
Collection de cartes, circulation, tri RADIX – Corrigé

1 Collection

1. On alloue ici un tableau de double de taille p +1 avec un appel à la fonction malloc,
que dont on remplit les cases avec la formule fournie par le sujet :

double* prob(int q, int n, int p) {
double* pr = malloc((p+1) * sizeof(double));
double denom = comb_d(p, n);
for (int k=0; k<=p; ++k) {

pr[k] = comb_d(k, n-q) * comb_d(p-k, q) / denom;
}
return pr;

}

Notons que l’on fait ici l’hypothèse implicite que binom(a, b) retourne bien 0 lorsque
a < 0 ou a > b. Si ce n’est pas le cas, il faudrait ajouter un test supplémentaire plaçant un 0
dans la case k lorsque k > n −q ou p −k > q (on peut raisonnablement supposer que les
paramètres utilisés vérifient par ailleurs 0 É q É n et 0 É p É n).

2. Si l’on ouvre un paquet de p cartes, le nombre de nouvelles cartes que l’on peut obtenir
est nécessairement dans �0 . . p�. Comme les cases du tableau retourné correspondent
précisément aux probabilités d’obtenir k nouvelles cartes pour k ∈ �0 . . p�, leur somme est
égale à 1 (aux soucis d’arrondis flottants près).

On peut également le vérifier en calculant
p∑

k=0

(n−q
k

)× (q
p−k

)(n
p

) , ce qui donnera 1.

3. On peut par exemple remarquer que, compte tenu de la question précédente, si x
est un réel choisi aléatoirement selon une loi uniforme sur [0,1], pour un k donné, la
probabilité pour x de vérifier la relation suivante :

k−1∑
i=0

pr[i] É x <
k∑

i=0
pr[i]

est exactement pr[k]. On détermine donc simplement le plus petit entier k vérifiant

x <
k∑

i=0
pr[i], soit x −

k∑
i=0

pr[i] < 0.

En l’état, cependant, on aurait un souci dans le cas (certes improbale) où x = 1. La
dernière comparaison devrait être large. Mais comme on attend un résultat entre 0 et p

inclus, si le test a échoué pour les valeurs de k de 0 à p −1 (soit x−∑p−1
i=0 pr[i] < 0), on peut

retourner la valeur p directement sans faire davantage de tests 1, soit par exemple :

int tirage(double pr[], int p) {
double x = rand_d();
for (int k=0; k<p; ++k) {

x = x - pr[k];
if (x < 0) {

return k;
}

}
return p;

}

4. On part de 0 cartes possédées, et on utilise la fonction précédente jusqu’à parvenir à
réunir les n cartes, en prenant garde à libérer les tableaux alloués lors des appels à prob !

int nb_paquets(int p, int n) {
int q = 0; // Nombre de cartes différentes possédées
int nb = 0; // Nombre de paquets ouverts
while (q<n) { // Tant que la collection est incomplète

nb = nb + 1; // On ouvre un paquet de plus
double* pr = prob(q, n, p); // Calcul des probabilités
q = q + tirage(pr, p); // Tirage du nombre de nouvelles
free(pr); // cartes et libération de pr

}
return nb;

}

5. Pour avoir q cartes juste après avoir ouvert un paquet, il fallait avoir q −k cartes avant
l’ouverture (k ∈ �0 . . p�) et que dans le paquet que l’on ouvre, parmi les p cartes, il y en ait
k nouvelles. Il nous faut donc mettre à jour le tableau arr avec la relation suivante :

arr[q] ←
min(p,q)∑

k=0
arr[q−k]×P

(
k, q −k,n, p

)
On fera attention à ne pas sortir des bornes du tableau ! q −k ne doit jamais être stricte-

ment négatif (on ne peut pas posséder un nombre négatif de cartes). Cela est garanti par le
« min » figurant dans la formule précédente.

1. Placer le dernier cas hors de la boucle permet en outre d’éviter que la fonction puisse ne rien retourner si la
somme des probabilités n’est pas exactement égale à 1 pour des raisons d’arrondis.

1

Une difficulté réside dans le fait que la nouvelle valeur de arr[q] dépend des valeurs du
tableau aux positions dont les index vont de max(0, q-p) à q :

qq-p

arr

Si l’on modifie directement une valeur dans le tableau, il faut s’assurer que cela n’aura pas
de conséquence sur le calcul des autres valeurs. Par exemple, la valeur de arr[i] intervient
dans le calcul des valeurs de arr[i+1], arr[i+2]... Si on modifie sans précaution arr[i]
dans le tableau avant de déterminer les nouvelles valeurs de arr[i+1], arr[i+2]..., ces
dernières seront incorrectes.

Une solution, pour éviter cette difficulté, est de mettre à jour les valeurs du tableau de
la droite vers la gauche gauche (ainsi, lorsque l’on s’occupera de arr[i], les nouvelles
valeurs de arr[i+1], arr[i+2], ..., auront déjà été déterminées). Par exemple, en utilisant
directement l’expression de P

(
k, q −k,n, p

)
, cela donnerait :

void ajoute_paquet(double arr[], int n, int p) {
for (int q=n; q>=0; --q) {

double sum = 0.0; // Calcul de
∑min(p,q)

k=0 arr[q−k]×P
(
k, q −k,n, p

)
double denom = comb_d(p, n);
for (int k=0; k<=p && k<=q; ++k) {

sum = sum + arr[q-k] * comb_d(k, n-q+k) * comb_d(p-k, q-k)
/ denom;

}
arr[q] = sum;

}
}

Même si dans la pratique on n’y gagne pas grand-chose, on pourrait regretter ici de
ne pas utiliser la fonction prob précédemment définie pour déterminer d’un coup un
ensemble de probabilités. C’est possible, mais l’écriture de la fonction est sensiblement
plus complexe, surtout si l’on veut directement mettre à jour notre tableau, car il n’est
alors pas possible de mettre à jour les valeurs une à une comme précédemment.

On peut y parvenir en utilisant l’invariant de boucle suivant (en gardant une boucle sur
q décroissant de n inclus à 0 inclus), correspondant au tout début de l’itération :

• les cases d’index k É q contiennent la probabilité de posséder k cartes avant l’ajout
• les cases d’index k > q contiennent la probabilité conjointe de posséder k cartes

après l’ajout et d’avoir strictement plus de q cartes avant l’ajout.

q+pq

arr

Pr. avant ajout En cours Pr. après ajout

En particulier, les probabilités dans les cases d’index q+1 à q+p n’ont pas encore été
complètement déterminées, car on n’a pas encore envisagé toutes les possibilités pour
la situation avant l’ajout qui pourraient conduire à ce nombre de carte après l’ajout. Les
cases d’index strictement supérieurs à q+p en revanche ont leur valeur définitive.

Pour progresser d’une case, on commence par mettre un 0 dans la case q (en mémorisant
la valeur qui s’y trouvait, probabilité de posséder q cartes avant l’ajout), puis à partir des
probabilités fournies par prob d’obtenir p cartes si l’on en avait q avant l’ajout, on complète
les probabilités des cases d’index valides compris entre q et q+p inclus. On prendra garde à
ne pas sortir du tableau. Cela donnerait par exemple :

void ajoute_paquet(double arr[], int n, int p) {
for (int q=n; q>=0; --q) {

double arr_q = arr[q];
double* pr = prob(q, n, p); // Calcul des probabilités
arr[q] = 0; // On repart de zéro pour arr[q] !
for (int k=0; k<=p && q+k<=n; ++k) {

arr[q+k] = arr[q+k] + arr_q * pr[k];
}
free(pr);

}
}

Si l’on tient à utiliser prob, il est sans doute plus aisé de calculer les probabilités après
l’ouverture du paquet dans un autre tableau, temporaire et alloué dynamiquement, et de
recopier les résultats dans le tableau original à la fin de la fonction :

void ajoute_paquet(double arr[], int n, int p) {
double* n_arr = malloc((n+1) * sizeof(double));
for (int q=0; q<=n; ++q) { n_arr[q] = 0.0; }
for (int q=0; q<=n; ++i) {

double* pr = prob(q, n, p); // Calcul des probabilités
for (int k=0; k<=p && q+k<=n; ++k) {

n_arr[q+k] = n_arr[q+k] + arr[q] * prob[k];
}
free(pr);

}
for (int q=0; q<=n; ++q) { arr[q] = n_arr[q]; }
free(n_arr);

}

Note : les trois propositions ont été trouvées dans les différentes copies, il n’y a pas de
« meilleure » solution dans l’absolu, mais il est utile d’expliquer ce que l’on fait.

2

6. On alloue un tableau de taille n +1 contenant les probabilités initiales (1.0 dans la
première case et 0.0 dans toutes les autres, puisque l’on a 100% de chances de posséder 0
cartes avant l’ouverture du premier paquet !) et on appelle r fois la fonction précédente :

double* probabilites(int n, int p, int r) {
double* arr = malloc((n+1) * sizeof(double));
arr[0] = 1.0;
for (int i=1; i<=n; ++i) { arr[i] = 0.0; }
for (int i=0; i<r; ++i) {

ajoute_paquet(arr, n, p);
}
return arr;

}

2 Circulation routière

2.2 Préliminaires

1. Rien de complexe ici, on utilise un compteur :

int compte(bool t[], int n) {
int compteur = 0;
for (int i=0; i<n; ++i) {

if (t[i]) {
compteur++;

}
}
return compteur;

}

2. On verifie les éléments deux par deux. Si on trouve une différence, les files sont
différentes. Si on parvient à la fin des tableaux, elles sont identiques.

bool egales(bool t1[], bool t2[], int n) {
for (int i=0; i<n; ++i) {

if (t1[i] != t2[i]) {
return false;

}
}
return true;

}

3. Le sujet attend en principe ici que l’on justifie qu’il s’agit d’un ordre et que celui-ci

est total (compte tenu du fait que la notion n’a pas été vue en cours, les points ont été
offerts, avec un bonus pour les quelques-uns qui sont quand même parvenus à proposer
une réponse complète et juste.)

Pour vérifier qu’il s’agit d’un ordre, on contrôle que la relation est
• réflexive (on obtient true avec deux files identiques) ;
• antisymétrique (si deux files t1 et t2 sont différentes, on peut considérer le premier

booléen pour lequel elles diffèrent ; de part ce booléen, on ne peut avoir à la fois
t1⪯t2 et t2⪯t1) ;

• transitive (supposons t1⪯t2⪯t3... si t1=t2 ou t2=t3, on a bien t1⪯t3, et sinon on
considère les indices ia et ib de l’algorithme lorsque l’on compare t1 à t2 et t2 à t3,
et on montre que min(ia , ib) permet de conclure que t1⪯t3).

Le caractère total est ensuite évident : l’algorithme retourne systématiquement true ou
false lorsque l’on compare deux files, donc deux files sont toujours comparables.

4. On modifie quelque peu la fonction egales. On notera le « return t2[i] » dans la
boucle qui est une façon rapide d’écrire « t1[i] < t2[i] » puisque l’on sait, en ce point,
que les deux booléens sont différents.

bool plus_petit(bool t1[], bool t2[], int n) {
for (int i=0; i<n; ++i) {

if (t1[i] != t2[i]) {
return t2[i];

}
}
return true; // Elles sont égales

}

Note : il s’agissait bien de « int n » et non « bool n », comme nombre d’entre vous l’ont
remarqué.

2.3 Déplacement de voitures dans la file

5. Il faut bien voir ici qu’aucun véhicule ne peut être bloqué, donc il n’y a aucune
précaution à prendre : on ne fait qu’un décalage de tous les éléments dans le tableau d’un
case vers la droite, et la case de gauche reçoit la valeur de ajout.

Ce n’est pas grave de proposer une solution plus complexe, où l’on teste, pour chaque
case, la présence d’un véhicule, et on le fait avancer si la case suivante est libre. Cependant,
c’est potentiellement une perte de temps, et un risque supplémentaire d’erreurs dans le
code. D’où l’importance de faire quelques essais sur papier pour bien comprendre ce qui
se passe avant de se lancer dans l’écriture de la fonction.

Note : en raison du caractère complètement opaque de la question concernant la valeur
renvoyée par la fonction, aucun comportement particulier n’était attendu pour la fonction

3

avancer de cette question et la fonction avancer_fin un peu plus loin.

bool avancer(bool t[], int n, bool ajout) {
for (int i=n-2; i>=0; --i) {

t[i+1] = t[i]; // On décale vers la droite le tableau
}
t[0] = ajout;
return XXXX; // toutes réponses acceptées

}

6. On obtient pour t, après les deux appels :

{ true, false, true, false, true, true,
false, false, false, false, false };

2.4 Circulation à deux files

7. On peut évidemment reprendre le principe de la fonction avancer, et d’écrire une
boucle. Cependant, la question demande simplement de faire avancer inconditionnelle-
ment les véhicules de la seconde moitié de la file (en commençant à la case d’index m, soit
n-m cases au total).

On peut donc profiter du fait que le langage C ne prend, dans une fonction travaillant sur
un tableau, qu’un pointeur vers sa première ase, et réutiliser astucieusement la fonction
avancer !

bool avancer_fin(bool t[], int n, int m) {
return avancer(&t[m], n-m, false);

}

Cases situées avant la case m

8. Là aussi, il est intéressant d’utiliser la fonction avancer, en prenant bien garde à inclure
la case m (soit m +1 cases à gérer) ! On peut ignorer la valeur retournée par la fonction.

void avancer_libre(bool t[], int n, int m, bool ajout) {
avancer(t, m+1, ajout);

}

9. C’est la seule fonction un peu plus subtile : si l’on trouve une case vide entre m −1 et
0, en parcourant le tableau à rebours, on peut faire avancer librement tout ce qui se trouve
à gauche de cette case vide. Sinon tout est bloqué.

Cela donne par exemple :

void avancer_bloque(bool t[], int n, int m, bool ajout) {
for(int i=m-1: i>=0; --i) {

if (!t[i]) {
avancer(t, i+1, ajout);
return; // On en a terminé !

}
}

}

10. Il ne reste à présent qu’à appeler intelligemment les fonctions précédentes. La file 1
avance normalement, la fin de la file 2 également, mais le début de la file 2 n’avance que si
la case correspondant au croisement n’est pas bloqué (après avoir géré la file 1).

void avancer_files(bool t[], int n, bool aj1, bool aj2) {
bool* t1 = t; // Pour simplifier la suite,
bool* t2 = &t[n]; // on définit t1 et t2
int m = n/2; // Ou (n-1)/2 (n est impair ici)
avancer(t1, n, aj1); // La file 1 avance normalement
avancer_fin(t2, n, m); // La fin de la file 2 aussi
if (t1[m]) { // Et on regarde le carrefour

avancer_bloque(t2, n, m, aj2);
} else {

avancer_libre(t2, n, m, aj2);
}

}

Il existe plein de variantes possibles, on s’efforcera de proposer des fonctions aussi
claires que possibles.

11. A l’issue du programme, le tableau contient

{ false, true, false, true, false,
true, false, true, false, true };

12. Si dans la file 1 il y a une succession ininterrompue de véhicules (ajout d’un nouveau
véhicule à chaque itération), alors la seconde file est indéfiniment bloquée.

2.5 Atteignabilité

13. Il est possible de passer de la configuration (a) à la configuration (b) en 9 étapes
(mais pas moins) : quatre étapes où la file 1 avance et la file 2 est bloquée, une étape où les
deux files avancent, et à nouveau quatre étapes où les deux files avancent avec l’arrivée

4

d’un nouveau véhicule à chaque itération sur la file 1 (bien évidemment, les véhicules sur
la file 1 dans la configuration (b) ne peuvent être ceux apparaissant dans (a)).

14. Le passage de la configuration (a) à la configuration (c) est en revanche impossible :
les règles indiquent qu’à l’étape précédant immédiatement (c) deux véhicules auraient dû
se trouver sur le carrefour, ce qui est impossible. La configuration (c) ne peut être atteinte.

15. La configuration (a) ne peut être atteinte (on arrive à un paradoxe en remontant
trois crans en arrière, deux véhicules simultanément sur le carrefour). En revanche, la
configuration (b) peut parfaitement être atteinte.

Évolution des configurations

16. Il s’agit juste de recopier le contenu du tableau après l’appel à malloc :

bool* copie(bool t[], int n) {
bool* res = malloc(n * sizeof(bool));
for (int i=0, i<n; ++i) {

res[i] = t[i];
}
return res;

}

17. On effectue une copie (attention à la taille !), puis on appelle avancer_files sur la
copie :

bool* suivant(bool t[], int n, int aj1, int aj2) {
bool* res = copie(t, 2*n); // t est de taille 2n !
avancer_files(res, n, aj1, aj2);
return res;

}

Gestion de la table des configurations atteintes

18. Il s’agit d’une recherche dichotomique dans un tableau trié par ordre croissant.
Cela permet de tester la présence de la configuration dans la liste des configurations déjà
atteintes en temps logarithmique, ce qui est plus efficace qu’une simple recherche linéaire
dans le tableau.

19. On peut utiliser l’invariant « si la configuration se trouve dans le tableau, alors elle
se trouve dans une case d’index i vérifiant debutÉ i < fin ». Il est impératif de faire très
attention au caractère strict/large des bornes, car c’est de là que viennnent les problèmes !

20. On peut sortir lorsqu’il n’y a plus d’index possible, donc lorsque debut == fin si
l’on s’appuie sur la question précédente. On pourra donc écrire « while (debut<fin) ».
Le caractère strict est important. Dans la plupart des cas, cela fonctionnera quand même,

mais si la configuration est plus grande que toutes celles du tableau, une inégalité large
conduirait à un accès au tableau en-dehors des configurations déjà enregistrées, et le
résultat pourrait donc être incorrect, car on ne sait alors pas ce que contient le tableau
dans cette case !

21. Toujours grâce à l’invariant, on peut écrire

if (plus_petit(t, atteignables[m], n)) {
fin = m; // On poursuit avec [debut .. m[

} else {
debut = m+1; // On poursuit avec [m+1 .. fin[

}

On notera ici la dissymétrie des deux conséquences, qui découle du fait que les bornes
debut et fin ne jouent pas exactement le même rôle dans l’invariant. On pourait s’en sortir
avec « debut = m », mais il faudrait sortir de la boucle plus tôt (lorsque fin-debutÉ 1) et
effectuer un dernier test hors de la boucle, donc en modifiant le code proposé.

22. Il y a une maladresse dans la rédaction du sujet. Les tableaux contenant les deux
files ont une longueur 2n si n désigne la longueur d’une file. Vu l’appel de inserer à la
question 23, c’est bien la longueur d’une file que l’on passe à la fonction, donc l’appel à
plus_petit doit avoir comme troisième paramètre 2n.

Seulement, la question précédente introduisait une fonction presente où les appels
à plus_petit et egales utilisaient n également. En toute rigueur, cela signifie que le n
paramètre de cette fonction n’est pas la longueur d’une file mais des deux files (et de t)
pour cette fonction. Même si rien n’empêche d’écrire les fonctions demandées de manière
corrècte avec ces hypothèses, c’est indéniablement maladroit de ma part, donc les erreurs
sur n vs 2*n n’ont pas été pénalisées.

On va procéder de la même façon que dans l’insertion d’un tri par insertion, en déplaçant
les éléments d’un cran vers la fin du tableau, en commençant par le dernier, tant qu’ils
sont plus grand que la configuration considérée :

void inserer(bool t[], int n) {
int i = nb_atteintes;
// On décale les éléments tant qu'ils sont plus grands que t
while (i>0 && plus_petit(t, atteignables[i-1], 2*n) { // 2*n ici !

atteignables[i] = atteignables[i-1];
}
atteignables[i] = t; // On place t dans le trou ainsi créé
nb_atteintes++; // On a ajouté une configuration dans le tableau

}

5

Exploration des configurations

23. Beaucoup de possibilités d’écriture pour cette exploration des configurations attei-
gnables. Notons que l’on retrouve la difficulté évoquée précédemment pour est_presente
(voir le commentaire). On peut par exemple écrire :

void explorer(bool t[], int n) {
// Quatre possibilités d'évolution à envisager
// 0) aj1=false, aj2=false
// 1) aj1=false, aj2=true
// 2) aj1=true, aj2=false
// 3) aj1=true, aj2=true
for (int i=0; i<4; ++i) {

bool aj1 = i>=2;
bool aj2 = i%2==1;

// Si c'est une évolution qui suit les règles
if (!(aj1 && t[0] || aj2 && t[n])) {

// On détermine la configuration suivante
bool* s = suivant(t, n, aj1, aj2);

// Et on regarde si elle est nouvelle
if (!est_presente(s, 2*n) { // 2*n pour respecter le sujet

inserer(s, n); // Si c'est le cas, on l'ajoute
explorer(s, n); // et on poursuit l'exploration

} else {
free(s); // Sinon, on libère la mémoire

}
}

}
}

24. Il y a un nombre fini de configurations possibles, or la fonction n’effectue un appel
récursif que si la configuration obtenue n’a pas déjà été observée. Le programme va donc
nécessairement se terminer.

3 Tri RADIX

1. C’est une classique décomposition en base b = 10, on peut par exemple écrire :

int digit(int p, int k) {
for (int i=0; i<k; ++i) {

p = p/10;
}
return p%10;

}

On évitera, dans la mesure du possible, de calculer 10k+1 qui pourrait déborder de la
capacité des entiers manipulés.

2. On alloue un tableau que l’on remplit de zéros, puis l’on compte :

int* count(int arr[], int n, int k) {
int* nb = malloc(10 * sizeof(int));
for (int i=0; i<10; ++i) { nb[i] = 0; } // Compteurs à 0
for (int i=0; i<n; ++i) {

int d = digit(arr[i], k); // Chiffre en pos. k de arr[i]
nb[d] = nb[d] + 1; // On incrémente le compteur

}
return nb;

}

3.a Lorsque l’on trie le tableau avec ⪯0, les nombres sont rangés par ordre croissant
de leur chiffre des unités, en conservant l’ordre original pour ceux partageant un même
chiffre des unités. Cela donne donc :

1 11 42 22 4 14 37 17 27 49 29 9arr

3.b Avec ⪯1, c’est le chiffre des dizaines qui est pris en compte, et on obtient :

1 9 4 11 17 14 29 22 27 37 49 42arr

4. Le tableau positions correspond exactement au tableau des sommes cumulées de
counts, à un décalage d’une case vers la droite près (et un zéro dans la première case) :

0 2 2 0 2 0 0 3 0 3counts

0 2 4 4 6 6 6 9 9 12cumsum

? 0 2 ? 4 ? ? 6 ? 97→ positions

6

Il devient alors simple de construire le tableau des positions :

int* positions(int arr[], int n, int k) {
int* pos = malloc(10 * sizeof(int));
int* cnt = counts(arr, n, k);
int sum = 0;
for(int i=0; i<10; ++i) {

int tmp = cnt[i];
pos[i] = sum;
sum = sum + tmp;

}
free(pos)
return pos;

}

On a choisi ici de créer un tableau pos recueillant les positions (on n’oubliera pas de
libérer le tableau retourné par l’appel à counts !) Mais on aurait très bien pu construire
directement pos dans cnt pour éviter une allocation :

int* positions(int arr[], int n, int k) {
int* cnt = counts(arr, n, k);
int sum = 0;
for(int i=0; i<10; ++i) {

int tmp = cnt[i];
cnt[i] = sum;
sum = sum + tmp;

}
return cnt;

}

5. On commence par appeler positions pour obtenir un tableau pos. On considère
ensuite tous les éléments arr[i] du tableau, dans l’ordre. Pour un chiffre d donné, le
premier nombre dont le chiffre en position k est d devra être placé en position pos[d], le
deuxième en position pos[d]+1, etc. On se contente donc d’incrémenter pos[d] à chaque
occurrence du chiffre d en position k, pour qu’à tout moment il contienne la position à
laquelle placer le prochain nombre dont le chiffre en position k est d.

On ne peut directement écrire le résultat directement dans le tableau arr car on risque-
rait d’écraser des nombres (et procéder par échanges n’est a priori pas adapté non plus
puisque l’on souhaite un tri stable). On utilise donc un tableau temporaire pour le résultat.

Cela donne :

void sort_by_digits(int arr[], int n, int k) {
int* pos = positions(arr, n, k);
int* tmp = malloc(n * sizeof(int));
for (int i=0; i<n; ++i) {

int d = digit(arr[i], k);
tmp[pos[d]] = arr[i];
pos[d] = pos[d] + 1;

}
for (int i=0; i<n; ++i) { arr[i] = tmp[i]; }
free(tmp);

}

6. Un nombre a doit se retrouver avant un nombre b si le premier chiffre (de la gauche
vers la droite) pour lequel les deux nombres diffèrent est plus petit dans le cas de a.

Il est ainsi possible de trier le tableau en effectuant une série de tris chiffres par chiffres
de la droite vers la gauche (donc k croissant de 0 à N−1). En effet, le tri sur le premier
chiffre pour lequel a et b diffèrent placera bien a avant b, et les tris ultérieurs, sur des
chiffres plus à gauche (et donc identiques), ne changeront plus l’ordre relatif de a et b car
les tris sont stables.

7. On applique la suggestion de la fonction précédente :

void sort(int arr[], int n, int N) {
for (int k=0; k<N; ++k) {

sort_by_digits(arr, n, k);
}

}

8. digit a une complexité enΘ (k), sort_by_digits a une complexité linéaire en la taille
du tableau et proportionnelle à k (Θ (k ×n)). Puisque l’on appelle sort_by_digits avec
tous les k de 0 à N−1, la fonction sort a donc en principe une complexité enΘ

(
N2 ×n

)
.

Dans la réalité, on utilisera des outils spécifiques pour obtenir les « chiffres » (décalages
de bits, opérations binaires) ce qui permettra d’obtenir les « chiffres » en O (1), et donc une
fonction sort en O (N×n).

N étant fixé et généralement petit (dans la pratique, on ne travaillera souvent pas en base
10 mais par exemple en base 256, ce qui donne N = 4 ou N = 8 en général), cela revient à
avoir un tri linéaire en la taille du tableau. Les performances excèdent fréquemment, pour
des tableaux de grande taille, les tris par comparaison les plus efficaces, dont la complexité
est quasi-linéaire O

(
n logn

)
! C’est donc un tri très utilisé, même s’il est limité à des types

pour lesquels on peut travailler avec la représentation binaire des éléments à trier.

7

� Résultats

0 1 2 3 4 5 6
0

5

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

2

4

6
0 1 2 3 4 5 6 7 8

0

5

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

2

4

6

Note : premier et troisième exercice sur la première ligne, second exercice sur la deuxième
ligne, et notes globales sur la dernière.

8

	Collection
	Circulation routière
	Préliminaires
	Déplacement de voitures dans la file
	Circulation à deux files
	Cases situées avant la case m

	Atteignabilité
	Évolution des configurations
	Gestion de la table des configurations atteintes
	Exploration des configurations

	Tri RADIX

