
K-plus proches voisins

1 Introduction

1.1 Objectifs poursuivis

Le but de cette séance de travaux pratiques est essentiellement de reprendre les idées vu
en cours. Le stockage et la représentation des données différeront très légèrement, mais le
principe du classifieur est le même. On cherche cette fois à effectuer de la reconnaissance
d’écriture, et plus précisément celle de chiffres (de 0 à 9) écrits à la main, une tache
fréquemment utile (par exemple, pour la lecture automatique du code postal à vu de tri
automatisé du courrier). Le but recherché est que le classifieur, lorsqu’on lui présente une
image contenant un chiffre, soit capable de l’identifier avec robustesse.

On travaillera avec une base de chiffres appelée MNIST. Dans la version sur laquelle
nous travaillerons, chaque chiffre a été prétraité : les données sont des imagettes noir et
blanc de taille 8×8 où le chiffre est centré et redimensionné pour que tous les chiffres
aient la même taille, comme illustré ci-dessous. Une opération préalable indispensable
pour de bons résultats de classification.

1.2 Chargement des données

On charge la base de données avec :

from sklearn import datasets
digits = datasets.load_digits()

Dans l’objet nommé digits ainsi obtenu, on trouve plusieurs listes de taille N, N étant
le nombre de chiffres manuscrits présents dans la base, dont les listes suivantes :

• digits.data contient les données qui serviront à la reconnaissance : il s’agit de
tableaux de longueur 64 contenant des valeurs de 0 à 16 représentant l’intensité des
différents pixels ;

• digits.images contient les images correspondantes (en fait, il s’agit des mêmes
données que digits.data, mais, par confort, sous la forme de tableaux 8×8 plutôt
que de tableaux unidimensionnels 1 ;

• digits.target contient la "vérité" concernant les chiffres, sous la forme d’un entier
entre 0 et 9, autrement dit digits.target[i] contient le chiffre correspondant à
digits.data[i].

1. En réalité, cet apparent double stockage ne nécessite pas un stockage séparé dans la mémoire.

Pour afficher un chiffre à partir de ses données images, on peut écrire :

import matplotlib.pyplot
plt.imshow(digits.images[i], cmap="gray")
plt.show()

1. Afficher quelques imagettes de chiffres (il y a 1797 exemples dans la base de
données) et vérifier que vous arrivez vous-même à les reconnaître (on vérifiera avec
data.target[i])

Dans la suite, on ne travaillera qu’avec les données de la liste data (des tableaux de
longueur 64). On peut toutefois quand même afficher un chiffre à partir d’un tableau d de
taille 64 en écrivant :

plt.imshow(d.reshape((8,8)), cmap="gray")
plt.show()

2 Classification

2.1 Prétraitements

On souhaite tout d’abord, dans un premier temps, réorganiser les données pour faciliter
les traitements par la suite.

1. Construire un dictionnaire data dont les clés sont les entiers de 0 à 9, et les valeurs
associées des listes contenant les tableaux de longueur 64 associés aux chiffres de la base
de données. On pourra partir de l’ébauche suivante :

data = {} # Un dictionnaire initialement vide

for i in range(10):
data[i] = [] # Une liste vide pour chaque clé (chiffre)

for i in range(len(digits.target)):
data[ ... ].append( ... )

On vérifiera que l’on a le bon nombre d’éléments par classe :

>>> [len(data[i]) for i in range(10)]
[178, 182, 177, 183, 181, 182, 181, 179, 174, 180]
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On notera ici que l’on dispose d’au moins 170 exemples dans chaque « classe ».

Et contrôlera également que les objets sont bien des tableaux de taille 64 :

>>> len(data[0][0])
64

Et que leur contenu est le bon :

>> data[0][0]
array([ 0., 0., 5., 13., 9., 1., ...

>> data[0][177]
array([ 0., 0., 6., 16., 13., 11., ...

L’étape suivante consiste à construire un groupe de données qui serviront de représen-
tants pour l’algorithme des k plus proches voisins, et un groupe de données qui serviront
à tester les résultats.

On souhaite avoir 30 exemples pour chaque chiffre comme référence, 140 pour chaque
chiffre comme tests. En théorie, il conviendrait de les sélectionner au hasard. Pour faciliter
les échanges entre vous (et avoir les mêmes résultats), nous allons exceptionnellement
omettre cette étape 2 (les exemples de la base ne sont de toute façon pas rangés dans un
ordre particulier). Ainsi, pour chaque classe :

• les 30 premiers chiffres serviront de « références » ;
• les 140 chiffres suivants serviront pour nos tests ;
• les quelques chiffres restants seront ignorés.

On rappelle que L[20:80 permet d’obtenir une liste contenant les éléments d’index 20 à
79 de la liste L.

2. Construire un dictionnaire ref dont les clés sont les entiers de 0 à 9 et tel que ref[i]
contienne les 30 premiers tableaux de taille 64 de data[i] (ceux indexés de 0 à 29).

3. Construire de même un dictionnaire test dont les clés sont les entiers de 0 à 9 et tel
que test[i] contienne les 140 tableaux de taille 64 suivants de data[i] (ceux indexés de
30 à 169).

On vérifiera que l’on a le bon nombre d’éléments par classe :

>>> [len(ref[i]) for i in range(10)]
[30, 30, 30, 30, 30, 30, 30, 30, 30, 30]

Il doit en être de même pour test, avec cette fois 140 données par classe.

2. Cela resterait en principe possible même avec un mélange avec les fonctions pseudo-aléatoires dont on
dispose en forçant la graîne aléatoire, mais c’est plus délicat à garantir.

On peut également contrôler que le contenu de ces listes est bon avec ces deux tests :

>>> hash(tuple(map(lambda x:tuple(map(tuple, x)),
(ref[i] for i in range(10)))))

-8181673141168343966

>>> hash(tuple(map(lambda x:tuple(map(tuple, x)),
(test[i] for i in range(10)))))

-4633577574915266473

Si les valeurs sont différentes, il est probable que vous n’ayez pas choisi les bonnes
parties de chaque liste.

2.2 Définition de la distance

Pour mesurer la distance entre deux objets, on utilisera simplement la distance eucli-
dienne entre les intensités de leurs pixels (codage rétinien).

4. Proposer une fonction dist2(t1, t2) retournant un flottant représentant le carré
de la distance euclidienne entre les données du tableau t1 et celles du tableau t2.

On pourra tester la fonction précédente de la sorte (on remarquera au passage que deux
« 0 » sont plus proches qu’un « 0 » et un « 1 ») :

>>> dist2(ref[0][0], ref[0][1])
562.0

>>> dist2(ref[0][0], ref[1][0])
3547.0

2.3 Calcul des distances

Pour une donnée quelconque (un tableau de taille 64), on souhaite déterminer sa dis-
tance à chacun des 300 chiffres « référence ».

5. Proposer une fonction toutes_distances(d, ref) qui prend en argument un ta-
bleau d de longueur 64 et un dictionnaire ref contenant les 300 chiffres de référence, et
retournant une liste de 300 couples (d2, k) où d2 représente le carré distance euclidienne
à un des chiffres de référence, et k est l’entier (entre 0 et 9 correspondant à ce chiffre.

6. Modifier la fonction précédente pour que la liste retournée soit triée par ordre crois-
sant des distances. On remarquera que comme les éléments sont des couples qui com-
mencent par la distance, et que Python compare des couples en se basant en priorité sur
leur premier élément (ordre lexicographique), on peut utiliser une comparaison directe
sur les couples ici. On pourra utiliser .sort() pour ne pas perdre de temps, mais gardez
en tête qu’il faut être capable d’écrire au moins un tri, même élémentaire, aux concours.
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On pourra tester la fonction de la façon suivante :

>>> toutes_distances(test[0][0], ref)[:5]
[(405.0, 0), (436.0, 0), (437.0, 0), (519.0, 0), (667.0, 0)]

>>> toutes_distances(test[9][5], ref)[:5]
[(1113.0, 5), (1147.0, 9), (1153.0, 9), (1355.0, 7), (1389.0, 5)]

On remarquera donc que le sixième « neuf » dans l’ensemble de test n’est pas facile à
ne pas confondre avec un 5 ou un 7, et on pourra afficher l’imagette pour comprendre
pourquoi ça n’a rien de surprenant :

plt.imshow(test[9][5].reshape((8,8)), cmap="gray")
plt.show()

2.4 Classifieur et analyse des résultats

7. Écrire une fonction gagnant(lst) prenant en argument une liste d’entiers entre 0 et
9, et retournant l’entier apparaissant le plus grand nombre de fois dans cette liste (en cas
d’égalité, on retournera, parmi les ex-aequos, celui qui apparaît en premier dans la liste).
On s’efforcera d’obtenir une complexité linéaire en la taille de la liste.

8. En s’appuyant sur les fonctions toutes_distances et gagnant, proposer une fonc-
tion kppv(d, ref, k) prenant en argument une donnée d (tableau de longueur 64) et
retournant l’entier entre 0 et 9 correspondant à une classification avec l’algorithme des k
plus proches voisins sur les données de référence ref. On rappelle que si L est une liste, on
peut obtenir la liste des k premiers éléments de L en écrivant L[:k].

9. Sur les 1000 chiffres de notre ensemble de tests, combien sont bien classés pour k = 1 ?
k = 7 ?

10. Construire la matrice de confusion (de taille 10×10) de notre classifieur pour k = 7.
Quels sont les chiffres les plus souvent confondus?

2.5 Choix de k

Utiliser un paramètre k élevé est intéressant lorsqu’il y a des « outliers » dans les données,
c’est à dire des « intrus » au beau milieu d’un classe, comme on l’a vu avec les iris. En fait, il
y en a relativement peu avec la base MNIST que l’on manipule, de sorte que k = 1 serait
souvent la meilleure solution.

Pour montrer l’intérêt de k pour résister à ces intrus, nous allons dégrader la base de
référence en classant volontairement incorrectement certains chiffres :

ref_degr = {
i: ref[i][:20] + [ref[(i+k)%10][20+k] for k in range(10)]
for i in range(10) }

Il y a toujours 30 exemples par classe mais dorénavant, 9 sont en fait des chiffres d’une
autre classe. Si l’on fait tourner les fonctions précédentes sur cette base dégradée, évidem-
ment la classification sera moins bonne.

Dans la suite, on travaillera avec ref_degr comme base de référence plutôt qu’avec ref.

On souhaite déterminer l’évolution du nombre de chiffres bien classés en fonction de
k sur cette base dégradée. Il est possible d’utiliser les fonctions précédentes, mais cela
prendrait un peu de temps. On va procéder un peu différemment.

11. Proposer une fonction majoritaire(lst) prenant en argument une liste d’entiers
lst et retournant une liste res de même longueur, telle que res[i] contienne l’entier le
plus représenté dans lst aux positions d’indice 0 à i inclus (en cas d’égalité, on choisira
l’entier qui apparaît en premier).

12. En déduire une fonction classification(d, ref) qui prend en argument un
tableau de longueur 64 et un dictionnaire contenant les 300 chiffres de référence, et retour-
nant une liste res de 300 entiers telle que res[i] contienne le résultat de la classification
par k plus proches voisins pour k = i +1.

13. Construire une liste resultats de 1000 listes de 300 éléments, contenant les listes
construites par la fonction précédente pour les 1000 exemples de notre ensemble de test.
Les 100 premiers éléments correspondront aux imagettes de zéros, les 100 suivants aux
imagettes de uns, etc. On pensera bien à utiliser ref_degr comme base de référence (on
pourra éventuellement comparer les résultats avec la base originale, si le temps le permet).

La construction de cette liste prend du temps, on s’efforcera de préserver la liste ainsi
construite pour la suite !

14. Proposer une fonction taux_succes(resultats, k) qui retourne le pourcentage
de classement correct en fonction de k (k étant un entier entre 1 et 700).

15. Tracer la courbe du taux de succès en fonction de k. Quel k peut-on choisir?

16. Proposer une fonction matrice_confusion(resultats, k) retournant une liste
conf de 10 listes contenant 10 entiers, telle que conf[i][j] contienne le nombre d’ima-
gettes correspondant au chiffre i reconnues comme le chiffre j pour la méthode des k
plus proches voisins (k étant un entier entre 1 et 300)

17. Quels sont les chiffres les plus souvent confondus pour le k choisi ?
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