
Tri patience – écriture décimale de grands entiers – Corrigé

1 Tri patience

1.1 Jeu de patience

1. On obtient le résultat suivant :

0

2

3

5

1

4

7

6

9 8

2. Par exemple :

let rec add x = function
| [] -> [[x]]
| h::t when List.hd h >= x -> (x::h)::t
| h::t -> h::add x t

3. De très nombreuses possibilitées, par exemple :

let play lst =
let rec itere = function
| [] -> []
| h::t -> add h (itere t)

in itere (List.rev lst)

let play lst =
let rec itere etat = function
| [] -> etat
| h::t -> itere (add h etat) t

in itere [] lst

let play lst =
List.fold_left (fun etat x -> add x etat) [] lst

4. Cet invariant est vrai initialement (pas de tas) et après la dépose du premier élément
(un seul tas, donc nécessairement trié).

Considérons que l’invariant est vrai à un instant donné et que l’on cherche à déposer x.
• Si l’on dépose x sur un nouveau tas à droite, c’est qu’il est strictement plus grand que

tous les sommets de tous les tas, donc en particulier plus grand que le sommet du

dernier tas, aussi l’invariant reste vrai ;
• Si l’on dépose x sur un tas existant, comme on cherche à le déposer le plus à gauche

possible, c’est que l’élément au sommet du tas immédiatement à sa gauche si un
tel tas existe est strictement plus petit ; de même, l’élément du tas immédiatement
à sa droite s’il existe était strictement plus grand que l’élément sous x, lui-même
supérieur ou égal à x, donc l’invariant reste vrai également.

Les éléments au sommet des tas sont donc rangés dans un ordre croissant strict.

5. Il peut n’y avoir à la fin qu’un seul tas (les éléments sont considérés par ordre décrois-
sant) ou jusque n tas (les éléments sont triés par ordre croissant).

6. Le pire cas arrive lorsque x est systématiquement placé sur un nouveau tas tout à
droite, car il faut parcourir la liste de tous les tas pour vérifier qu’il est plus grand que
chacun des sommets. La complexité est alors quadratique en le nombre n d’éléments,
O

(
n2

)
.

Le meilleur cas arrive lorsque l’on peut systématiquement poser x sur le premier tas, ce
qui donne une complexité linéaire O (n).

1.2 Obtenir un tri

7. On souhaite simplement le sommet du premier tas, donc la tête de la tête de l’argu-
ment :

let smallest lst =
List.hd (List.hd lst)

On peut également utiliser un filtrage :

let smallest = function
| (h::_)::_ -> h
| _ -> failwith "cas impossible"

8. Il faut bien distinguer deux cas : si le premier tas n’a qu’un élément, on souhaite ne
garder que la queue de la listes de listes (car après avoir retiré cet élément, on ne peut
pas garder un tas vide). S’il y a au moins deux éléments dans le premier tas, on retire
simplement la tête de la première liste. Par exemple :

let remove = function
| (h1::h2::t)::ts -> (h2::t)::ts
| lst -> List.tl lst

1

9. Il s’agit de la fonction vue en cours, avec une simple adaptation sur la comparaison
(on compare les têtes des éléments) :

let rec insert stack lst = match lst with
| [] -> [stack]
| h::t when List.hd h < List.hd stack -> h::insert stack t
| lst -> stack::lst

10. Reste à mettre tous les éléments en place. On commence par construire les tas avec
les règles de la patience, puis tant qu’il reste des tas, on prend le plus petit élément que
l’on place en tête, on le retire, et s’il reste des éléments, on insère le premier tas dans le
reste (même si ce n’est pas le tas d’où vient l’élément retiré, ça n’a pas d’importance), et on
poursuit. Par exemple :

let sort lst =
let stacks = play lst in
let rec reconstruct = function
| [] -> []
| lst -> smallest lst :: (match remove lst with

| h::t -> reconstruct (insert h t)
| [] -> [])

in reconstruct stacks

11. Après une première partie de complexité quadratique dans le pire cas, l’obtention
d’un plus petit élément est en O (1), son retrait en O (1), l’insertion d’un tas dans une liste
de tas sera en O (n). Comme il y a n éléments à retirer, dans le pire des cas, la seconde
partie de l’algorithme a un coût quadratique (O

(
n2

)
), comme la première. La fonction

sort a donc une complexité quadratique dans le pire cas.

12. Le tri n’est pas stable. En effet, si l’on a par exemple deux éléments égaux qui
apparaissent consécutivement dans la liste, la patience placera le second au-dessus du
premier. Lorsque l’on extraiera les éléments, le second élément ressortira donc avant le
premier, et sera placé avant lui dans la liste triée.

1.3 Sous-séquences strictement croissantes

13. La longueur des plus longues sous-séquences strictement croissantes est égale au
nombre de tas. Pour le montrer, on va justifier qu’à tout instant, la longueur de la plus
longue sous-séquence croissante dans les k premiers éléments (ceux déjà posés) est égale
au nombre de tas à cet instant.

Initialement, lorsqu’aucun élément n’a été posé, c’est vrai (sous-séquence de longueur
nulle). De même, après la pose du premier élément, la plus longue sous-séquence crois-
sante est réduite à ce seul élément.

(fin de la preuve en cours de clarification)

14. Puisque l’on a obtenu quatre tas avec la patience, les plus longues sous-séquences
strictement croissantes sont de longueur 4. Il n’en existe en fait qu’une, [3;4;6;8].

15. Pour construire une sous-séquence de longueur maximale, on prend pour élément
yp−1 le plus bas de la dernière pile, puis, parmi les éléments de l’avant dernière pile le plus
grand des éléments strictement inférieurs à yp−1 (on a la garantie qu’il a été posé avant yp ,
car s’il n’était pas encore posé, yp n’aurait pas été posé dans la dernière pile), et ainsi de
suite de droite à gauche.

16. On commence par définir deux fonctions, l’une donnant le dernier élément d’une
liste, l’autre l’élément le plus loin dans une liste croissante strictement inférieur à son
premier argument :

let rec last = function
| [] -> failwith "vide"
| [h] -> h
| _::t -> last t

let rec last_under v = function
| h1::h2::t when h2 < v -> last_under v (h2::t)
| lst -> List.hd lst

Ceci fait, on peut appliquer l’idée de la question précédente :

let rec long_incr_subseq lst =
let stacks = play lst in
let rec reconstruct = function
| [] -> []
| [h] -> [last h]
| h::t -> let lst = reconstruct t in

last_under (List.hd lst) h :: lst
in reconstruct stacks

2 Grands entiers

2.1 Introduction

1. On divise n par d tant que d est un diviseur de n, en comptant les itérations. Sous la
forme d’une fonction récursive, cela donne par exemple :

2

let rec exponent d n =
if n mod d <> 0 then 0

else 1 + exponent d (n/d)

2. foo prend un entier d puis, au travers de fonction, un second entier n, et retourne
un entier. On a donc une fonction de signature int -> int -> int.

3. La fonction foo d n compte les i tels que définis précédemment pour tous les entiers
de 1 à n. Pour connaître le nombre de zéros à droite dans l’écriture décimale de n!, il faut
et suffit de savoir combien de fois on peut diviser n! par 5 (car la multiplicité de 2 dans n!
est forcément supérieure à celle de 5, et le seul moyen d’avoir un facteur 10, causant un
zéro à droite dans l’écriture décimale, est 2×5).

foo 5 n donne donc très exactement le nombre de zéros recherché, donc simplement :

let nb_zeros n = foo 5 n

4. On peut déterminer la multiplicité de 5 dans n! plus rapidement : elle correspond à⌊n

5

⌋
+

⌊ n

52

⌋
+

⌊ n

53

⌋
+ . . .

On peut donc écrire

let nb_zeros n =
let rec itere k =
if k>n then 0

else n/k + itere (5*k)
in itere 5

2.2 Grands entiers

5. C’est simplement une conversion d’un entier n en base m, en représentant ses chiffres
sous forme d’une liste. On retrouve donc une fonction similaire à celles vues en cours :

let rec convert n =
if n = 0 then [] else
if n < m then [n] else
n mod m :: convert (n/m)

6. Une fois le cas de 0 traité, on envisage simplement d’incrémenter la tête de la liste.
Mais elle doit rester strictement inférieure à m, donc si après l’incrémentation on atteint
m, on place un 0 en tête et on incrémente la suite. Il s’agit simplement du principe de la
retenue !

let rec inc = function
| [] -> [1]
| h::t when h = m-1 -> 0::inc t
| h::t -> h+1::t

7. Même chose, on pose l’addition comme vu en primaire : on additionne les chiffres de
poids faible, et si leur somme dépasse m, on utilise une retenue (et on peut utiliser inc
pour cela) :

let rec add a b = match a, b with
| [], _ -> b
| _, [] -> a
| ha::ta, hb::tb -> let s = ha + hb in

if s < m then s :: add ta tb
else s mod m::inc (add ta tb)

8. On cherche à décrémenter la tête. Si elle atteint 0, on décrémentera récursivement la
queue. Mais attention, dec présente une difficulté supplémentaire : si la tête atteint 0, on
doit impérativement vérifier que la queue n’est pas vide : en effet, dec [1] doit retourner
[] et non [0] ! Il y a donc pas mal de cas à considérer :

let rec dec = function
| [] -> failwith "résultat négatif !"
| [1] -> []
| 0::t -> m-1::dec t
| h::t -> h-1::t

9. Même chose, on implémente l’algorithme du primaire, en utilisant dec pour les
éventuelles retenues. Là aussi, si les deux chiffres de poids faible sont égaux, il y a des
risques de se retrouver avec des 0 à l’extrémité droite de la liste, ce qui est interdit. On peut
par exemple écrire :

let rec sub a b = match a, b with
| _, [] -> a
| [], _ -> failwith "négatif sub"
| ha::ta, hb::tb when ha > hb -> ha-hb::sub ta tb
| ha::ta, hb::tb when ha = hb

-> (match sub ta tb with | [] -> [] (* Attention ! *)
| t -> 0::t)

| ha::ta, hb::tb -> m+ha-hb::sub (dec ta) tb

10. La solution la plus simple consiste à remarquer que si une liste est plus longue,
elle représente un entier strictement supérieur, et si elles sont de même taille, on peut

3

comparer les éléments de la droite vers la gauche. Par exemple :

let cmp a b =
List.length a > List.length b ||
let rec cmp_aux = function
| ha::ta, hb::tb -> ha > hb || cmp_aux (ta, tb)
| _ -> true (* égalité *)

in cmp_aux (List.rev a, List.rev b)

On peut cependant quand même traiter les listes sans les retourner, mais c’est un peu
plus difficile. On peut écrire une fonction qui compare deux listes et retourne 1 si la
première est strictement plus grande, 0 si elles sont égales, et −1 si elle est strictement plus
petite :

let rec cmp_i a b = match a, b with
| [], [] -> 0
| _, [] -> 1
| [], _ -> -1
| ha::ta, hb::tb -> match cmp_i ta tb with

| 0 -> if ha>hb then 1 else if ha<hb then -1 else 0
| k -> k

On a alors simplement

let cmp a b = cmp_i a b >= 0

2.3 Multiplications

11. On a q0 ∈ �0 . . (mc −1)2� (et généralement q0 > 0 sinon l’algorithme n’est pas intéres-
sant), q1 ∈ �0 . . 2(mc −1)2� et q2 ∈ �0 . . (mc −1)2�.

12. On a q1 =
(
n1p0 +p1n0

)= qk −n1p1 −n0p0 = qk −q2 −q0.

13. Si p est la longueur de la liste représentant p, alors le nombre n est strictement
inférieur à mp (mais pas à mp−1). Il suffit donc de prendre le plus petit entier c tel que
2c Ê p, soit

⌈
p/2

⌉= ⌊(
p +1

)
/2

⌋
.

14. On souhaite avoir un couple contenant les c premiers éléments de la liste, et les
éléments restants (qui sont au plus c). Attention, à nouveau, à la condition qui impose que
0 est représenté par [] et qu’il ne doit pas y avoir de 0 à l’extrémité droite de la liste. Par
exemple :

let rec split c n =
if c = 0 then [], n else

match n with | [] -> [], []
| 0::t -> let lower, upper = split (c-1) t in

(match lower with | [] -> [], upper
| t -> 0::t, upper)

| h::t -> let lower, upper = split (c-1) t in
h::lower, upper;;

15. Il suffit de rajouter c zéros à gauche de la liste... sous réserve que l’argument n n’est
pas nul ! Par exemple :

let rec pow c n =
if n = [] then []

else if c = 0 then n
else 0 :: pow (c-1) n

16. L’essentiel du travail est fait, reste à implémenter le processus décrit :

let rec mul n p = match n, p with
| [], _ -> []
| _, [] -> []
| [hn], [hp] -> convert (hn*hp)
| _ -> let c = (max (List.length n) (List.length p) + 1) / 2 in

let n0, n1 = split c n
and p0, p1 = split c p in
let q2 = mul n1 p1
and q0 = mul n0 p0 in
let qk = mul (add n0 n1) (add p0 p1) in
let q1 = sub (sub qk q0) q2 in
add (pow c (add (pow c q2) q1)) q0

2.4 Retour à notre problème

17. En fait, la fonction est très proche de la fonction factorielle vue en cours, si ce n’est
qu’on utilise mul et convert pour gérer les grands entiers naturels :

let rec fact = function
| 0 -> [1]
| n -> mul (convert n) (fact (n-1))

18. Comme vu en travaux dirigé, on peut aisément compter le nombre d’apparitions
d’un chiffre récursivement :

4

let rec count7_int = function
| 0 -> 0
| n when n mod 10 = 7 -> 1 + count7_int (n/10)
| n -> count7_int (n/10)

19. On appelle la fonction précédente sur chaque élément de la liste représentant le
grand entier naturel, et on somme :

let rec count7_big_nat = function
| [] -> 0
| h::t -> count7_int h + count7_big_nat t

Ou bien pour les amateurs de fonctionnelles :

let count7_big_nat lst =
List.fold_left (+) 0 (List.map count7_int lst)

5

	Tri patience
	Jeu de patience
	Obtenir un tri
	Sous-séquences strictement croissantes

	Grands entiers
	Introduction
	Grands entiers
	Multiplications
	Retour à notre problème

