
Réductions colorimétriques

1 Introduction

1.1 Objectifs poursuivis

Pour de nombreuses raisons, il peut être intéressant de limiter le nombre de couleurs
d’une image : parce que l’on ne peut disposer que d’un nombre limité de couleurs (par
exemple dans la réalisation d’une mosaïque) ou, dans le cas d’images numériques, pour
l’espace nécessaire à son stockage (un pixel occupe généralement trois octets, mais avec
une palette de 16 couleurs, cela peut par exemple descendre à un demi-octet).

Dans cette séance, nous allons voir comment réduire le nombre de couleurs d’une image,
de quelle façon choisir au mieux les couleurs en question, et enfin exploiter des techniques
de diffusion d’erreur (dithering) pour que le rendu final soit le plus proche possible de
l’image originale.

1.2 Récupération des données

Pour télécharger et installer les données que l’on va utiliser durant cette séance de TP,
lancer l’application « cygwin terminal » dont le raccourci se trouve sur le bureau, et entrer
soigneusement la commande suivante 1 (que l’on validera avec la touche entrée) :

cd /cygdrive/d; curl cdn.sci-phy.org/psi/tp5-dithering.tgz | tar xvz

La commande devrait avoir créé un dossier TP5-Dithering dans la racine du disque
D: (ou F:) qui contiendra des images. Vous pouvez ensuite refermer le terminal et lancer
l’environnement Pyzo.

En cas de difficultés, ou si vous voulez travailler sur votre propre machine, vous pouvez té-
lécharger le fichier http://cdn.sci-phy.org/psi/tp5-dithering.tgz par la méthode
de votre choix, de décompresser le fichier ainsi obtenu (par exemple avec l’utilitaire 7zip)
et de placer le répertoire à un endroit aisément accessible.

Précisons enfin que chaque image est fournie dans une taille normale et une taille
réduite (le nom se termine par _s) car bon nombre de fonctions de ce TP prennent du
temps, aussi est-il parfois intéressant d’effectuer les tests intermédiaires sur une image de
petite taille.

Vous pouvez également récupérer une ébauche de fichier Python pour le TP, à l’adresse
usuelle (llg.sci-phy.org , rubrique PSI et TP).

1. Si le disque de « données » sur la machine est F:, on écrira « /cygdrive/f ».

1.3 Rappels sur les images

Dans ce TP, on s’intéresse à des images en couleur, encodée au format RGB. Dans
ce format, on décrira une couleur par un élément de [0,1]3, que l’on représentera en
Python par exemple par une liste contenant trois réels. Le premier élément correspond à
la quantité de rouge (0 : absence, 1 : maximum), le second de vert, le troisième de bleu.

Ainsi, [1.0, 0.0, 0.0] correspond par exemple à la couleur rouge, [0.8, 0.8, 0.0]
à un mélange de rouge et de vert (donnant une couleur jaune), [0.0, 0.3, 0.9] à
un bleu tirant sur le vert, [1.0, 1.0, 1.0] à du blanc, [0.0, 0.0, 0.0] à du noir, et
|[0.5, 0.5, 0.5] à un gris neutre.

Une image RGB peut être vue comme une matrice de pixels de hauteur h et de largeur l ,
où chaque pixel correspond à une couleur, autrement dit une liste de trois flottants. Ainsi,
si img désigne une image, img[i][j] désigne le pixel sur la ligne i, colonne j (une liste de
trois réels), et img[i][j][0] désigne par exemple la quantité de rouge émis par le pixel.

1.4 Manipulation en TP

Pour travailler sur des images et afficher le résultat, on propose d’utiliser le canevas
ci-dessous. Les deux premières lignes importent les bibliothèques utiles. On place ensuite
les fonctions demandées, puis les lignes img = ... chargent l’image sous la forme d’une
liste de listes de listes à trois réels. Une fois l’image chargée, on appelle la ou les fonctions
que l’on souhaite tester (et qui modifient img), et les deux dernières lignes affichent le
résultat.

import imageio as iio
import matplotlib.pyplot as plt
import random as rd

// Définitions diverses (palettes)

// Fonctions à créer

img = [[list(pix) for pix in line] for line in
iio.imread("C:/hemin/vers/image.jpg")/255.0]

// Effectuer des traitements sur l'image

plt.imshow(img)
plt.show()

1

http://cdn.sci-phy.org/psi/tp5-dithering.tgz
llg.sci-phy.org


2 Réduction des couleurs

2.1 Distances dans l’espace RGB

1. Proposer une fonction dist2(col1, col2) prenant en argument deux couleurs col1
et col2 (des listes de réels de longueur 3) et retournant le carré de la distance euclidienne
entre les deux couleurs.

2.2 Palettes de couleurs

Une « palette » de couleurs est un ensemble de plusieurs couleurs, autrement dit plu-
sieurs éléments de [0,1]3. On représente une palette sous la forme d’une liste de ses
couleurs. Par exemple la palette EGA par défaut est définie de la sorte :

palette_EGA = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.67], [0.0, 0.67, 0.0],
[0.0, 0.67, 0.67], [0.67, 0.0, 0.0], [0.67, 0.0, 0.67],
[0.67, 0.33, 0.0], [0.67, 0.67, 0.67],
[0.33, 0.33, 0.33], [0.33, 0.33, 1.0],
[0.33, 1.0, 0.33], [0.33, 1.0, 1.0], [1.0, 0.33, 0.33],
[1.0, 0.33, 1.0], [1.0, 1.0, 0.33], [1.0, 1.0, 1.0]]

On trouvera aussi fournie une palette de couleurs LEGO, un peu plus complète.

2. Proposer une fonction plus_proche(col, palette) prenant en argument une cou-
leur col (une liste de trois réels) et une palette pal (une liste de liste de trois couleurs), et
retournant l’index de la couleur, dans la palette, la plus proche de col (un entier entre 0 et
len(pal)-1 donc).

3. En déduire une fonction applique_palette(img, pal) qui prend en argument une
image et un palette de couleurs, et remplace chaque couleur par la couleur la plus proche
dans la palette de couleurs. On traitera l’image ligne par ligne, et les pixels de gauche à
droire sur chaque ligne.

4. Tester la fonction sur l’une des images à disposition.

2.3 Palettes aléatoires

La fonction rd.random() (rd étant un alias pour le module random) retourne un flottant
choisi aléatoirement dans [0,1].

5. Proposer une fonction palette_aleatoire(N) prenant en argument un entier N> 0
et retournant une palette contenant N couleurs choisies aléatoirement.

6. Afficher l’image réduite à quelques palettes choisies aléatoirement, en faisant varier
N entre 4 et 256. À partir de combien de couleurs obtient-on des résultats généralement
décents?

3 Sélection d’une palette

3.1 Motivation et démarche

Comme on l’a vu, choisir une palette prédéfinie ne donne pas des résultats remarquables
si le but est de préserver la qualité de l’image. L’idée est donc de choisir une palette
spécifiquement adapté à l’image choisie. Pour ce faire, nous allons utiliser l’algorithme des
k−moyennes. La méthode que l’on va mettre en œuvre est la suivante :

• on part d’une palette de N couleurs choisie aléatoirement
• puis, p fois :

— on détermine la couleur de la palette la plus proche de chaque pixel de l’image
— puis pour chaque couleur de la palette, on détermine la moyenne des couleurs

des pixels qui lui ont été associé
— on remplace dans la palette la couleur par la moyenne précédemment calculée

3.2 Implémentation

7. Proposer une fonction classe(img, pal) prenant en argument une image et une
palette, et retournant une matrice idx d’entiers entre 0 et len(pal)-1, de mêmes dimen-
sions que l’image, et telle que idx[i][j] corresponde à l’index, dans pal, de la couleur de
la palette la plus proche du pixel img[i][j].

8. Proposer une fonction moyennes(img, idx, N) retournant une palette de N couleurs,
où la couleur k est :

• le barycendre de toutes les couleurs des pixels img[i][j] dans l’image telles que
idx[i][j] == k s’il y a au moins un tel pixel dans l’image ;

• une couleur choisie aléatoirement sinon.

Pour des raisons d’efficacité, surtout s’il y a de nombreuses couleurs, il est recom-
mandé d’effectuer le calcul des N moyennes en une seule passe sur l’image. Il pourra
être utile de créer pour cette question une fonction ajoute(col1, col2) qui prend en
argument deux listes à trois éléments et ajoutant à chacun des termes de la seconde liste
les termes de la première.

9. En déduire une fonction opt_palette(img, N, p) qui, avec l’algorithme des
k−moyennes effectuant p itérations, détermine une palette de N couleurs adaptée à
l’image.

Il serait possible d’utiliser un autre critère d’arrêt qu’un nombre fixé d’itérations pour
arrêter l’algorithme, par exemple lorsque les couleurs de la palette, entre deux itérations,
n’ont pratiquement pas changé (distance entre les anciennes et les nouvelles couleurs in-
férieures à un ε choisi préalablement). On ne demande pas d’implémenter cette condition
ici, mais c’est un bon entraînement si vous trouvez le temps de le faire.

10. Affcher l’image obtenue une fois convertie à la palette en question en faisant varier
p (entre 1 et 20 itérations) et N (entre 4 et 32 couleurs). Que penser des résultats ?

2



4 Diffusion des erreurs

4.1 Motivation

Prendre systématiquement la couleur la plus proche n’est pas nécessairement la
meilleure solution, ce que l’on constate notamment sur les dégradés dans l’image.

Si une partie de l’image est orange, et que l’on ne dispose dans la palette que de jaune et
de rouge mais pas d’orange, une solution peut être de mettre côte à côte des pixels jaunes
et rouge, et leur mélange pourra, si les pixels sont suffisamment serrés, donner une impres-
sion de couleur orange. C’est une technique permettant de donner l’impression d’avoir
davantage de couleurs utilisée notamment dans les premiers temps de l’informatique,
appelée diffusion de l’erreur (dithering en anglais).

Dans l’exemple ci-dessous, la photographie de gauche a par exemple été convertie avec
cette technique en une image qui ne contient que des pixels blancs et des pixels noirs :

4.2 Mise en œuvre

Pour y parvenir, le principe est simple : si l’on note x la couleur originale du pixel
img[i][j] et y la couleur de la palette que l’on utilisera pour ce même pixel, on commet
une erreur e = y − x sur la couleur de ce pixel (x et y étant des vecteurs de [0,1]3, il est
possible de définir une différence, vectorielle, dont le résultat sera dans R3).

Pour compenser cette erreur, on va modifier la couleur des pixels voisins avant de les
associer à une couleur de la palette. Comme on va traiter les pixels ligne par ligne, et de
gauche à droite, il est trop tard pour les pixels immédiatement à gauche et ceux sur la ligne
du dessus. Pour les autres, on va ajouter :

• 7e/16 au pixel à droite du pixel img[i][j] (s’il existe) ;
• 3e/16 au pixel en-dessous et à gauche du pixel img[i][j] (s’il existe) ;
• 5e/16 au pixel en-dessous du pixel img[i][j] (s’il existe) ;
• e/16 au pixel en-dessous et à droite du pixel img[i][j] (s’il existe).

Les coefficients n’ont pas été choisis au hasard, mais ajustés pour donner des résultats
visuellement satisfaisants (il existe d’autres formules plus ou moins complexes, il s’agit ici
de la méthode dite de Floyd-Steinberg). On remarquera au passage que la somme donne

bien e, de sorte que l’on tente de corriger complètement l’erreur commise sur le pixel
img[i][j].

11. Proposer une fonction applique_palette_diff(img, pal) qui prend en argument
une image et un palette de couleurs, et remplace chaque couleur par la couleur la plus
proche dans la palette de couleurs, en appliquant la méthode de diffusion de l’erreur de
Floyd-Steinberg.

12. Afficher le résultat d’une image convertie à la palette EGA grâce à cette méthode.

13. Faire de même avec une palette obtenue par optimisation avec la méthode des
k−moyennes (on pourra par exemple prendre N = 16 et p = 15 itérations. Que penser du
résultat obtenu ?

5 Espace CIELAB

Revenons un instant sur l’optimisation de la palette. Il y a un souci avec le choix de
l’espace colormétrique RGB : il n’est pas perceptuellement uniforme, c’est-à-dire que
la distance euclidienne, dans cet espace, ne correspond pas bien à une perception des
différences entre deux couleurs.

Pour améliorer les choses, on peut changer d’espace colorimétrique, au profit par
exemple 2 de l’espace CIELAB, où chaque couleur est définie par trois composantes, L
(clarté, dérivé de la luminance), a∗ (écart à la neutralité sur un axe turquoise/magenta) et
b∗ (écart à la neutralité sur un axe bleu/jaune). On fournit deux fonctions RGB_to_CIELAB
et CIELAB_to_RGB permettant de convertir 3 une couleur RGB en une couleur La∗b∗ et
inversement.

Pour améliorer le calcul de la palette optimale, on peut donc travailler dans l’espace
CIELAB lorsque l’on calcule les distances entre couleurs. L’ennui, c’est que les conversions
prennent du temps, aussi procédera-t-on de la façon suivante :

• on construit une image où l’on a converti chacun des pixels de l’image originale dans
l’espace colorimétrique CIELAB

• on détermine une palette optimale (au format CIELAB) pour cette image (aucune
modification des fonctions écrites n’est nécessaire)

• on convertit les couleurs de cette palette obtenue au format RGB
• on convertit les couleurs des pixels de l’image originale en couleurs appartenant à la

palette avec diffusion de l’erreur.

La répartition des couleurs dans l’espace CIELAB n’étant pas homogène, on préférera

RGB_to_CIELAB([rd.random() for k in range(3)])

2. L’espace CIELAB est encore imparfait, il existe actuellement des solutions un peu plus précises.
3. C’est une conversion approchée, la question des couleurs est un problème infiniment complexe, mais cela

suffira pour ce TP.

3



de préférence à [rd.random() for k in range(3)] pour générer une couleur aléatoire
(dans palette_aleatoire ainsi que dans moyennes).

14. Écrire une fonction optimise(img, N, p) qui prend en argument une image et
retourne une image ne contenant que N couleurs différentes, choisies avec la méthode
précédente, en ayant effectué p itérations de l’algorithme des k−moyennes.

4


	Introduction
	Objectifs poursuivis
	Récupération des données
	Rappels sur les images
	Manipulation en TP

	Réduction des couleurs
	Distances dans l'espace RGB
	Palettes de couleurs
	Palettes aléatoires

	Sélection d'une palette
	Motivation et démarche
	Implémentation

	Diffusion des erreurs
	Motivation
	Mise en œuvre

	Espace CIELAB

