
Le compte est bon! (programmation dynamique et mémoïsation)

1 Principe

Dans ce jeu, on suppose disposer d’un ensemble E de n entiers positifs ai (0 É i < n)
et d’un entier positif p que l’on qualifiera d’objectif. Le but est de trouver comment il est
possible de combiner tout ou partie de ces n entiers avec les quatres opérations usuelles
(addition, soustraction, multiplication et division) de manière à obtenir l’objectif p, chaque
entier étant utilisé au plus une seule fois.

Par exemple, pour E = {1,4,5,8,9} et p = 42, une solution possible est (1+5)× (9−8/4).
Une autre solution, n’utilisant pas tous les entiers, est 9×5−4+1.

On supposera que tous les résultats intermédiaires doivent être des entiers positifs ou
nuls (il n’est donc pas permis, durant le calcul, d’effectuer une opération telle que 8/3 ou
5−8).

2 Résolution du problème

Un ensemble E d’entiers sera représenté en Python par un n-uplet (un « tuple » en
Python), qui se comporte comme une liste, mais n’est pas mutable. On peut donc accéder
à un élément en position i dans un tuple t en écrivant t[i] (mais il ’est pas possible de
le modifier). Il n’est pas possible non plus d’utiliser les méthodes pop ou append avec un
tuple, mais on peut concaténer deux tuples avec +. On peut transformer une liste lst
en tuple en écrivant tuple(lst) (et inversement un tuple t en liste avec list(t)). Pour
écrire un tuple, on sépare les éléments par des virgules, comme pour des listes, mais on
ne les entoure pas de crochets. On utilise régulièrement des parenthèses cependant pour
éviter tout problème de priorité : « (37, 42, 54) ». Un tuple à un seul élément s’écrit avec
une virgule terminale (éventuellement entre parenthèses) : « (42,) ».

On se propose dans un premier temps d’écrire quelques fonctions qui nous seront utiles
par la suite.

1. Proposer une fonction pop2(tpl, i, j) qui prend en argument un n-uplet de taille
n Ê 2 et deux entiers distincts i et j dans �0 . . n −1� et retourne un triplet consistant en
l’élément du n-uplet à la position i , celui à la position j , et un n-uplet de longueur n −2
contenant les éléments restants. Par exemple :

In []: pop2((2, 3, 5, 7, 7, 11), 3, 1)
Out[]: 7, 3, (2, 5, 7, 11)

2. Proposer une fonction somme(tpl, i, j) qui prend en argument un n-uplet de taille
n Ê 2 et deux entiers distincts i et j dans �0 . . n−1�, et retourne un n-uplet de taille n−1 où
les deux éléments indiqués ont été remplacés par leur somme (placée en ernière position).

Par exemple,

In []: somme((2, 3, 5, 7, 7, 11), 3, 1)
Out[]: (2, 5, 7, 11, 10)

3. Proposer, sur le même principe, une fonction produit(tpl, i, j) :

In []: produit((2, 3, 5, 7, 7, 11), 3, 1)
Out[]: (2, 5, 7, 11, 21)

4. Pour la différence, comme l’opération n’est pas commutative, on construira une
fonction difference(tpl, i, j) qui choisira systématiquement l’ordre, pour les deux
éléments extraits, qui donne un résultat positif ou nul :

In []: différence((2, 3, 5, 7, 7, 11), 3, 1)
Out[]: (2, 5, 7, 11, 4)

In []: différence((2, 3, 5, 7, 7, 11), 1, 3)
Out[]: (2, 5, 7, 11, 4)

5. Enfin, proposer une fonction quotient(tpl, i, j) qui, si un des deux éléments est
un multiple de l’autre, remplacera les deux éléments par leur quotient, et retournera None
si aucun des deux éléments n’est un multiple de l’autre :

In []: quotient((2, 3, 5, 7, 7, 11), 3, 1)

In []: quotient((0, 6, 9, 2, 7, 7), 1, 3)
Out[]: (0, 9, 7, 7, 3)

In []: quotient((0, 6, 9, 2, 7, 7), 3, 1)
Out[]: (0, 9, 7, 7, 3)

In []: quotient((0, 6, 9, 2, 7, 7), 2, 0)
Out[]: (6, 2, 7, 7, 0)

In []: quotient((0, 6, 9, 2, 7, 7), 4, 5)
Out[]: (0, 6, 9, 2, 1)

Le premier appel ayant retourné None, cela apparait comme une absence de résultat
dans l’interpréteur.

1



Pour savoir s’il est possible d’atteindre l’objectif, nous allons écrire une fonction récursive
possible(tpl, p) qui devra retourner un booléen indiquant s’il est possible d’obtenir p
à partir du n-uplet founit. Elle fonctionnera de la façon suivante :

• si p figure dans le n-uplet, elle retournera True ;
• sinon, pour tout couple d’entiers i et j vérifiant 0 É i < j < n (n étant la taille du

n-uplet), on utilise chacune des quatres fonctions précédentes pour construire un
(éventuel) n-uplet de taille n−1, on appelle la fonction possible sur cet n-uplet plus
court, et si l’appel récursif retourne True, alors la fonction retourne True ;

• si tous les essais échouent, on retourne False.

6. Grâce à la démarche précédente, proposer une fonction possible(tpl, obj) pre-
nant en argument un n-uplet tpl d’entiers et un entier obj représentant l’objectif à at-
teindre et retournant True ou False selon qu’il est possible ou non d’effectuer un calcul
avec les entiers de E conduisant au résultat obj.

7. Vérifier avec la fonction écrite qu’il est possible d’obtenir, à partir des entiers E =
{1,4,5,8,9}, les valeurs 42, 100 ou 199 mais pas 142. Combien de valeurs dans �1 . . 200� ne
peut-on pas atteindre ?

8. Proposer une fonction possible_tous(tpl, obj) qui effectue le même travail que
possible, mais en altérant la terminaison pour qu’elle ne retourne True que si tous les
entiers de E sont utilisés dans le calcul. Il y a très peu de choses à modifier par rapport à
la fonction possible ! Combien de valeurs dans �1 . . 200� ne peut-on pas atteindre avec
E = {1,4,5,8,9} ?

Dans la suite, on revient au cas où il n’est pas nécessaire d’utiliser tous les entiers de E.

9. Proposer une fonction solution(tpl, obj) procédant de la même manière que
possible mais retournant une liste de chaînes de caractères décrivant les opérations à
effectuer pour atteindre obj. La fonction retournera None si elle ne trouve aucune solution
(et pourra retourner une liste vide si obj figure parmi les éléments de E). Par exemple, on
pourra avoir :

In []: solution([1, 4, 5, 8, 9], 42)
Out[]: ['4+1 = 5', '8-5 = 3', '5+9 = 14', '14*3 = 42']

In []: solution([1, 4, 5, 8, 9], 142)

Le second appel a retourné None (et l’interpréteur n’a donc rien affiché) car il n’y avait
pas de solution. Notons que la fonction peut parfois retourner des listes où certaines
opérations ne sont pas indispensables au calcul du résultat final. On ne cherchera pas à les
éliminer.

On souhaite trouver un ensemble E de quatre entiers distincts dans �1 . . 9� tel qu’il soit
possible d’obtenir tous les objectifs dans �1 . . 65�. Pour ce faire, on va tester tous les qua-

druplets, et regarder si solution 1 retourne une solution pour tout objectif dans �1 . . 65�.
Pour se faciliter la vie, on dispose d’une fonction combinations dans le module itertools
qui permet d’obtenir tous les quadruplets dont on a besoin. La fonction s’importe avec :

from itertools import combinations

Pour afficher par exemple tous les quadruplets, on peut écrire 2 :

for tpl in combinations(range(1, 10), 4):
print(tpl)

10. Trouver l’unique quadruplet qui convient.

On souhaite, de même, trouver un quintuplet d’entiers distincts de �1 . . 9� qui permette
d’obtenir tous les entiers dans �1 . . 260�.

11. Essayer avec la fonction précédente. Que constate-t-on?

3 Amélioration par mémoïsation

On souhaiterait gagner du temps. Si l’on regarde ce qui se passe, on effectue beaucoup
de fois les mêmes calculs : si à partir de l’ensemble {1,2,3,4,5} on calcule d’abord 1+2 puis
3+4, ou bien si l’on calcule d’abord 3+4 puis 1+2, dans les deux cas on se retrouve avec
l’ensemble {3,5,7}. Il serait regrettable de vérifier deux fois qu’il est impossible d’atteindre
l’objectif avec ces trois valeurs.

Pour ce faire, nous allons utiliser la mémoïsation, en créant un dictionnaire mem initiale-
ment vide, défini à l’extérieur de toute fonction, dont les clés seront un couple formé d’un
n-uplet d’entiers et d’un objectif, soit les paramètres de la fonction solution, et les valeurs
le résultat retourné par la fonction Solution (soit None, soit une liste d’opérations).

1. Proposer une fonction solution_memo pour que, si les paramètres correspondent à
une clé de mem, elle retourne la valeur associée sans faire aucun calcul. Dans le cas contraire,
elle effectue les calculs comme la fonction solution, mais mémorise le résultat dans mem
avant de le retourner.

2. Vérifier que la fonction donne un résultat correct pour {1,4,5,8,9} et les objectifs 42,
100 et 142.

3. Se servir de la fonction solution_memo pour identifier le quintuplet d’entiers souhaité.

En fait, on peut améliorer un peu les choses : les n-uplets (2, 3, 5, 7) et (3, 5, 2, 7)
correspondent en fait à la même situation mathématique. Il serait intéressant, dans mem,

1. On peut également utiliser possible.
2. Le premier élement est l’ensemble des valeurs que l’on considère, �1 . . 9� dans notre cas, et le second la

taille des n-uplets souhaités, ici des quadruplets. L’itération produit des objets de type tuple.

2



de mémoriser des n-uplets ordonnés. On peut obtenir un n-uplet trié à partir d’un n-uplet
quelconque tpl en écrivant tuple(sorted(tpl)).

4. Modifier la fonction solution_memo pour qu’elle stocke les n-uplets dans mem sous la
forme de n-uplets triés. Attention, quand la fonction analysera ses arguments, elle devra
également trier les éléments du n-uplet avant de les comparer aux clés de mem !

5. Vérifier que la fonction solution_memo peut trouver une solution pour atteindre
1234567 à partir de E = {3,7,11,14,17,21,22,29,42,54,78} en un temps raisonnable, alors
qu’il faut un temps considérable à solution.

6. Dans l’épreuve « Le compte est bon » du jeu télévisé « Des chiffres et des lettres », on
tire six entiers et un objectif entre 1 et 999 (inclus). Vérifier avec les outils développés que
le tirage {3,4,5,9,75,100} permet d’atteindre tous les objectifs possibles.

3


	Principe
	Résolution du problème
	Amélioration par mémoïsation

