sépales d’un
grand nombre de fleurs, mais que nous n’aurions aucune information concernant l’espèce
à laquelle appartiennent chacune de ces fleurs, ni même du nombre d’espèces différentes
qui se trouvent dans le lot).

Le but de l’apprentissage non supervisé reste de partitionner l’ensemble des données
en k groupes (ou classes), k étant ou non choisi à l’avance, de manière à avoir les groupes
les plus « homogènes » possibles (avec une première difficulté consistant à définir concrè-
tement en quoi deux données sont semblables ou dissemblables). Par exemple, pour
les points dans le plan représentés ci-dessous, on souhaiterait disposer d’un algorithme
capable de constituer 3 classes distinctes :

L’objectif est généralement d’analyser les données dont on dispose, et de déterminer si
l’on peut mettre en évidence des objets de différentes nature dans les données. En d’autres
termes, savoir si les données ont une structuration intéressante. Par exemple, dans le cas de
plantes, pour spontanément faire émerger l’existence de plusieurs espèces différentes. Ou,
si l’on analyse le trafic réseau en un nœud de communication, de déterminer si plusieurs
protocoles différents sont à l’œuvre.

1.2 Similarité et données numériques

Comme dans le cas de la classification supervisée, il est fréquent que chaque donnée
soit décrite par une série de p grandeurs numériques, typiquement réelles. On associe
donc à chaque donnée un vecteur x ∈Rp . Dans le cas des données sur les iris, chaque fleur
était associée à un vecteur de R4.

Dans cette situation, on peut reprendre l’idée d’utiliser une distance, par exemple la
distance euclidienne, pour estimer la dissemblance entre deux objets. Et l’homogénéïté
d’une partie S de nos données peut naturellement être lié à la variance V[S] de ces
données x ∈S , que l’on peut définir par

V[S] = 1

|S| ×
∑

x∈Si

∥x −µ∥2

où µ est le barycentre des x ∈S .

Si l’on souhaite partitionner 1 les données que l’on étudie en k ensemblesSi de manière à
ce qu’il soit les plus homogènes possibles, on veut donc minimiser les variances de chacun
des ensembles. Plus précisément, afin de considérer également la taille des ensembles,
nous allons chercher la partition P = {

S0,S1, . . . ,Sk−1
}

qui minimise la quantité :

k−1∑
i=0

|Si |×V[Si] =
k−1∑
i=0

∑
x∈Si

∥x −µi∥2

Les termes
∑

x∈Si
∥x −µi∥2 sont généralement appelées moments d’inertie des ensembles

Si . D’après la définition des barycentres, il est possible de montrer que ces moments sont
liées aux distances entre points à l’intérieur de ce même ensemble :∑

x∈Si

∥x −µi∥2 = 1

|Si |
∑

x,y∈S2
i

∥x − y∥2

On cherche donc, de la même façon, à minimiser les distances entre données de chaque
ensemble, en cherchant la partition P = {

S0,S1, . . . ,Sk−1
}

qui minimise la quantité :

k−1∑
i=0

1

|Si |
× ∑

x,y∈S2
i

∥x − y∥2

L’ennui, c’est que la résolution exacte de ce problème est généralement hors de portée
de moyens numériques, car le nombre de partitions possibles en k classes est exponentiel
en le nombre de données, malgré quelques avancées récentes qui ont apporté des pistes
intéressantes. En revanche, il existe de très nombreux algorithmes qui fournissent des
solutions approchées qui peuvent se révéler bien suffisantes.

1. Par partitionner, on entend que chaque donnée va être associée à un et un seul des ensembles Si .

23

2 Méthode des k-moyennes

2.1 Principe

La méthode des k-moyennes est un de ces algorithmes visant à trouver une solution
approchée au problème du partitonnement décrit précédemment.

Elle utilise une approche itérative simple, construisant des partitions successives qui
diminuent progressivement la quantité que l’on souhaite minimiser. On peut résumer les
différentes étapes de l’algorithme, pour une partition en k classes, de la façon suivante, en
illustrant chacune de ces étapes sur le nuage de points (dans R2) présenté en introduction
de ce chapitre :

1 On choisit k « représentants » ri ∈ Rp (le choix des ri proprement dit peut être
effectué de différentes façons; il n’est pas nécessaire, pour la suite, que les ri cor-
respondent à l’une des données, mais on préférera en revanche qu’ils soient tous
distincts deux à deux), représentés par les trois triangles ci-dessous :

2 On partitionne l’ensemble des données en k sous-ensembles Si grâce à l’algorithme
du plus proche voisin étudié dans le chapitre précédent, en se servant des ri comme
seul et unique représentant pour chacune des k classes. Cela revient à partitionner
l’espace Rp en k « zones de Voronoï » (dont les frontières sont les hyperplans mé-
dians de chaque paire de ri , les données dans chacune de ces zones constituant un
ensemble Si) :

3 On remplace remplace chacun des représentants ri par le barycentre de l’ensemble

des données dans Si . Cette mise à jour n’est bien évidemment possible que si Si

n’est pas vide (dans le cas contraire, on peut simplement conserver le ri existant, ou
utiliser d’autres solutions, nous y reviendrons).

4 Une fois les représentants mis à jour, on reprend à l’étape 2 afin de partitionner à
nouveau l’ensemble des données, et ainsi de suite.

Au bout d’un certain temps, les classes se stabilisent, et les ri n’évoluent plus. On arrête
alors l’algorithme. Par exemple, pour notre nuage de points, après 4 itérations, on obtient
la répartition suivante :

Et après dix itérations, le partitionnement n’évolue pratiquement plus, et se stabilise
dans cette situation, qui fait clairement apparaître les trois groupes de points, même si
quelques points en bordure droite du groupe « supérieur » ne sont probablement pas
classés comme on l’aurait souhaité :

24

2.2 Convergence de l’algorithme

Il est possible de montrer que cet algorithme converge en un temps fini. Tout d’abord, on
remarquera qu’il y a un nombre fini de partitions P = {

S0,S1, . . . ,Sk−1
}

possibles (certes
gigantesque, kn pour une partition de n données en k classes, ce qui nous a empêché
d’espérer pouvoir trouver une solution exacte en les considérant toutes).

Ensuite, on peut remarquer les étapes 2 et 3 ont toutes deux pour effet de faire diminuer
(au sens large) la quantité Q(P ,ri) =∑p−1

i=0

∑
x∈Si

∥x − ri∥2. Dans le cas de l’étape 2 parce
que l’on construit les Si en associant chaque donnée x au ri dont il est le plus proche, dans
le cas de l’étape 3 parce que les ri nouvellement choisis sont les barycentres des données
de Si .

En outre, pour une partition donnée P , à l’issue de l’étape 3 , il n’y a qu’une valeur
possible pour la quantité Q(P ,ri) (les ri étant déduits des Si). Il y a donc un nombre fini
de valeurs possibles que peut prendre Q(P ,ri). Comme à chaque itération les valeurs obte-
nues sont plus petites, on va nécessairement arriver à une situation où Q(P ,ri) n’évolue
plus.

Il est éventuellement possible que le partitionnement P et les ri oscillent encore entre
plusieurs possibilités 2 donnant une même valeur de Q(P ,ri), mais comme on souhaite
minimiser cette quantité, les solutions sont de toute façon équivalentes.

2.3 Correction du résultat

La méthode des k-moyennes n’est, rappelons-le, qu’une méthode heuristique visant
à trouver une partition assez proche de la partition recherchée : la partition P obtenue
par l’algorithme ne garantit pas nécessairement que Q(P ,ri) soit minimal parmi toutes
les partitions possibles de l’ensemble des données. Il est fort possible que l’algorithme
se coince dans un minimum « local » et ne parvienne pas à trouver le minimum global,
comme c’est fréquemment le cas dans des algorithmes d’optimisation.

Toutefois, quitte à faire plusieurs essais avec des choix différents pour les ri initiaux, la
méthode des k-moyennes donnent généralement une assez bonne approximation 3 de la
solution recherchée.

2.4 Implémentation

En Python, on représentera chaque donnée (vecteur de Rp) sous la forme d’une liste à
p éléments. L’ensemble de ces listes se trouve dans une liste data. Les p représentants ri

sont eux mémorisés dans une liste reps contenant k listes de taille p.

2. Sous certaines conditions concernant l’implémentation sur lesquelles nous ne nous appesantirons pas, on
peut s’assurer que ce ne sera pas le cas.

3. Que, sous certaines conditions, on peut parvenir à quantifier.

Durant l’étape 2 qui construit la partition P = {
S0,S1, . . . ,Sk−1

}
, il nous faut détermi-

ner, pour chaque donnée x, le représentant ri le plus proche, et construire la liste des i
correspondants. Pour ce faire, nous pouvons utiliser la fonction ppv du chapitre précédent,
et écrire la fonction suivante :

def classif(data, reps):
"""retourne une liste de len(data) entiers entre 0 et len(reps)-1

qui correspond à la classification 1-ppv de chaque donnée x
avec les représentants r_i"""

ids = [i for i in range(len(reps))]
classes = []
for x in data:

classes.append(ppv(x, reps, ids))
return classes

Durant l’étape 3 , il nous faut recalculer les nouveaux ri , en déterminant le barycentre
de chaque Si . On conservera ici les ri lorsque le Si associé est vide. On écrira par exemple :

def centroids(data, classes, reps):
"""retourne une liste des nouveaux représentants r_i

pour chacune des classes, construite à partir de la
partition fournie par la liste classes et les données"""

On détermine le cardinal nb[i] de Si

et la somme
∑

x∈Si
x des éléments dans sums[i]

p, k = len(data[0]), len(reps)
sums, nb = [[0]*p for i in range(k)], [0]*k
for i in range(len(data)):

c = classes[i]
for j in range(p):

sums[c][j] += data[i][j]
nb[c] = nb[c]+1

On construit les nouveaux représentants à partir des moyennes
nouv_reps = []
for i in range(len(reps)):

if nb[i]>0:
nouv_reps.append([sums[i][j] / nb[i] for j in range(p)])

else:
nouv_reps.append(reps[i]) # Si vide, ri conservé

return nouv_reps

25

L’initialisation des ri (étape 1) est une question délicate, car la qualité des résultats
obtenus peut dépendre des valeurs initiales des ri . Il existe plusieurs stratégies possibles,
la plus simple étant de sélectionner k données aléatoirement parmi l’ensemble des n
données. Cela peut par exemple se faire en construisant une liste de k entiers distincts
choisis aléatoirement entre 0 et n −1, et en extrayant les données correspondantes. Cela
s’écrira par exemple :

from random import randint

def choix_representants(data, k):
On choisit aléatoirement k entiers distincts dans [0..n-1]
index = []
for i in range(k):

j = randint(0, len(data)-1)
while j in index:

j = randint(0, len(data))
index.append(j)

On construit la liste des ri correspondants
return [data[j] for j in index]

Une autre question délicate est celle de l’arrêt. On pourrait vouloir attendre que les ri

n’évoluent plus du tout, mais sous certaines conditions, cela peut ne jamais arriver. Dans
la pratique, on peut simplement s’arrêter lorsqu’ils n’évoluent pratiquement plus (lorsque
la distance maximale entre les ri à une étape et à l’étape suivante est majorée par une
petite quantité maxdist) ou bien lorsque l’on a effectué un nombre d’itérations maxiter
choisi à l’avance. L’algorithme des k-moyennes peut alors s’écrire :

def kmoys(data, k, maxdist, maxiter):
reps = choix_representants(data, k) # 1

for _ in range(maxiter):
classes = classif(data, reps) # 2

nouv_reps = centroids(data, classes, reps) # 3

On détermine le déplacement maximal d'un ri

m = dist2(reps[0], nouv_reps[0])
for i in range(1, k):

m = max(m, dist2(reps[i], nouv_reps[i]))
S'il est suffisamment petit, on arrête tout !
if m**0.5 < maxdist:

return reps, classif(data, reps)

Les barycentres deviennent les nouveaux ri pour la suite
reps=nouv_reps # 4

2.5 Analyse de la méthode

La méthode des k-moyennes est particulièrement simple grâce à l’utilisation de la dis-
tance euclidienne. Mais elle ne donne pas toujours d’excellents résultats sur tous les
ensembles de données. En particulier, elle tend à identifier

• des clusters plutôt « sphériques », que l’on peut séparer par des hyperplans
• des clusters de dimensions comparables,
• des clusters de cardinaux comparables...

Par ailleurs, le choix de k est très délicat, surtout si l’on ne connaît pas par avance le
nombre de classes que l’on cherche à identifier, et il est difficile de juger, à partir des
résultats, si le k choisi initialement était bon.

En outre, lors de l’exécution de l’algorithme, certaines classes peuvent se « vider » com-
plètement, aussi le nombre de classes obtenues à l’issu de l’algorithme peut fort bien être
strictement inférieur à k ! En général, ce n’est pas ce que l’on souhaite, aussi lorsqu’une
classe se vide, on choisit généralement un nouveau ri . Il existe de nombreuses méthodes
pour ce faire. On pourra par exemple choisir une des données à classer au hasard, en
privilégiant éventuellement celles se trouvant dans les classes Si où la variance est la plus
grande.

26

4Théorie des jeux

1 Qu’est-ce que la théorie des jeux?

1.1 De nombreuses « théories »

Le sujet des « jeux » est vaste, et beaucoup de « théories des jeux » ont vu le jour, dans
des domaines très différents. Il ne s’agit pas ici de tenter de proposer quoi que ce soit
d’exhaustif, mais simplement d’introduire quelques idées sur certains types de jeux bien
précis (principalement des jeux d’accessibilité, même si nous irons un peu plus loin que
cela) et de voir comment l’informatique peut nous aider à les analyser.

1.2 Ce que l’on entendra par « jeu »

Dans le cadre de ce cours, un jeu désignera ce qui peut être décrit par
• un ensemble S d’« états » (généralement appelés positions), qui peut être fini ou

infini ;
• un ou plusieurs 1 joueur(s) qui, alternativement ou simultanément, font évoluer l’état

par un choix parmi un ensemble de coups possibles, définis par les règles du jeu ; ces
coups représentent donc des « transitions » entre deux états du jeu ;

• des situations où la règle du jeu attribue un gain (numérique, sous la forme de points
marqués, ou bien simplement une victoire) à un ou plusieurs joueurs.

Les coups permis, dans un état donné, peuvent dépendre non seulement de l’état du
jeu mais également de l’historique, et éventuellement d’une composante aléatoire (dés,
pioche, etc.) De même, la condition clôturant le jeu peut dépendre de l’état du jeu (mat,
objectif atteint, ...) mais également possiblement de l’historique de la partie.

Nous nous intéresserons plus particulièrement à des jeux d’accessibilité, où l’objectif
pour chaque joueur se résume essentiellement à atteindre un état particulier du jeu (et
empêcher son adversaire de faire de même).

Même avec cette description semble-t-il très large de ce qui peut consituter un jeu est
pourtant restrictive et ne couvre pas toutes les possibilités de ce qui peut constituer un jeu :
par exemple, on peut envisager d’étudier des jeux où les joueurs ont une action continue
sur le jeu et où la notion de coup n’a pas de sens.

1. Il est possible d’envisager des « jeux » sans joueur, mais ce sont des problèmes très spécifiques qui n’ont
que de très ténus liens avec ce dont nous voulons parler dans ce cours.

1.3 Le vocabulaire de la théorie des jeux

On peut ainsi trouver une grande variété dans les jeux. Nous l’avons dit, le nombre de
joueurs est un aspect important. On s’intéressera principalement dans le cadre de ce cours
à des jeux à deux joueurs. Au-delà de deux joueurs, les choses se compliquent beaucoup,
car peuvent apparaître des questions « politiques » : un joueur peut se trouver dans une
situation où un de ses choix n’a aucune conséquence sur son gain propre, mais peut influer
sur le gain de deux de ses adversaires. Il devient alors plus difficile de modéliser sa décision,
puisqu’elle ne repose plus sur des critères purement objectifs.

Dans un jeu à plusieurs joueurs, ceux-ci peuvent avoir un intérêt commun (jeux collabo-
ratifs, où le gain est commun à tous les joueurs), ou des intérêts opposés. Un cas particulier
intéressant est le jeu dit à « somme nulle » où le gain d’un joueur est directement opposé à
celui de ses adversaires (c’est par exemple le cas d’un jeu à deux joueurs où il y aura un
gagnant et un perdant, une situation que nous étudierons plus en détail dans ce cours).
Les intérêts peuvent même être plus complexes, voire évoluer au cours de la partie.

Un jeu sera dit impartial si les règles que doivent suivre chacun des joueurs sont les
mêmes. Il sera qualifié de partisan dans le cas contraire. Beaucoup de jeux usuels sont
naturellement rangés dans la catégorie des jeux partisans car chaque joueur a son pion ou
ses pièces, et qu’il ne peut déplacer que le pion ou les pièces qui lui appartiennent. Par
exemple, aux échecs, aux dames ou au go, un joueur joue avec les pièces/pierres blanches,
l’autre avec les pièces/pierres noires.

Cependant, la frontière pour de tels jeux est quelque peu floue : comme les joueurs
jouent tour à tour, il suffit d’ajouter une règle indiquant que chaque joueur doit jouer une
pièce ou une pierre de couleur différente de celle jouée précédemment 2 pour que le jeu
devienne impartial sans rien changer aux règles. Il existe cependant de très nombreux jeux
partisans par nature, où les joueurs suivent des règles radicalement différentes.

Enfin on peut distinguer les jeux à information complète, où l’état complet du jeu est
connu à tout instant de l’ensemble des joueurs (ce qui est le cas des échecs, des dames, du
go, du morpion, etc.) et ceux où les joueurs n’ont pas accès à la totalité de l’information
(certaines informations pouvant même être inconnues de la totalité des joueurs), par
exemple dans un jeu où les joueurs ont des cartes qu’ils dissimulent aux autres joueurs
(ou, en renversant les conventions dans un jeu comme Hanabi, les cartes d’un joueur sont
connues de tous sauf du joueur en question).

1.4 Quelques exemples de jeux d’accessibilité

Dans la suite, nous nous intéresserons principalement à des jeux d’accessibilité à deux
joueurs, à information complète, impartiaux ou non, et où les joueurs jouent tour à tour.
Les jeux d’accessibilité sont des jeux où, nous l’avons évoqué, on cherche à atteindre un
ou plusieurs état(s) spécifique(s) du jeu.

2. En mettant de côté la situation où on passe son tour.

27

Jeu de Nim

Prenons pour premier exemple le cas du jeu de Nim. Dans sa version classique, il se
joue avec des objets, typiquement des allumettes. Celles-ci sont regroupées en plusieurs
rangées. Chacun à son tour, les joueurs peuvent retirer un nombre quelconque (non nul)
d’allumettes d’une (unique) rangée. Le joueur qui prend la dernière allumette est déclaré
vainqueur (de façon équivalente, on peut aussi dire que le joueur qui ne peut pas prendre
d’allumettes à sont tour est déclaré perdant). Chaque joueur cherche donc à atteindre
l’état du jeu où il ne reste aucune allumette.

Il semblerait que ce soit le tout premier jeu qui ait été étudié et résolu mathématique-
ment. Ce jeu connait bien des variantes, et dans le film L’année dernière à Marienbad, on
y trouve la variante de type « misère » où c’est le joueur qui prend la dernière allumette
qui perd le jeu (on peut cependant montrer que les stratégies sont cependant quasiment
identiques).

Il existe également des variantes où l’on ne distingue pas plusieurs rangées, mais où
on limite le nombre d’éléments que l’on peut prendre : dans l’épreuve figurant dans Fort
Boyard, par exemple, le candidat et son adversaire « maître du jeu » peuvent prendre au
choix, à leur tour, 1, 2 ou 3 batonnets (et c’est également celui qui prend le dernier batonnet
qui perd la partie).

Jeu de Wythoff

Variante du jeu de Nim, et possiblement le second jeu à avoir été résolu mathématique-
ment, le jeu de Wythoff se joue avec une pièce sur un plateau semblable à un échiquier.
Chacun à son tour, les deux joueurs déplacent la pièce d’autant de cases qu’ils le souhaitent
(au minimum d’une case), soit parallèlement à un des bords, soit en diagonale, mais tou-
jours de manière à se rapprocher de la case en bas à gauche, comme illustré ci-après (les
points représentant les déplacements autorisés de la pièce).

Q

Dans le jeu de Wythoff, le joueur qui amène la pièce sur la case en bas à gauche est le
gagnant (en d’autres termes, celui qui ne peut plus déplacer la pièce perd la partie).

Jeu de Chomp

Enfin, pour clore cette liste d’exemples, le jeu de Chomp, inventé indépendamment par
Frederik Schuh en 1952 et David Gale en 1974 (sous une formulation un peu différente,
plus grand public, que l’on reprend ici), utilise un ensemble de carrés, que l’on peut
imaginer comme des morceaux d’une tablette de chocolat. Chacun à son tour, les joueurs
choisissent un carré parmi ceux restant, et « mordent » dans la tablette, ce qui a pour effet
de supprimer tous les carrés situés en dessous et à droite du carré choisi, comme illustré
ci-dessous.

Le joueur qui mord le carré en haut à gauche perd la partie (en d’autres termes, le joueur
qui, après avoir joué, ne laisse qu’un seul carré la remporte).

Ce jeu présente un aspect intéressant : malgré sa simplicité et les similitudes avec les
jeux précédents, même si l’on sait, pour certaines situations, déterminer quel joueur
remportera la partie, on ne sait pas encore efficacement déterminer les meilleurs coups
dans une situation donnée.

28

2 Graphes et modélisation du jeu

2.1 Arènes

Si l’on s’intéresse au jeu de Chomp, et que l’on part d’une modeste tablette de taille 2×3,
l’ensemble des positions pouvant être atteintes lors d’une partie, et les coups les liant, est
représenté ci-dessous :

D’un point de vue algorithmique, il s’agit ici d’un graphe, comme nous en avons croisé
en première année : les sommets du graphes correspondent aux positions du jeu, les arcs
(orientés) sont eux associés aux coups autorisés.

Dans la suite, on ne représentera pas l’état des différentes tablettes, mais simplement des
sommets avec un identifiant, par simplicité (les identifiants ici correspondent au nombre
de carrés sur chacune des lignes de la position correspondante), comme ci-dessous :

33 32

31

3

22 21

2

11

1

La partie peut être jouée directement sur le graphe : on part du sommet le plus à gauche
(33), et chaque joueur, à son tour, choisit un arc menant à un nouveau sommet. Le joueur
qui parvient à atteindre le sommet le plus à droite (1) gagne la partie.

Un sommet du graphe précédent ne nous renseigne toutefois pas entièrement sur l’état
du jeu : il nous faut connaître, en outre, le joueur dont c’est le tour (on dit généralement en
théorie des jeux que le joueur a le trait). Si l’on souhaite construire un graphe où chaque
sommet correspond à un état possible du jeu, il nous faut donc dupliquer l’ensemble des
sommets, les uns lorsque le premier joueur a le trait, les autres lorsque c’est le second.

Seul le premier joueur cependant peut se trouver dans l’état initial puisqu’il est forcé de
retirer au moins un carré. On peut également remarquer qu’il est impossible de se trouver
dans l’état 32 avec le trait pour le joueur qui a débuté la partie (que l’on désignera par
« joueur 1 » dans la suite, par simplicité). Le graphe ressemble donc à celui-ci, après avoir
arrangé la position des sommets pour que ceux qui correspondent aux situations où le
joueur qui a débuté la partie a le trait se trouvent en haut, et celles où l’autre joueur a le
trait, en bas (et représentés doublement cerclés) :

33 31 3 22 21 2 11 1

32 31 3 22 21 2 11 1

Position initiale Victoire du joueur 2

Victoire du joueur 1

La partie débute ainsi sur le sommet en haut à gauche, et les arcs représentent tou-
jours les coups permis, mais les deux joueurs ont cette fois des objectifs différents : le
premier joueur essaie d’atteindre le sommet en bas à droite (une situation dans laquelle
le second joueur, dont c’est alors le tour, n’a plus de coup possible), tandis que le second
joueur veut atteindre le sommet en haut à droite (c’est le premier joueur, se trouvant dans
l’impossibilité de jouer, qui perd).

Le grand nombre d’arcs figurant sur ce graphe n’en facilite pas la lecture, mais puisque
dans le jeu les joueurs jouent alternativement, on peut diviser l’ensemble des sommets
du graphe en deux groupes : ceux pour lesquels le premier joueur a le trait, et ceux pour
lesquels le second joueur à le trait. Les arcs lient uniquement des sommets d’un groupe à
des sommets de l’autre groupe. Un tel graphe est qualifié de biparti.

L’ensemble constitué
• des états du jeu (sommets)
• des coups possibles (arcs)
• de la position initiale (en haut à gauche sur notre exemple)
• des positions finales (en haut à droite et en bas à droite), en précisant pour chacune

qui remporte la partie
constitue ce que l’on appelle en théorie des jeux l’arène du jeu. Son étude permet de
déterminer si un des deux joueurs, en jouant de manière optimale, peut remporter à coup
sûr la victoire, et éventuellement de proposer une stratégie pour y parvenir.

29

2.2 Implémentation en Python

Pour implémenter un tel jeu en Python, une tâche importante sera de créer une fonction
qui, à partir d’un état du jeu (les carré restants et le trait dans le jeu de Chomp) fournit la
liste des coups possibles, ou en d’autres termes, la liste des états accessibles par un coup
valide.

Dans le cadre du jeu de Chomp, on peut décrire l’état de la tablette par un n-uplet
indiquant le nombre de carrés restant sur chaque rangée (ligne). Par exemple, (3, 2)
indique une tablette à laquelle il reste deux rangées, avec trois carrés sur la première
rangée, deux sur la seconde. Si le jeu est parti d’une tablette rectangulaire, les éléments dans
chaque n-uplet seront toujours rangés dans un ordre décroissant 3. O choisit fréquemment
d’utiliser en Python des objets de type « tuple » pour représenter l’état du jeu car étant
immuables, ils peuvent être utilisés comme clés de dictionnaire, ce qui présente beaucoup
d’avantages pratiques.

Pour décrire complètement la position du jeu, on ajoute un booléen indiquant si le
joueur 1 a le trait : « (3, 2), True » correspond donc à une position où c’est au joueur 1
de jouer. La position initiale, sur notre exemple précédent, serait donc « (3, 3), True »,
la position gagnante pour le joueur 1 « (1,), False » 4 et la position gagnante pour le
joueur 2, « (1,), True ».

Une fonction qui, à partir d’une position, retourne la liste des positions que l’on peut
atteindre en jouant, peut par exemple s’écrire :

def suiv(pos):
etat, trait_j1 = pos

Si l'on choisit un carré en début de rangée (sauf la première)
res = [(etat[:i], not trait_j1) for i in range(1, len(etat))]

Sinon, pour chaque rangée (première comprise)
for i in range(len(etat)):

on envisage tous les carrés de la rangée excepté le premier
for j in range(1, etat[i]):

et on construit le tuple résultant de ce choix
n_etat = etat[:i]+tuple(min(j, e) for e in etat[i:])
res.append((n_etat, not trait_j1))

return res

3. Et toutes les combinaisons respectant cette condition pourront être atteintes, il suffit pour s’en convaincre
de voir que l’on peut retirer les carrés un à un.

4. La virgule suivant le 1 est la convention, utilisée par Python, pour faire la différence entre un n-uplet à un
seul élément et un simple entier entouré de parenthèses.

Par exemple, les positions accessibles depuis la position de départ « (3, 3), True »
sont, d’après notre fonction :

In []: suiv(((3,3), True))
Out[]:
[((3,), False),
((1, 1), False),
((2, 2), False),
((3, 1), False),
((3, 2), False)]

Usuellement, cette fonction est la plus utile pour travailler avec un jeu. Mais parfois, on
peut vouloir construire explicitement le graphe correspondant au jeu. Pour ce faire, on
peut utiliser une exploration de ce graphe pour, par exemple, construire un dictionnaire
représentant le graphe : les clés représenteront toutes les positions accessibles, les valeurs
associées les positions qui correspondent à un coup possible. Par exemple, une exploration
en profondeur 5, prenant en argument une fonction suiv construisant les coups possibles
et un objet init correspondant à la position initiale, et construisant un tel dictionnaire
peut s’écrire :

def graphe(suiv, init):
g = {} # Le dictionnaire qui contiendra le graphe

def explore(pos): # Exploration en profondeur
if pos not in g:

S = suiv(pos)
g[pos] = S
for s in S:

explore(s)

explore(init) # On lance l'exploration depuis init

return g

Si on appelle g le graphe retourné par la fonction précédente, g[pos] contiendra directe-
ment les coups possibles depuis la position pos. L’un des avantages de construire un tel
graphe est que l’on a dorénavant accès à la l’ensemble des positions qu’il est possible de
rencontrer au cours d’une partie (en particulier, g.keys() fournit un itérable qui contient
l’intégralité des clés du dictionnaire g, donc des positions que l’on peut atteindre).

Bien évidemment, une telle fonction ne peut être utilisée que si le nombre de positions
est raisonnable. Aux échecs, on estime à 4,5×1046 le nombre de positions pouvant être
atteintes dans une partie, aussi si la fonction suiv peut parfaitement être écrite dans le

5. On pourrait tout aussi bien utiliser une exploration en largeur, cela n’a pas d’importance.

30

cadre des échecs, le graphe ne peut évidemment pas être reconstitué dans la mémoire
d’un ordinateur (et l’exploration ne pourrait pas non plus être réalisée compte tenu du
temps nécessaire !)

Dans le cadre du jeu de Chomp partant d’une tablette de taille 2×3, on peut vérifier que
l’on retrouve bien les 16 positions précédemment illustrées sur notre graphe biparti :

In []: g = graphe(suiv, ((3, 3), True))

In []: g.keys()
Out[]: dict_keys([((3, 3), True), ((3,), False), ((1,), True),
((2,), True), ((1,), False), ((1, 1), False), ((2, 2), False),
((1, 1), True), ((2, 1), True), ((2,), False), ((3, 1), False),
((3,), True), ((3, 2), False), ((2, 2), True), ((2, 1), False),
((3, 1), True)])

2.3 Stratégies

En théorie des jeux, une stratégie, pour un joueur, est une méthode indiquant, à tout
moment de la partie, comment choisir un coup parmi l’ensemble des coups possibles.

En général, le choix est fait à partir de la position actuelle. Une stratégie est donc une
application σ : S ′ ⊆ S → S qui à une position s ∈ S ′ associe une position σ(s) telle que
(s,σ(s)) soit un arc dans le graphe, autrement dit un coup valide.

On remarque ici que la stratégie peut n’être définie que pour un sous-ensemble S ′ des
sommets du graphe : en effet, on peut se dispenser de traiter le cas de sommets qui ne
seront pas à considérer lors de la partie (cela inclue tous les sommets pour lesquels le trait
est à l’adversaire, mais également des sommets que l’on n’atteindra pas en raison de choix
effectués par la stratégie).

Il peut arriver que la stratégie, pour effectuer un choix, ait besoin non seulement de la
position actuelle, mais de l’ensemble des positions de la partie depuis le début. Cela n’a
pas d’intérêt pour des jeux à information complète tels que ceux que l’on étudie, donc
nous laisserons cette possibilité de côté 6.

Dans un jeu avec un gagnant et un perdant, une stratégie pour un joueur est dite ga-
gnante si le joueur en question est assuré du gain de la partie s’il applique cette stratégie,
quels que soient les coups de son adversaire. Bien entendu, dans un tel jeu, il ne peut y avoir
de stratégie gagnante pour les deux joueurs. Une des questions les plus importante en
théorie des jeux est : quel joueur a une stratégie gagnante ?

6. En outre, on pourrait se ramener au cas où seule la position courante compte en incluant l’intégralité de
l’historique dans la définition de la position. En fait, aux échecs ou au go, c’est même théoriquement nécessaire,
car la règle mentionne des conditions sur le fait de revenir à un état du plateau déjà rencontré plus tôt dans la
partie, et les coups valides (ou les conditions de victoire) dépendent donc des états précédents du plateau et non
du seul état actuel.

Certains jeux permettent, en plus d’une victoire de l’un ou l’autre des joueurs, de ter-
miner sur une partie nulle. La question est alors de savoir si l’un des deux joueurs a une
stratégie gagnante, ou si, lorsque les deux joueurs jouent de façon optimale, la partie est
nécessairement toujours nulle (ce qui est par exemple le cas du tic-tac-toe).

Un jeu est dit résolu si l’on est en mesure de répondre à ces questions. De nombreux jeux
ont été résolus, dont le jeu de Nim, le jeu de Withoff, ou encore les dames anglaises 7 qui
se terminent en nul si les deux joueurs jouent parfaitement. Les dames, le reversi et les
échecs résistent encore 8, même si l’on pense que la partie devrait se finir sur une nulle
dans le cas des dames, possiblement aussi dans le cadre d’Othello 9. Quant aux échecs, on
pense que le joueur qui commence est probablement celui qui a une stratégie gagnante.

Pour certains jeux comme le Go, dans lesquels il y a une notion de « points » (prises
et territoire en go) pour désigner le gagnant, il est possible d’attribuer des points au
début de la partie à un joueur pour compenser l’avantage ou l’inconvénient de débuter.
Actuellement au go, on attribue entre 6.5 et 7.5 points (komi) au joueur qui ne commence
pas pour rendre la partie plus égale. La valeur idéale n’est évidemment pas connue, et la
résolution du jeu dépend de la valeur de cette compensation (il est par exemple possible
que le joueur 1 ait une stratégie gagnante avec un komi de 6.5 points, mais que le joueur 2
ait une stratégie gagnante pour un komi de 7.5 points) !

La résolution est dite ultra-faible lorsque l’on peut répondre à cette question sans pour
autant pouvoir construire de stratégie qui assure d’une victoire (ou d’un nul). C’est par
exemple le cas du jeu de Chomp lorsque la position initiale est une tablette rectangulaire.

Raisonnons par l’absurde et supposons que le joueur 2 dispose d’une stratégie gagnante.
Supposons à présent que le joueur 1 débute la partie en ne retirant que le carré en bas
à droite. À partir de là, par hypothèse, le joueur 2 a une série de coups qui l’assure de la
victoire. Cependant, on remarque aisément que le premier coup que va jouer le joueur 2
aurait pu être joué par le joueur 1 dès son premier coup ! Le joueur 1 peut donc appliquer la
stratégie du joueur 2 et s’assurer la victoire, ce qui est en contradiction avec les hypothèses.

Dans le jeu de Chomp où la position initiale est une tablette rectangulaire, on a donc la
certitude que le joueur 1 remporte la partie s’il joue de façon optimal, même si l’on n’est
pas en mesure de produire une stratégie gagnante. L’argument utilisé ici pour résoudre le
jeu est appelé vol de stratégie.

Dans d’autres cas, il est possible de construire une stratégie gagnante. Considérons par
exemple le jeu de Nim où la position initiale contient deux rangées avec le même nombre
d’allumettes 10. La stratégie dite miroir assure une victoire au joueur 2. Le principe est
simple : à chaque fois que le premier joueur retire p alumettes d’une rangée, le second

7. Le jeu de dames où les dames n’effectuent pas de déplacement long.
8. Il est possible que l’on ne puisse jamais résoudre certains d’entre eux.
9. Du moins sur un plateau de taille 8×8, sur un plateau de taille 6×6, le jeu est résolu, et le joueur qui ne

commence pas gagne la partie s’il joue de façon optimale.
10. Il existe une stratégie gagnante au jeu de Nim dans le cas général, basé sur les représentations binaires du

nombre d’éléments dans chaque rangée. Le joueur qui a une stratégie gagnante dépend de la position initiale.

31

joueur a simplement à retirer p alumettes d’une autre rangée. Après le coup du joueur 2, il
y a donc nécessairement toujours le même nombre d’alumettes sur les deux rangées. Si
ce nombre est non nul, le joueur 1 ne peut pas prendre la dernière alumette sur son coup
suivant et remporter la partie. Si ce nombre est nul, alors le joueur 2 vient de remporter la
partie en prenant la dernière allumette.

Heureusement ou malheureusement, cette stratégie ne permet pas de résoudre la plupart
des jeux. Par exemple aux échecs, on ne peut pas appliquer cette stratégie, car la capture
d’une pièce par le premier joueur va possiblement rompre la symétrie (le joueur 2 n’ayant
plus la pièce lui permettant d’effectuer le coup symétrique à celui du joueur 1).

2.4 Attracteurs

S’il n’est pas possible de déterminer directement une stratégie gagnante, on peut, si le
graphe du jeu n’est pas trop grand, déterminer l’ensemble des positions gagnantes d’un
jeu. Une position est dite gagnante pour le joueur 1 s’il existe une stratégie gagnante pour
le jeu lorsqu’il débute à cette position. On qualifiera parfois d’attracteur l’ensemble des
positions gagnantes pour un joueur.

Il est relativement aisé de construire récursivement ces positions gagnantes en partant
des fins de parties. Revenons par exemple sur notre exemple du jeu de chomp.

• la position « (1,), False » est l’objectif du joueur 1, donc c’est naturellement une
position gagnante pour le joueur 1;

• les positions « (2,), True », « (3,), True » et « (1, 1), True » sont également des
positions gagnantes pour le joueur 1 : en effet, c’est à lui de jouer et il peut choisir,
parmi les coups valides, le coup qui l’amène à la position « (1,), False » et lui
donne la victoire ;

• plus subtilement, la position « (2, 1), False » est égalemnt une position gagnante
pour le joueur 1 : bien que ce soit au joueur 2 de jouer, il n’a que deux coups possibles,
qui le conduisent aux positions « (2,), True » et « (1, 1), True », qui sont toutes
deux des positions gagnantes pour le joueur 1 ;

• cela fait de « (2, 2), True » et « (3, 1), True » des positions gagnantes pour
le joueur 1, puisqu’il peut jouer le coup conduisant à la position gagnante
« (2, 1), False » ;

• par conséquent « (3, 2), False » est une position gagnante pour le joueur 1, car
les quatres coups possibles pour le joueur 2 conduisent tous à une position gagnante
pour le joueur 1 ;

• et enfin, la position initiale « (3, 3), True » est une position gagnante pour le
joueur 1 car, parmi les coups qui lui sont proposés, il peut choisir le coup menant à
la position gagnante « (3, 2), False ».

La position initiale étant une position gagnante pour le joueur 1, on peut donc en
conclure que le joueur 1 a une stratégie gagnante qui lui assure la victoire, quoi que fasse le
joueur 2. En effet, quels que soient ses choix, le joueur 1 peut s’assurer que toute la partie

se déroule dans des positions gagnantes pour lui. Le graphe se résume alors à ceci 11 (pour
chaque sommet correspondant à une position où le trait est au joueur 1, il n’y a qu’un seul
coup indiqué, celui suggéré par la stratégie établie précédemment) :

33 31 3 22 2 11

32 21 1

Position initiale

Victoire du joueur 1

On peut donc construire les positions gagnantes pour un joueur de la façon suivante :
• les positions qui lui donnent immédiatement la victoire sont, évidemment, des

positions gagnantes ;
• toutes les positions pour lesquelles il a le trait et pour lesquelles il existe au moins un

coup menant à une position gagnante sont des positions gagnantes
• toutes les positions pour lesquelles son adversaire a le trait et pour lesquelles tous les

coups possibles mènent à une position gagnante sont des positions gagnantes

Pour écrire un programme Python déterminant les positions gagnantes, on regroupera
celles que l’on identifie dans un dictionnaire dont elles sont les clé (les valeurs associées
n’ont pas d’importance, on ne se sert ici d’un dictionnaire que pour effectuer rapidement
des tests d’appartenance avec in). Pour savoir si une position est gagnante, on utilisera la
fonction suivante, prenant en argument le graphe du jeu, la position que l’on étudie, et un
dictionnaire des positions gagnantes connues :

def est_gagnante_j1(g, pos, gagnantes_j1):
trait_j1 = pos[1]

if trait_j1: # Au moins un coup vers une position gagnante ?
for p in g[pos]:

if p in gagnantes_j1:
return True

return False
else: # Tous les coups mènent à des position gagnantes pour J1 ?

for p in g[pos]:
if p not in gagnantes_j1:

return False
return True

11. On pourra aisément vérifier que toutes les positions restantes dans le graphe sont des positions gagnantes
pour le joueur 2.

32

La fonction retourne True si on peut affirmer que la position fournie est une position
gagnante, et False dans le cas contraire, ce qui ne signifie pas que la position n’est pas ga-
gnante, mais que l’on n’a pas encore les moyens de l’affirmer. Incidemment, on remarquera
que la fonction retourne bien True pour la position finale gagnante du joueur 1, quel que
soit le contenu du dictionnaire gagnantes !

Notons que le langage Python fournit des fonction any et all qui retournent True si au
moins un (any) ou la totalité (all) des booléens fournis en argument sont égaux True, et
permettent de simplifier l’écriture de ce type de fonctions, tout en les rendant également
plus aisées à comprendre :

def est_gagnante_j1(g, pos, gagnantes_j1):
if pos[1]:

return any(p in gagnantes_j1 for p in g[pos])
else:

return all(p in gagnantes_j1 for p in g[pos])

Pour construire l’attracteur, on peut alors écrire :

def attracteur_j1(g):
gagnantes_j1 = {}

fini = False
while not fini:

fini = True
for pos in g.keys():

if (pos not in gagnantes_j1
and est_gagnante_j1(g, pos, gagnantes_j1)):

fini = False
gagnantes_j1[pos] = True # (Valeur sans importance)

return list(gagnantes_j1.keys())

Le fonctionnement est simple : à chaque itération, on étudie toutes les positions qui n’ont
pas encore été déclarées gagnantes. Si certaines d’entre elles peuvent être déterminées
gagnantes grâce à la fonction est_gagnante, on les ajoute au dictionnaire 12, et on poursuit
la recherche. Si une itération ne permet pas de trouver de nouvelles positions gagnantes
pour le joueur 1, le booléen Fini restera à True et la fonction va s’arrêter.

On peut garantir l’arrêt de la fonction précédente grâce à un variant de boucle : le nombre
de positions dans le dictionnaire gagnantes est un entier qui croît stritement à chaque

12. La valeur True associée n’a aucune importance, elle ne sert pas dans l’algorithme. Il existe une autre
structure, les set, qui sont essentiellement des dictionnaires avec des clés sans valeur associée pour ce genre
d’usage, mais cette structure n’est pas au programme.

itération, et ne peut dépasser le nombre (fini) de sommets du graphe, aussi ne peut-il pas
y avoir un nombre infini d’itérations !

La fonction nous fournit bien les sommets gagnants pour le joueur 1 :

In []: attracteur_j1(g)
Out[]: [((1,), False), ((1, 1), True), ((3,), True),
((2,), True), ((2, 1), False), ((3, 1), True),
((2, 2), True), ((3, 2), False), ((3, 3), True)]

Il s’agit d’une implémentation naïve de l’algorithme : à chaque étape, on rééxamine
toutes les positions. S’il y a n positions, le nombre d’itérations peut être de l’ordre de n,
chaque itération examinera n positions, et chaque vérification peut avoir une complexité
en O (n), en fonction du nombre de coups possibles depuis la position considérée. On a
donc ici une complexité cubique (O

(
n3

)
), élevée (surtout que n peut être gigantesque).

Il est bien évidemment possible d’améliorer les choses, en identifiant mieux les positions
dont la situation a pu changer (ce qui peut se faire en regardant les positions qui permettent
de mener à une position qui vient d’entrer dans l’ensemble des positions gagnantes) et en
dénombrant, pour chaque position, le nombre de coups ne menant pas à une position déjà
dans l’ensemble des positions gagnantes, pour accélerer les tests. La complexité peut être
réduite à une complexité linéaire en le nombre d’arcs dans le graphe, au prix d’un fonction
plus complexe. On ne s’en préoccupera pas ici, seul le principe général nous intéresse.

Si le graphe est dépourvu de cycles 13, comme c’est le cas ici, alors toutes les cases qui ne
figurent pas dans la liste retournée par notre fonction sont des positions gagnantes pour le
joueur 2. En effet, toute position qui n’est pas retournée est, d’après l’algorithme mis en
œuvre :

• soit une victoire pour le joueur 2 ;
• soit une position où le joueur 2 a le trait et dont au moins un coup conduit à une

position qui n’est pas dans l’attracteur
• soit une position où le joueur 1 a le trait et où tous les coups conduisent à des

positions qui ne sont pas dans l’attracteur.

Si le jeu se trouve dans une telle postion, le joueur 2 dispose donc d’une stratégie qui
empêche le joueur 1 de se placer dans l’attracteur. Si la partie est finie (pas de cycles),
elle se terminera donc nécessairement en une victoire du joueur 2 (puisque les positions
victorieuses du joueur 1 se trouvent dans l’attracteur).

13. Si le graphe contient des cycles, la partie peut durer indéfiniment si aucun des deux joueurs n’a d’intérêt
à briser le cycle, et il faudra sans doute une règle pour déterminer un gagnant dans ce genre de situation, ou
convenir d’une nullité.

33

2.5 Noyau

Dans le cas très spécifique de jeux impartiaux tels que ceux présentés jusqu’ici, on peut
remarquer une forte symétrie entre les situations des deux joueurs : si une position est
gagnante pour un joueur lorsqu’il a le trait, la situation similaire sera perdante pour ce
même joueur si son adversaire à le trait (et inversement).

Il n’est donc pas forcément nécessaire de faire entrer le trait dans le graphe, et on peut
directement raisonner sur le graphe des configurations.

Dans un graphe donné 14, un sous-ensemble S ′ de sommets est dit stable si tout sommet
de S ′ n’a aucun successeur dans S ′. Un sous-ensemble S ′ de sommets est dit absorbant
si tout sommet n’appartenant pas à S ′ possède au moins un successeur dans S ′. Un
sous-ensemble S ′ de sommets est un noyau s’il est à la fois stable et absorbant.

Il est possible de montrer qu’un graphe orienté sans cycle possède un unique noyau. Par
exemple, pour le graphe associé aux configurations du jeu de Chomp débutant sur une
tablette 2×3, le noyau correspond aux sommets doublement cerclés ci-dessous :

33 32

31

3

22 21

2

11

1

La construction du noyau peut se faire itérativement, de manière très semblable à la
détermination d’un attracteur. Il est alors aisé de déduire l’attracteur pour le joueur 1 à
partir de ce noyau : il s’agit des sommets du noyau pour lesquels son adversaire a le trait,
et les sommets qui ne sont pas dans le noyau pour lesquels il a le trait 15.

La stratégie, pour le joueur 1, consiste donc à systématiquement jouer des coups qui
amènent à l’intérieur du noyau. Comme le noyau est stable, les coups du joueur 2 sortiront
nécessairement du noyau. Et comme le noyau est absorbant, le joueur 1 disposera toujours
d’un coup pour y revenir. Le joueur 1 dispose donc d’une stratégie gagnante si et seulement
si l’état initial du jeu est hors du noyau. Dans le cas contraire, c’est le joueur 2 qui dispose
d’une stratégie gagnante.

14. Les propriétés définies ici et la notion de noyau ne figurent pas au programme.
15. Et inversement pour construire l’attracteur pour le joueur 2.

Dans le cas du jeu de Withoff sur un échiquier de taille 8×8, le noyau est ainsi représenté
ci-dessous : dès qu’un joueur peut amener la pièce dans le noyau, il dispose d’une stratégie
gagnante et remportera la partie s’il joue de façon optimale, quels que soient les coups de
son adversaire.

3 Algorithme min-max

3.1 Un jeu de collecte

Il n’est fréquemment pas possible de construire l’attracteur complet d’un jeu, mais on
souhaiterait cependant pouvoir construire une stratégie à partir d’une position donnée. Il
existe plusieurs approches pour ce faire, dont l’algorithme dit « min-max ».

Pour illustrer son principe, considérons un jeu utilisant une grille de taille n×n contenant
des valeurs, par exemple les entiers de 1 à n2 comme sur la grille ci-dessous :

3 6 2

7 9 1

8 5 4

Le jeu se joue à deux joueurs, dans un premier temps avec les règles suivantes :
• le joueur 1 choisit une ligne i (entre 0 et n −1) ;
• le joueur 2, connaissant le choix du joueur 1, choisit une colonne j (toujours entre 0

et n) ;
• le joueur 1 marque les points ci , j indiqués dans la case indiquée (ligne i , colonne j)

et le joueur 2 marque a − ci , j .

34

La valeur de a peut être choisie pour équilibrer le jeu, nous y reviendrons. Mais elle n’a
pas d’importance. Le joueur 1 va jouer de manière à avoir le plus grand ci , j possible, le
joueur 2 au contraire cherchera à le minimiser.

Par exemple, si l’on considère la grille nous ayant servi d’exemple, le joueur 1 pourrait
être tenté de choisir la seconde ligne (i = 1) pour tenter de marquer 7 ou 9 points, mais
on comprendra que le joueur 2 choisirait alors la troisième colonne (j = 2), et le joueur 1
ne marquerait que c1,2 = 1 point. La bonne stratégie consiste, pour le joueur 1, à choisir la
troisième ligne (i = 2) de sorte que le joueur 2 sera contraint de lui céder au moins 4 points.

Pour comprendre comment on peut parvenir automatiquement à ce raisonnement,
nous allons construire l’ensemble des déroulements possibles de la partie sous une forme
arborescente :

4

2 1 4

3 6 2 7 9 1 8 5 4

0 1 2

0 1 2 0 1 2 0 1 2

Les « flèches » de ce graphe indiquent les choix possible (le numéro de ligne ou de
colonne), pour le joueur 1 en haut, puis pour le joueur 2 en bas. Sur la dernière ligne, on
retrouve le score du joueur 1 à l’issue de la partie.

Lorsque c’est au joueur 2 de jouer, il va nécessairement essayer de minimiser le score du
joueur 2, puisque cela aura pour conséquence de maximiser le sien. On peut prévoir le
choix qu’il fera, et déterminer à l’avance le score final de la partie (en supposant qu’il joue
de façon appropriée) en déterminant le minimum parmi les scores finaux qui peuvent
être atteints après le choix de la ligne par le joueur 1. Ces minimas ont été reportés sur la
seconde ligne du graphe.

Dans un second temps, en considérant que le joueur 1 va effectuer un choix qui va
maximiser son score, comme il peut attendre du joueur 2 qu’il joue de manière optimale, il
va opter pour la ligne qui correspond au maximum parmi les valeurs déterminées à l’étape
précédente.

Les choix optimaux des deux joueurs dans toutes les situations ont été marqués par
des traits plus épais dans le graphe ci-dessus. On voit que le calcul du minimum ou du
maximum (selon le joueur qui a le trait) permet de déterminer à l’avance le résultat de la
partie (si les deux joueurs jouent de façon optimale) et également la stratégie, pour chacun
des deux joueurs, pour y arriver. Si l’un des deux joueurs ne suit pas cette stratégie, alors il
offre à son adversaire une possibilité de marquer davantage de points.

3.2 Tours successifs

Que se passe-t-il si l’on complique le jeu en proposant deux tours au lieu d’un (après
la première collecte, le joueur 1 choisit à nouveau une ligne i ′, puis le joueur 2 choisit à
nouveau une colonne j ′, et le joueur 1 ajoute ci ′, j ′ à son score), avec la condition supplé-
mentaire que les deux joueurs ne peuvent pas faire un choix qu’ils ont déjà effectué 16.

Il est intéressant de voir que les joueurs en peuvent pas agir sur un tour sans prévoir
le tour suivant. Supposons en effet que le joueur 1 commence par choisir la ligne i = 2.
Si, comme précédemment, le joueur 2 choisit la colonne j = 2, le joueur 1 pourra ensuite
choisir la ligne i ′ = 1 et marquer 4+7 = 11 points au total. Mais si le joueur 2 avait choisi,
au premier tour, la colonne j = 1, le joueur 1 choisira la ligne i ′ = 0 au second tour et ne
marquera que 5+2 = 7 points.

Pour déterminer le score de la partie si les joueurs jouent de façon optimale et les
stratégies correspondantes, on peut à nouveau construire un graphe arborescent des
différentes parties. Comme il est de grande taille (36 branches !), on ne le représente que
partiellement ci-dessous (même si l’arbre entier a été nécessaire pour déterminer les
valeurs représentées ici). On y trouve la confirmation que 7 est bien le score sur lequel
devrait se clore la partie.

7

7 6 7

10 7 11

7 6 7 11

8 7 12 6 7 10 11 13

0 1 2

0 1 2

0 1 0 1

0 2 0 2 0 1 0 1

La construction est la même que précédemment : les fins de parties (en bas) ont un
score bien déterminé, et on détermine les autres valeurs en remontant. Lorsque le trait
appartient au joueur 1, celui choisit la plus grande valeur parmi celles immédiatement
en-dessous, lorsqu’il appartient au joueur 2, c’est la même chose, mais en choisissant la
plus petite valeur.

16. Sinon, leur stratégie optimale serait simplement de refaire la même chose qu’au premier tour.

35

3.3 Implémentation

Pour déterminer le score d’une partie idéale en Python, on commencera par écrire une
fonction prenant, comme souvent, l’état du jeu et renvoyant la liste des coups possibles.
On décrira l’état du jeu par une liste contenant les choix des joueurs depuis le début de
la partie. Par exemple, si le premier joueur a choisi i = 2 et le second j = 1 et que l’on se
trouve au début du second tour, l’état du jeu sera décrit par [2, 1]. La fonction retournant
la liste des coups possibles peut par exemple s’écrire :

def coups_possibles(etat, n):
possibles = []
for k in range(n):

if len(etat)<2 or etat[len(etat)-2]!=k:
possibles.append(k)

return possibles

Elle prend en argument, outre l’état, l’entier n désignant le nombre de lignes/colonnes.
Elle examine toutes les possibilités k entre 0 et n-1 ; si on se trouve au second tour (la liste
contient au moins deux éléments), elle vérifie que la possibilité n’a pas été utilisée par ce
même joueur (le coup joué au premier tour se trouvant à la position len(etat)-2 dans la
liste etat).

Ainsi, par exemple, si l’état du jeu est décrit par la liste [2, 1], la fonction indique que
seuls les coups i ′ = 0 et i ′ = 1 sont des coups valides (i ′ = 2 constituant une répétition du
choix du premier tour) :

In []: coups_possibles([2, 1], 3)
Out[]: [0, 1]

Puis il ne « reste » qu’à déterminer le score de la partie avec la démarche « min-max »
que l’on vient de présenter. Pour cela, on écrit une fonction prenant l’état courant de la
partie (etat) et la grille décrivant le contenu des cases (M). Elle devra renvoyer le score final
de la partie, si celle-ci est passé par l’état indiqué en paramètre, en supposant que les deux
joueurs jouent de manière idéale.

Le cas le plus simple est celui où la partie est terminée, c’est-à-dire lorsque etat contient
4 valeurs, i , j , i ′ et j ′. Il suffit alors de déterminer le score final en utilisant M.

Dans le cas contraire, il reste des coups à jouer. On envisage donc tous les coups possibles
avec la fonction précédente, et pour chaque coup k, on détermine l’état du jeu si le coup
est joué (en construisant un nouvel état 17 etat+[k], consistant en la concaténation de
l’état courant et du coup supplémentaire k) et, grâce à un appel récursif, le score final de
la partie en partant de cet état.

17. Il serait sans doute plus pertinent d’utiliser append, mais il faudrait penser à retirer k avec un pop après
l’appel récursif, et avant d’envisager un autre coup.

Il ne reste alors qu’à chercher le minimum parmi ces possibilités (le joueur 2 a le trait)
ou le maximum (le joueur 1 a le trait) pour déterminer le score final de la partie si elle se
trouve, à un moment donné, dans l’état décrit par etat. Le joueur qui dispose du trait est
aisément déduit de etat grâce à la parité de sa longueur. Cela donne par exemple :

def minmax(etat, M):
if len(etat) == 4:

i1, j1, i2, j2 = etat
return M[i1][j1] + M[i2][j2]

On envisage les coups possibles
et, par récursion, le résultat obtenu par min-max
L = []
for k in coups_possibles(etat, len(M)):

L.append((k, minmax(etat+[k], M)))

On détermine le coup optimal
meilleur, meilleur_score = L[0]
for k in range(1, len(L)):

J1 a le trait -> cherche le maximum
if len(etat)%2 == 0 and L[k][1] > meilleur_score:

meilleur, meilleur_score = L[k]
J2 a le trait -> cherche le minimum
if len(etat)%2 == 1 and L[k][1] < meilleur_score:

meilleur, meilleur_score = L[k]

return meilleur_score

On peut alors confirmer que le score d’une partie idéale sera bien 7 (l’état initial du jeu,
avant qu’aucun coup ne soit joué, est naturellement décrit par la liste vide []) :

In []: minmax([], [[3, 6, 2], [7, 9, 1], [8, 5, 4]])
Out[]: 7

Compte tenu de ce résultat, le bon choix pour a, dans le cas précédent, serait proba-
blement 3.5 : si les deux joueurs jouent de façon idéale, cela se terminerait sur une partie
nulle. Et si un joueur joue mieux que son adversaire, il peut espérer l’emporter.

On peut envisager d’augmenter la taille de la grille, et de multiplier les tours. Cela
étant dit, le calcul du score d’une partie « idéale » deviendra rapidement prohibitif. La
mémoïzation ne permettrait pas directement de nous aider, car tous les états visités, par
construction, seront différents. Toutefois, si on remarque que certains états (les états
[0, 0, 1, 2] et [1, 2, 0, 0] par exemple) sont équivalents, on doit pouvoir réduire le
nombre de branches à effectivement explorer.

36

Il existe également des techniques (dites techniques d’élagage permettant d’éviter d’ex-
plorer certaines parties du graphe. Si l’on sait par avant qu’un coup est meilleur que tout
ce qui pourrait se trouver dans un partie donnée du graphe, alors il est inutile de l’explorer
intégralement.

Lorsque l’algorithme détermine le score d’une partie idéale à partir d’un état donné, il
peut également mémoriser les coups joués qui y conduisent. Ces coups (et notamment le
premier d’entre eux) fournit une stratégie pour le joueur dont c’est le tour. C’est ce genre
d’approche (dans des versions un peu plus élaborées pour des raisons d’efficacité) qui est
utilisée dans les « intelligences artificielles » qui sont capables de jouer.

3.4 Retour sur les jeux avec un gagnant

Si l’on revient à nos jeu d’accessibilité (ou de façon générale aux jeux avec un gagnant et
un perdant), il n’y a pas de notion de score qui nous permette d’effectuer la même chose.
Mais il est aisé d’en construire un : il suffit de dire que le joueur 1 a un score de +v (v étant
strictement positif) s’il remporte la partie, −v s’il la perd. Si le nul est possible, on choisira
un score de 0.

Fréquemment, on choisi v = +∞ en théorie des jeux, mais on peut tout aussi bien
choisir les valeurs +1 et −1 (manipuler ∞ peut présenter quelques difficultés pratiques
d’implémentation), cela n’a pas d’importance.

Le reste de la démarche est la même : le joueur 1 continue à souhaiter obtenir le score
maximal (une victoire (+v) si c’est possible, un score nul à défaut (0) et une défaite uni-
quement s’il ne peut pas faire autrement (−v). Pour le joueur 2, c’est l’inverse, il recherche
le minimum (une défaite du joueur 1 si c’est possible (−v), une nulle à défaut (0), et une
victoire du joueur 1 uniquement s’il ne peut pas faire autrement (+v)).

3.5 Heuristiques

Malheureusement, le nombre de possibilités est souvent bien trop grand pour que
l’on puisse explorer l’arbre des parties possibles jusqu’à la fin de celles-ci. Pour éviter
un temps de calcul trop long, on va être amené à limiter le nombre de coups successifs
envisagés. L’ennui, c’est que lorsque l’on atteint cette limite, on ne peut pas dire avec
certitude si la partie se terminera sur une victoire du joueur 1, une victoire du joueur 2 (ou
éventuellement une partie nulle).

Dans cette situation, on se sert d’une heuristique : une fonction qui examine l’état
courant de la partie, et retourne une valeur dans]−v, v[qui estime à quel point on semble
proche d’une victoire du joueur 1 (la valeur renvoyée sera proche de v), d’une victoire du
joueur 2 (la valeur renvoyée sera proche de −v), ou que la partie est encore indécidée (la
valeur renvoyée sera proche de 0).

Les meilleures heuristiques permettront d’obtenir de meilleures stratégies lorsque l’on
est encore loin de la fin de la partie, et elles ne sont pas du tout évidentes à établir. Aux
échecs, par exemple, elles sont basées généralement sur le « matériel » (les pièces) encore
présentes sur le plateau. On considère généralement qu’un pion vaut 1 point, les cavaliers 3
points, les fous 2.5 points (3 points si les deux fous sont encore présents), les tours 5 points,
les reines 9.5 points. L’heuristique utilisée consiste alors généralement en la différence de
valeur entre le matériel du joueur 1 et celui du joueur 2, souvent corrigée en utilisant la
mobilité de chacune des pièces et quelques autres paramètres (on choisira évidemment
un v assez grand pour que l’heuristique demeure dans l’intervalle]−v, v[!)

37

	Programmation dynamique
	Un premier exemple : la chasse au trésor
	Présentation du problème
	Exploration exhaustive
	Une approche récursive
	Analyse de la complexité
	Obtention du chemin
	Mémoïsation des résultats
	Gain en complexité
	Une autre approche << dynamique >>

	Vente de ruban
	Présentation du problème
	Possibilité d'une découpe sans chute
	Obtenir une solution de découpe
	Nombre de découpes possibles
	Optimisation du prix de vente
	Approche << du bas vers le haut >>

	Distance d'édition
	Présentation du problème
	Calcul de la distance
	Implémentation

	Apprentissage supervisé
	Introduction à l'apprentissage supervisé
	Buts poursuivis
	Données
	Un exemple
	Méthodes de classification
	Préparation des données

	Méthode des k-plus proches voisins
	Plus proche voisin
	Préparations spécifiques
	Interprétation du fonctionnement
	Matrice de confusion
	k plus proches voisins
	Résultats et influence de k
	Intérêt de la méthode

	Apprentissage non supervisé
	Introduction
	Buts poursuivis
	Similarité et données numériques

	Méthode des k-moyennes
	Principe
	Convergence de l'algorithme
	Correction du résultat
	Implémentation
	Analyse de la méthode

	Théorie des jeux
	Qu'est-ce que la théorie des jeux ?
	De nombreuses << théories >>
	Ce que l'on entendra par << jeu >>
	Le vocabulaire de la théorie des jeux
	Quelques exemples de jeux d'accessibilité

	Graphes et modélisation du jeu
	Arènes
	Implémentation en Python
	Stratégies
	Attracteurs
	Noyau

	Algorithme min-max
	Un jeu de collecte
	Tours successifs
	Implémentation
	Retour sur les jeux avec un gagnant
	Heuristiques

