
Tri patience – écriture décimale de grands entiers

� Quelques remarques générales

Le sujet est constitué de deux problèmes indépendants. Les fonctions demandées
doivent être écrites dans le langage OCaml. On prendra bien soin à veiller à la lisibi-
lité du code proposé, en choisissant judicieusement les noms de variables utilisés, et en
assortissant les fonctions de commentaires ou d’explications brèves mais pertinentes
permettant de comprendre les choix effectués.

Vous pouvez introduire toutes les fonctions auxiliaires dont vous avez besoin. Vous pou-
vez également utiliser dans une question toutes les fonctions décrites dans les questions
précédentes du même problème, et ce même si vous n’avez pas réussi à en proposer une
implémentation.

Si d’aventure vous trouvez ce que vous pensez être une erreur dans le sujet, indiquez-le
sur votre copie, en précisant les choix que vous avez fait pour la contourner.

Précisons qu’à l’intérieur de chaque problème, les sections sont partiellement indépen-
dantes, et une section peut être abordée sans que vous soyez nécessairement parvenu à
traiter tout ou partie de la section précédente. En revanche, il sera utile de lire les parties
précédentes pour avoir connaissance des objets manipulés et des types qui les définissent,
ainsi que des fonctions dont vous pourriez avoir l’usage.

� Fonctions OCaml utiles

Vous pouvez, dans ce devoi, utiliser librement toutes les fonctions ne provenant pas
d’un module (fonctions ne contenant pas de « point » dans leur nom, plus les fonctions du
module List (qui débutent par « List. »).

On rappelle ci-après quelques-unes des fonctions les plus utiles sur les listes. Bien que
cela ne soit pas indispensable dans ce devoir, vous êtes libre d’utiliser d’autres fonctions si
cela vous semble utile, qu’elles aient été vues en cours ou non, sous réserve de le faire avec
soin et pertinence.

List.length : 'a list -> int

Renvoie le nombre d’éléments dans la liste fournie en argument. Cette fonction a
une complexité O (n) linéaire en la taille de la liste.

List.hd : 'a list -> 'a

Renvoie le premier élément de la liste fournie en argument. O (1).

List.tl : 'a list -> 'a

Renvoie la liste fournie en argument privée de son premier élément. O (1).

List.rev : 'a list -> 'a list

Retourne une nouvelle liste contenant les éléments de la liste fournie en argument
en ordre inverse.

List.mem : 'a -> 'a list -> bool

« List.mem x lst » renvoie un booléen indiquant si au moins un élément de la liste
lst est égal à x. Complexité dans le pire des cas linéaire en la taille de la liste (O (n)).

List.iter : ('a -> unit) -> 'a list -> unit

« List.iter f lst » exécute f ai successivement pour chacun des éléments ai de
la liste lst (dans l’ordre).

List.map : ('a -> 'b) -> 'a list -> 'b list

« List.map f lst » renvoie la liste [fa0; fa1; ...; fan−1] où les ai sont les élé-
ments de la liste lst. L’ordre d’évaluation des f ai n’est pas spécifiée.

1 Tri patience

1.1 Jeu de patience

Dans ce problème, nous allons nous intéresser à une méthode de tri originale, basée du
le principe des jeux de cartes de type « patience ». Dans un tel jeu, les cartes sont posées
sur la table en un ou plusieurs tas avec une règle simple : on ne peut poser une carte que
sur une carte de valeur plus grande (on peut poser un 6 sur un 9, mais pas un 9 sur un 6).
Attention, nous allons nous inspirer de ce jeu mais les détails pourront être légèrement
différents de la variante de jeu de cartes que vous pourriez connaître !

On souhaite trier des objets, par exemple des entiers 1, pouvant être comparés avec les
opérateurs de comparaison usuels tels que <=. Pour y parvenir, dans un premier temps,
nous allons considérer les éléments un par un et les placer selon des règles inspirées du
jeu de patience :

• initialement, il n’y a aucun tas ;
• lorsque l’on considère un élément x, deux cas peuvent se présenter :

— si x est inférieur ou égal à au moins un des éléments au sommet d’un des tas
existants, alors on place x au-dessus du tas le plus à gauche qui remplit cette
condition;

— si x est strictement plus grand que l’ensemble des éléments au sommet de
chacun des tas, alors on crée un nouveau tas, à droite des tas existants, dans

1. Dans la suite, on supposera dans les fonctions que les objets sont de type 'a, mais les exemples utiliseront
des entiers

1

lesquels on place x (en particulier, le premier élément sera nécessairement placé
sur un nouveau tas).

Prenons un exemple : on suppose qu’il y a, à un instant donné, trois tas. De gauche à
droite :

• un premier tas, dont les cartes de bas en haut sont 54, 37, 22 et 11 ;
• un second tas, dont les cartes de bas en haut sont 42 et 17 ;
• un troisième tas, dont les cartes de bas en haut sont 78, 59 et 29.

11

22

37

54

17

42

29

59

78

Si l’élément suivant considéré était x = 7, il serait plus petit que les éléments 11, 17 et 29
au sommet de chacun des tas. On pourrait donc le placer au-dessus de n’importe lequel de
ces tas, et on choisirait alors le plus à gauche : il se placerait au-dessus du 11.

Si c’était x = 14, il est plus grand que 11 mais plus petit que 17 et 29, donc il faudrait le
placer sur le tas central, par-dessus le 17.

Si c’était x = 31, il est plus grand que les éléments au sommet de chacun des tas, il
conviendrait alors de créer un quatrième tas tout à droite pour y placer cet élément 31.

1. On suppose qu’initialement il n’y a aucun tas, et on considère les dix éléments suivants,
dans cet ordre : 5, 3, 7, 4, 2, 9, 6, 8, 0 et 1 (le 5 étant donc le premier élément placé, dans
un tout nouveau premier tas). Dessiner le résultat obtenu si l’on suit les règles énoncées
précédemment.

Pour représenter l’état du « jeu » à un instant donné, on utilise une liste de listes (non
vides) d’éléments. Chaque liste à l’intérieur de la liste de liste représente un tas, les tas
étant considérés de gauche à droite. L’élément en tête de ces listes (à gauche) est le sommet
du tas, celui à droite le fond du tas. L’état du jeu tel que décrit précédemment est donc
représenté par la liste de listes :

[[11; 22; 37; 54]; [17; 42]; [29; 59; 78]]

2. Proposer une fonction add de type 'a -> 'a list list -> 'a list list qui
prend un élément x et une liste de listes représentant l’état du jeu, et retourne une liste de
listes représentant l’état du jeu après avoir posé x selon les règles. Par exemple, en accord
avec les explications précédentes,

• « add 7 [[11; 22; 37; 54]; [17; 42]; [29; 59; 78]] » devra renvoyer la
liste de listes [[7; 11; 22; 37; 54]; [17; 42]; [29; 59; 78]]

• « add 14 [[11; 22; 37; 54]; [17; 42]; [29; 59; 78]] » devra renvoyer la
liste de listes [[11; 22; 37; 54]; [14; 17; 42]; [29; 59; 78]]

• « add 31 [[11; 22; 37; 54]; [17; 42]; [29; 59; 78]] » devra renvoyer la

liste de listes [[11; 22; 37; 54]; [17; 42]; [29; 59; 78]; [31]]

3. En déduire une fonction play de type 'a list -> 'a list list prenant en argu-
ment une liste [x0; x1; x2; . . . ; xn−1] de n éléments xi , plaçant ces éléments un par un suivant
les règles précédentes, en considérant ces éléments de gauche à droite (d’abord x0, puis x1,
etc.) et renvoyant la liste de listes correspondant à l’état du jeu une fois tous les éléments
posés.

4. Justifier soigneusement que, si l’on part d’aucun tas et que l’on suit les règles, à tout
moment, les éléments au sommet des tas, pris de la gauche vers la droite (11, 17 et 29 sur
l’exemple initial) sont toujours rangés dans un ordre croissant. Est-ce un ordre strictement
croissant ou croissant au sens large ?

5. Toujours en supposant que l’on part d’aucun tas et que l’on place les n éléments,
un par un, combien de tas peut-il y avoir à la fin? Proposer un ordre pour n éléments xi

donnant le nombre minimal de tas, et un ordre pour n éléments xi donnant le nombre
maximal de tas.

Note : on peut montrer que l’espérance du nombre de tas une fois tous les éléments posés,
si les éléments sont tous distincts et dans un ordre parfaitement aléatoire, est

p
n.

6. Quelle est la complexité temporelle dans le pire des cas pour play pour une liste à n
éléments ? La complexité dans le meilleur des cas ?

1.2 Obtenir un tri

À l’issue de la patience, nous avons déjà montré que le plus petit élément se trouvait
au sommet du tas le plus à gauche. Si l’on veut trier les éléments par ordre croissant, cet
élément devra se trouver en première position de la liste triée.

7. Proposer une fonction smallest de signature 'a list list -> 'a prenant en ar-
gument une liste de listes représentant les tas (on suppose qu’il y a au moins un tas, et
qu’aucun tas n’est vide) et retourne l’élément situé au sommet du tas le plus à gauche.

Pour la suite, il nous faudra enlever cet élément situé au sommet de la première pile.
Cependant, aucun tas ne doit jamais être vide. Si l’élément retiré était l’unique élément du
tas de gauche, on décale chacun des autres tas d’un cran vers la gauche pour ne pas laisser
de « trou ». Sinon, les tas restent en place :

11

22

37

54

17

42

29

59

78 →

22

37

54

17

42

29

59

78

8. Proposer une fonction remove de signature 'a list list -> 'a list list pre-
nant en argument une liste de listes représentant l’ensemble des tas, retirant l’élément
au sommet du tas le plus à gauche et renvoyant la liste de listes décrivant l’état après le

2

retrait. La liste de listes ainsi renvoyée ne doit pas contenir de liste vide (la liste fournie
n’en contenait pas).

Bien évidemment, après avoir retiré l’élément au sommet du tas le plus à gauche, on
n’a plus la garantie que les éléments aux sommets de chacun des tas demeurent rangés
par ordre croissant. On souhaite rétablir cette propriété. Pour ce faire, on va prendre le
tas le plus à gauche, et opérer une insertion de ce tas dans la liste des autres tas (dont les
éléments au sommets sont encore rangés par ordre croissant), de façon identique à une
insertion dans un tri par insertion. On ne comparera les tas qu’en fonction de l’élément à
leur sommet (on rappelle qu’aucun tas n’est vide).

22

37

54

17

42

29

59

78 →

22

37

54

17

42

29

59

78

9. Coder une fonction insertde signature 'a list -> 'a list list -> 'a list list
prenant en argument un tas et une liste de tas (triés par ordre croissant
des éléments à leur sommet), et insérant le premier tas dans la liste des tas
en un temps linéaire en le nombre de tas. Par exemple, comme illustré ci-
dessus, « insert [22; 37; 54] [[17; 42]; [29; 59; 78]] » devra renvoyer
[[17; 42]; [22; 37; 54]; [29; 59; 78]]

Après un appel à la fonction remove suivi d’un appel à la fonction insert, on retrouve
tous les éléments, à l’exception du plus petit élément que l’on a extrait, dans un ensemble
de tas dont les sommets sont triés par ordre croissant. En particulier, le second plus petit
élément se trouve à présent au sommet du tas le plus à gauche.

10. En déduire une fonction sort de signature 'a list -> 'a list qui utilise les
éléments précédents (play, smallest, remove, insert) afin de prendre en argument une
liste et de retourner une liste dans laquelle les éléments ont été triés par ordre croissant.

11. Quelle est la complexité, dans le pire cas, de la fonction sort?

12. Le tri est-il stable ? On justifiera la réponse.

1.3 Sous-séquences strictement croissantes

Le principe de la patience permet d’obtenir un autre résultat intéressant sur les listes.

Une sous-séquence strictement croissante de longueur p d’une liste [x0; x1; x2; . . . ; xn−1]

est une liste
[

xφ(0); xφ(1); . . . ; xφ(p−1)

]
où φ est une fonction croissante de �0 . . p −1� dans

�0 . . n −1� vérifiant, pour tout 0 < i < p, xφ(i) > x(i−1).

Par exemple, pour la liste [5;3;7;4;2;9;6;8;0;1], la fonction φ de �0 . . 2� dans �0 . . 9�
définie par φ(0) = 1, φ(1) = 3 et φ(2) = 7 définit la sous-séquence croissante [3;4;8].

Une sous-séquence strictement croissante d’une liste donnée est dite de longueur maxi-

male s’il n’existe pas, pour la même liste, de sous-séquence strictement croissante de
longueur strictement plus grande.

13. Montrer que le la longueur des sous-séquences strictement croissantes de longueur
maximale est liée au nombre de tas obtenus lorsque l’on a appliqué, sur la liste, les règles
précédentes.

14. En déduire la longueur maximale des sous-séquences strictement croissantes pour
la liste [5;3;7;4;2;9;6;8;0;1], et exhiber une sous-séquence strictement croissante de lon-
gueur maximale.

15. Expliquer précisément comment, à partir de l’ensemble des tas obtenu avec la
patience, on peut construire une telle sous-séquence croissante de longueur maximale.

16. Proposer une fonction long_incr_subseq de signature 'a list -> 'a list, pre-
nant en argument une liste d’éléments et retournant une sous-séquence strictement
croissante de longueur maximale, en utilisant la fonction play et les idées exposées à la
question précédente.

2 Grands entiers

2.1 Introduction

Il est fréquent de croiser des problèmes de mathématiques faisant intervenir de (très)
grands entiers. Par exemple, on peut vouloir savoir combien de zéros se trouvent à l’extré-
mité droite de l’écriture décimale de 2024! (ou ! représente la fonction factorielle), ou bien
combien de fois le chiffre 7 s’y trouve.

On peut parfois y répondre avec des critères arithmétiques, mais de temps en temps, il
faudra pouvoir écrire le nombre en entier. Bien évidemment, il n’est pas question d’utiliser
des entiers OCaml pour les calculs car ces nombres sont bien plus grands que max_int !

Considérons la première question : combien de zéros se trouvent à droite de l’écriture
décimale de 2024!? Pour illustrer le problème, prenons le cas plus simple de 42!. Son
écriture décimale est :

1405006117752879898543142606244511569936384000000000

Le nombre de zéros recherché est donc 9.

Soit n un entier strictement positif, et d un entier strictement positif. Il existe un unique
couple d’entiers naturels

(
i , p

)
tel que n = d i ×p où p ne divise pas n.

Par exemple, pour n = 42 et d = 3, on a i = 1 et r = 14 (42 = 31 ×14). Pourn = 54 et d = 3,
on a i = 3 et p = 2 (54 = 33 ×2).

1. Proposer une fonction exponent de signature int -> int -> int telle que
« exponent d n » renvoie i, tel que défini précédemment.

3

On définit une fonction récursive foo par :

let rec foo d = function
| 0 -> 0
| n -> exponent d n + foo d (n-1)

2. Préciser la signature de foo.

3. Justifier que l’on peut, à partir de cette fonction foo, construire une fonction nb_zeros
de signature int -> int prenant en argument un entier n > 0 et renvoyant le nombre de
zéros à droite de l’écriture décimale de n, et proposer une telle fonction.

4. Cette fonction est relativement coûteuse en terme de calculs. Proposer une autre
fonction nb_zeros_bis réalisant la même opération mais avec une complexité moindre.

2.2 Grands entiers

Malheureusement, il n’est pas toujours possible d’utiliser des raisonnements arithmé-
tique pour parvenir aux résultats. Dans la suite, nous allons mettre en place une solu-
tion pour manipuler des entiers de taille arbitraire (possiblement bien plus grands que
int_max). Il est possible, pour ce faire, d’utiliser des chaînes de caractères. Nous allons
utiliser ici une approche différente.

Soit m = 10c une puissance de dix (avec c entier strictement positif). Pour tout entier
n > 0, on peut trouver un unique ensemble de p coefficients (ai)i∈�0. .p−1� vérifiant :

• n =∑p−1
k=0 ai Mi = ap−1 ×mp−1 + . . .+a2 ×m2 +a1 ×m +a0 ;

• pour tout 0 É i < p, ai ∈ �0 . . m −1� ;
• ap−1 ̸= 0.

Par exemple, si m = 100 (c = 2), l’entier n = 1234567 s’écrit 1×m3+23×m2+45×m+67.

Ce qui donne [a0 = 67; a1 = 45; a2 = 23; a3 = 1].

Pour représenter un tel entier n en OCaml, on utilisera donc une liste de coefficients ai ,
rangés par i croissants. L’entier n sera ainsi représenté par la liste OCaml [67; 45; 23; 1].
Comme il n’y a pas de limitations quant à la taille des listes en OCaml (hors capacité
mémoire), il n’y a pas de limite à la taille des entiers que l’on pourra ainsi manipuler.
L’entier 42! présenté tantôt par exemple sera représenté (toujours si m = 100) par

[00; 00; 00; 40; 38; 36; 99; 56; 11; 45; 24; 06; 26; 14; 43; 85;
89; 79; 28; 75; 17; 61; 00; 05; 14]

On peut définir un type « grands entiers naturels » par :

type big_nat = int list

Notons que ce type sera utiliser pour clarifier les signatures dans la suite du sujet, mais les

grands entiers naturels ne sont que des int list ! On imposera les contraites suivantes
sur les objets de type big_nat : tous les entiers dans la listes sont positifs et strictement
inférieurs à m, le dernier entier étant, en plus, non nul. Vous pouvez supposer que ces
conditions sont toujours vérifiées pour les arguments des fonctions que vous écrivez (il
n’est pas nécessaire de le vérifier). Tous les résultats de vos fonctions doivent impérative-
ment respecter ces mêmes conditions, ce qui peut nécessiter beaucoup de précautions
dans l’écriture de vos fonctions.

L’entier m a préalablement été défini dans OCaml, par une définition telle que

let m = 100

Vous pouvez vous servir de m dans n’importe laquelle de vos fonctions. On ne connaît pas
la valeur exacte de m (mais on sait que c’est une puissance de dix supérieure ou égale à dix),
aussi les fonction à écrire ne doivent pas faire d’hypothèse sur cette valeur (en particulier,
on ne sait pas si m = 100 !). La seule chose que l’on garantit est que l’on choisira m de sorte
que m2 Émax_int (le produit de deux entiers inférieurs à m ne débordera jamais).

Pour représenter l’entier 0, on utilisera une liste vide. Cela nous permettra donc de
représenter n’importe quel entier naturel.

5. Proposer une fonction convert de signature int -> big_nat (en d’autres termes,
une fonction de signature int -> int list) prenant en argument un entier OCaml et
renvoyant le « grand entier naturel » correspondant, soit une liste d’entiers le représen-
tant dans le format précédemment décrit. Par exemple, convert 1234567 doit renvoyer
[67; 45; 23; 1] si m= 100, ou [567; 234; 1] si m= 1000, ou bien encore [1234567] si
m = 1000000000.

6. Proposer une fonction inc de signature big_nat -> big_nat prenant en argu-
ment un grand entier naturel n et renvoyant le grand entier naturel n +1. Par exemple,
« inc [34; 12] » doit renvoyer « [35; 12] » (puisque 1234+1 = 1235). On attend une
complexité linéaire en la longueur de la liste passée en argument.

7. Proposer une fonction add de signature big_nat -> big_nat -> big_nat telle que
« add a b » renvoie un grand entier naturel correspondant à la somme de a et b. Par
exemple, « add [34; 12] [87; 10; 5] » devra renvoyer « [21; 23; 5] » puisque 1234+
51087 = 52321. On attend une complexité linéaire en la longeur des deux listes. On pourra
s’inspirer de la façon de poser les additions apprise en primaire !

8. Proposer une fonction dec de signature big_nat -> big_nat prenant en argument
un grand entier naturel n et retournant le grand entier naturel n −1 si n est non nul, et
déclenchera une erreur si n est nul (puisque de toute façon −1 n’est pas représentable).
On attend une complexité linéaire en la longueur de la liste passée en argument.

9. Proposer une fonction sub de signature big_nat -> big_nat -> big_nat telle que
« sub a b » renvoie un grand entier naturel correspondant à a − b si a Ê b, et déclen-
chera une erreur sinon. Par exemple, « add [21; 23; 5] [87; 10; 5] » devra renvoyer

4

« [34; 12] » puisque 52321−51087 = 1234, tandis que « add [87; 10; 5] [21; 23; 5] »
déclenchera une erreur. On attend une complexité linéaire en la longeur des deux listes.

10. Proposer une fonction cmp de signature big_nat -> big_nat -> bool telle que
« cmp a b » retourne true si le grand entier naturel a est supérieur ou égal au grand entier
naturel b, et false sinon.

2.3 Multiplications

Afin de pouvoir calculer une factorielle, on ne peut se contenter de sommes et de
différences, il nous faudra des multiplications. Nous allons proposer ici un algorithme
plus efficace que l’algorithme élémentaire vu en primaire, et utilisé par de nombreuses
applications (dans une légère variante), par exemple par le langage Python pour effectuer
ses multiplications entières.

Soit n et p deux entiers dont on souhaite connaître le produit. On suppose que l’on
connaît un entier c tel que n < m2c et p < m2c . On peut décomposer n et p en :

n = n1 ×mc +n0 et p = p1 ×mc +p0

où n0, n1, p0 et p1 sont des entiers dans �0 . . mc −1� (pour que cela ait un intérêt, il faut
que n1 ou p1 au moins soit non nul).

Soit q = n ×p. On a naturellement

q = n1p1 ×m2c + (
n1p0 +p1n0

)×mc +n0p0

On pose q2 = n1p1, q1 = n1p0 +p1n0 et q0 = n0p0.

11. Donner trois encadrements précis des valeurs possibles pour q0, q1 et q2.

12. Montrer que l’on peut calculer le coefficient q1 à partir de q0, q2 et du produit
qk = (n1 +n0)

(
p1 +p0

)
, ce qui permet d’économiser une multiplication.

13. Considérons un grand entier naturel n non nul. Comment déterminer, à partir de sa
représentation sous forme de liste d’entiers

[
a0; a1; . . . ap−1

]
, le plus petit c tel que n < m2c ?

14. Soit un c > 0 tel que n < m2c . Proposer une fonction split de signature
int -> big_nat -> big_nat * big_nat prenant en argument c et n, et retournant le
couple (n0,n1) tel que décrit précédemment.

15. Soit un c > 0, proposer une fonction pow de signature int -> big_nat -> big_nat
prenant en argument c et un grand entier naturel q et retournant un grand entier naturel
représentant q ×mc .

Pour construire une fonction mul récursive permettant de multiplier deux grands entiers
naturels n et p, on procède de la façon suivante :

• si n = 0 ou p = 0, le résultat est 0 ;

• si n < m et p < m, on calcule directement n × p grâce à la multiplication entière
OCaml (on sait que cela ne peut pas déborder) et on retourne le résultat sous forme
de grand entier naturel ;

• sinon, on détermine le plus petit c vérifiant n < m2c et p < m2c puis
— on détermine les grands entiers naturels n0, n1, p0 et p1 ;
— on utilise la fonction mul (appel récursif) pour calculer q0 et q2 (un appel récursif

pour chaque terme)
— on utilise les fonctions add et sub, ainsi qu’un unique appel récursif à mul pour

calculer q1

— on calcule q = q2m2c +q1mc +q0 (sans appel à mul) et on retourne le résultat.

16. Proposer une implémentation de la fonction mul. On prendra soin de la rendre aussi
lisible que possible, en faisant clairement apparaître les étapes précédemmen décrites.

L’algorithme de multiplication proposé ici est une variante d’un algorithme développé
par Anatolii Alexevich Karatsuba en 1960 (l’algorithme original utilise le produit q ′

k =
(n1 −n0)

(
p1 −p0

)
plutôt que qk car il évite des problèmes de retenues ce qui le rend un

peu plus efficace, mais nécessite de pouvoir travailler avec des valeurs négatives). Comme
il n’effectue que trois appels récursifs, il permet de multiplier deux nombres de n chiffres
avec une complexité que l’on peut établir en O

(
nlog2 3

)
, soit environ O

(
n1.585

)
, ce qui est

plus efficace que l’algorithme usuel appris en primaire qui nécessite O
(
n2

)
opérations.

2.4 Retour à notre problème

Rappelons que l’on dispose de fonctions inc et dec (big_nat -> big_nat) incré-
mentant et décrémentant un grand entier naturel, de fonctions add, sub et mul
(big_nat -> big_nat -> big_nat) pour respectivement additionner, soustraire (sous
réserve que le résultat soit positif) et multiplier deux grands entiers naturels, ainsi que
d’une fonction convert (int -> big_nat) convertissant un entier OCaml en grand entier
naturel.

17. Proposer une fonction fact de signature int -> big_nat qui prend en argument
un entier OCaml n et renvoie un grand entier OCaml correspondant à sa factorielle (n!).
Notons que l’argument est un entier OCaml car la factorielle d’un entier n plus grand que
max_int demanderait de toute façon un temps considérable... en revanche, le résultat est
un grand entier naturel, car n! devient très vite très grand.

18. Écrire une fonction count7_int de signature int -> int prenant en argument un
entier n et retournant le nombre de fois où le chiffre 7 apparaît dans son écriture décimale.

19. En déduire une fonction count7_big_nat de signature int -> int prenant en
argument un grand entier naturel et retournant le nombre de fois où le chiffre 7 apparaît
dans son écriture décimale.

Un appel à count7_big_nat (fact 7) donnera donc le résultat attendu, soit 560 appa-
ritions du chiffre 7 dans 2024!. Il s’agit du troisième chiffre le plus fréquent dans l’écriture

5

décimale de 2024! après 0 et 6. C’est le chiffre 8 qui est le moins fréquent.

Si vous souhaitez vous en assurer par vous-même, voici ce que donne
List.iter (Printf.printf "%02d") (List.rev (fact 2024)) :

096460263446214926398052510226199790985387375890482144645958649662683760332267733851014700524912253548340662740320758479550870462950710541210
114256001203182619263078629977074321149302129154405032365449154188462564858837516772284331365982120543656814786353914637906013049028747757418
468322100672789667066615730603260622636356924703793570147797993547131319496078642460357268197320658715622239390607891890157067706779145414956
041673814738203466315647965131970045671578384728387034156940073715727760635796459029118365934356032352238846225237932063700491663741277148122
314527601584468737005048850304365143852284226398767699879623342462578604695003134417114511687579285325536111016330996051300430871823003300593
014037164050826913277309566027356198779759767471021235541114195745288538647903013893833047467824459181563503369617909095343580165374951232118
241306712347773406307741857691232291418296597635490315797583646305781206685022046282766171508495821464150090251539167261484286896838712372481
489179238671912921505425770425261838605845665267197913407862278426528965985262820287731333301834025228633658812081367908816946990403092581520
368143708743318721729876347356246608416500374753079055650483048841837841272676761906889614021097105058824428338117160941127604244793186458604
455458655855760284940836429035363285093069104770759612580379843158660083446728086708133990983975041486268208785796843904663516388627125424952
446270411395704547335095407764477860622896995399908272496176968841783028738879544837609111725719047908817535980555841792961912422299256008787
099560572736469484472140982528510846150405840394623051150713710139066160430076136827022902435938593216037851285916641113526569137590288035463
029188735503390387933570891442115703224772415188779452622347534612940438705275793091930118457661532044066216053077061323375063554502324441642
457713740797458137782640263894891437878719137517691674898243217907030052090651895959851365405298671480924162321147046796694677054397147498070
712453156890108384584358580265353992385521371145826722799820719004101463058033901430318180130801337514207158854542194919566082406442863543746
866656424021960047307368000744354780317387999837309858987677677959957279356172826336630730837323771120357227016914987025978955136473245173531
097963984531930577847028441640813733886027143532735999162462242038297685895984915613932408092434650318700698380533398518906470316456602515334
125462072418898731409870680787148504689404265007175682907169143845077023595655250658192625492399236394999201807715962383951305372597882305079
585087638237380004739008416055980046042118667621966903020005762139041623609677497482146787787738293353337297066592878840807644462089512162439
136060854117196665411084506914787670057258645773079736657396686377931128544145435371891020871659295259982415054583878772459479843332097799936
729583810631337670102579822411981740356555198768792466787602627645578114690649614212348075407594868695855763666912895052482541865676073732669
042067494726792747850583323116032353918882002490065044155978237129773743603155820199223204882116656736747111422652649209273980801098703605759
204622910794369264653030236748756291763620302590371784026985332599997367433875265659080040077152601759240871276233406871274350853410219568093
767375976127953629845616455683239280615130379286000760813973852900564593812266820187863395431097371783494563671201953944142330268858140344898
735585756278188877839171671493534189114189679449554976777562547563108504968274014247805902294529075583416555296085730470356715305956760172527
415316186764650735860044943360657786375599873289325712969497717130929173036731039449145274815347613243666977166204109166005976179310579009128
539821915882710350325776845339552716966255844588879664165153164153827514210901809995515559486766671101078101531513311801373936292021813735381
196243942297450745397435147879414647193078511495554993310622021078013091740934850152455573649186325957660632319869252402791470598653390306887
894852248070332628105353063922183216232919901134163999402264720594000857685009006040029523861996386611235492875281695009666270112797583066665
057895327219529917476129777724071932350220765394894460623491343073050058216284275288898554404328442029414047970909651638752791209191449425594
159523459087717092120743627374610950326654324252695481098366716196320802715867689629315830690741076887639684759622975986646949655510885584694
109829985947537285233037538613498658508631226256762725088159265473395847060711299199162105091802668504461157646761834566119728197110872011264
553459513684188962639697997320808885412134945451749587992912262128293557070253362395549676231971874917943424068104940911070940868082868088034
096112180442971490795781014612598692147147243075823336234834088234839597756376235869995100458920914695331966917746666038260298092121095220423
679022285922587343720244626345153811302436933869428379545911580507809347967495313228726046882885223181937169874192323779368275275109949715105
777563253843729918009577959954109635038804929138520764601411956695355529840492279367480699758280223801472150926013056644956096265827149090487
666820574934221633725217216349569648398577491166685908593117644512856291566656982001106010901794771100669396016835980126069291747128095059661
750752642882866976592518192216401684919729155766103509296572269050886762185554798202457779129548800
000
000
000
000000000000000000000000000000000000

6

	Tri patience
	Jeu de patience
	Obtenir un tri
	Sous-séquences strictement croissantes

	Grands entiers
	Introduction
	Grands entiers
	Multiplications
	Retour à notre problème

