
Devoir d’informatique

� Quelques remarques avant de commencer

Le sujet est constitué de trois exercices indépendants. Les fonctions demandées doivent
être écrites dans le langage C. Ne vous précipitez pas, essayez de faire bien avant de faire
beaucoup, et n’hésitez pas à privilégier les parties qui vous parlent davantage.

On prendra bien soin à veiller à la lisibilité du code proposé, en choisissant judicieu-
sement les noms de variables utilisés, et en assortissant les fonctions de commentaires,
d’invariants ou d’explications brèves mais pertinentes permettant de comprendre les
choix effectués. Ces commentaires n’ont pas à être insérés dans le code, il est généralement
préférable de décrire la fonction avant ou après le code pour des raisons de lisibilité.

Si une question impose une complexité, votre proposition doit respecter cette com-
plexité, ne perdez pas de temps à proposer une solution moins efficace, cela ne vous
rapportera pas de points.

Vous pouvez introduire toutes les fonctions auxiliaires dont vous avez besoin. En langage
C, les fonctions abs et sqrt sont considérée fournies. Vous pouvez également utiliser
dans une question toutes les fonctions décrites dans les questions précédentes du même
problème, et ce même si vous n’avez pas réussi à en proposer une implémentation.

1 Enveloppes

On suppose disposer de n enveloppes, numérotées de 0 à n −1. Chacune de ces enve-
loppes contient un entier compris entre 0 et n −1 (inclus).

Par exemple, pour n = 10, les dix enveloppes peuvent contenir les valeurs suivantes :

0

4

1

3

2

5

3

7

4

0

5

3

6

6

7

1

8

9

9

2

On suppose défini une constante entière N contenant le nombre d’enveloppes, et une
fonction « int content(int k) » renvoyant le contenu de l’enveloppe dont le numéro
est fourni en paramètre (par exemple, « content(3) », pour l’exemple proposé, donnerait
7). Le comportement de content est indéfini pour des arguments qui ne sont pas dans
�0 . . N−1�, tout appel à content avec un argument n’étant pas dans cet intervalle est donc
à proscrire.

N et content sont supposés accessibles et utilisables depuis n’importe quelle fonction.

1. Proposer une fonction int nb_inf(void) ne prenant aucun argument et renvoyant

le nombre d’enveloppes dont le nombre placé à l’intérieur de l’enveloppe est strictement
inférieur au numéro écrit sur cette même enveloppe (il y en a quatre sur l’exemple proposé,
les enveloppes 4, 5, 7 et 9).

2. Proposer une fonction int max_diff(void) ne prenant aucun argument et ren-
voyant la plus grande différence, en valeur absolue, entre le numéro de l’enveloppe et le
nombre qu’elle contient (7 sur l’exemple fourni).

3. Soit v un entier. On considère l’ensemble E des enveloppes dont le nombre placé à
l’intérieur est supérieur ou égal à v . Proposer une fonction int max_over(int v) prenant
en argument l’entier v et renvoyant le plus grand numéro figurant sur les enveloppes de E
si l’ensemble E est non-vide, et −1 si cet ensemble E est vide.

4. Proposer une fonction int nb_pairs(void) renvoyant le nombre de paires d’enve-
loppes telles qu’à l’intérieur de chacune des deux enveloppes se trouve le numéro inscrit à
l’extérieur de l’autre (sur notre exemple, les enveloppes 0 et 4 forment ainsi une paire, la
seule présente dans cet exemple).

On s’intéresse à présent aux règles suivantes, qui permettent de construire des séquences
parmi les enveloppes : on part d’une enveloppe portant le numéro a0, on regarde le numéro
a1 qu’elle contient et on prend l’enveloppe portant ce numéro a1 ; on regarde alors le
numéro a2 qu’elle contient, et ainsi de suite.

Dans l’exemple proposé, en partant de l’enveloppe 5, on construit ainsi la séquence
5 7→ 3 7→ 7 7→ 1 7→ . . . .

5. Proposer une fonction int max_incr(void) renvoyant la longueur de la plus longue
séquence ai strictement croissante que l’on puisse construire de la sorte (3 pour notre
exemple, a0 = 1, a1 = 3, a2 = 7). On ne demande pas ici d’obtenir une complexité optimale,
faute d’outils adéquats.

6. Quelle est la complexité dans le pire des cas de votre fonction ? On décrira le contenu
des enveloppes qui conduirait à cette complexité.

Un cycle de longueur p Ê 2 est une séquence a0 7→ a1 7→ a2 7→ . . . 7→ ap−1 7→ a0 où tous les
ai sont distincts.

Toujours dans notre exemple, 1 7→ 3 7→ 7 7→ 1 est un cycle de longueur 3.

7. Proposer une fonction int len_cycle(int v) prenant en argument un entier v ∈
�0 . . n−1� et renvoyant (on se contentera d’une implémentation simple et d’une complexité
en O (n)) :

• la longueur du cycle dont fait partie l’enveloppe portant le numéro v , si cette enve-
loppe fait effectivement partie d’un cycle ;

• la valeur 0 dans le cas contraire.

1



On suppose que le contenu de chacune des enveloppes est un entier distinct de �0 . . n−1�.
Il existe alors un entier r tel que, quel que soit le a0 que l’on choisisse, la séquence a0 7→
a1 7→ a2 7→ . . . 7→ ar (définie comme au-dessus) vérifie ar = a0.

8. Proposer une fonction int order(void) ne prenant aucun argument et retournant
cet entier r . On ne demande pas de complexité particulière (faute des outils adéquats),
O

(
n2 logr

)
est parfaitement acceptable ici. Il pourra être utile, pour cette question, de

définir une fonction auxiliaire pour rendre les choses plus lisibles.

2 Correction algorithmique du gnome sort

On propose un algorithme dont on espère qu’il permet de trier un tableau arr contenant
n éléments dans l’ordre croissant :

int i = 0;
while (i < n) {

if (i==0 || arr[i] >= arr[i-1]) {
i = i+1;

} else {
int tmp = arr[i];
arr[i] = arr[i-1];
arr[i-1] = tmp;
i = i-1;

}
}

1. Combien d’itérations de la boucle while sont effectuées si le tableau est déjà trié par
ordre croissant?

2. Proposer un invariant de boucle permettant de justifier que l’algorithme est partielle-
ment correct (en d’autres termes, si la boucle while se termine, alors le tableau arr a été
trié par ordre croissant par l’algorithme). Indice : c’est le même invariant de boucle qu’un
des tris étudiés en cours. On justifiera (en quelques lignes) que cet invariant de boucle est
correct.

On définit le nombre d’inversions dans un tableau de n entiers comme le nombre de
couples

(
i , j

) ∈ �0 . . n −1�2 vérifiant i<j et arr[i]>arr[j].

3. Donner un encadrement des valeurs possibles pour le nombre d’inversions dans un
tableau de taille n contenant des valeurs quelconques.

4. Justifier que durant l’exécution de l’algorithme, le nombre d’inversions dans le tableau
arr ne peut que décroître.

5. En déduire (soigneusement) la terminaison de l’algorithme.

6. Déterminer la complexité temporelle (dans le pire des cas) de l’algorithme proposé.

3 Pose de poteaux

3.1 Description du problème

On souhaite, dans cet exercice, poser des poteaux électriques sur un terrain accidenté.
Le terrain est modélisé par une ligne brisée de points (i ,h(i )) où i ∈ �0 . . n−1�. Le but étant
de relier le point d’abscisse 0 au point d’abscisse n −1.

Les poteaux, posés verticalement, ont chacun une hauteur H, et on supposera que la
ligne électrique posée entre les poteaux est parfaitement tendue 1. La réglementation
impose que le fil soit toujours à une distance, mesurée verticalement, supérieure ou égale
à D du sol (on suppose évidemment H Ê D).

Il y a toujours un poteau aux points i = 0 et i = n − 1, et il peut y avoir un nombre
quelconque de poteaux entre les deux. Un exemple d’implantation est illustré ci-dessous :

D

H

i = 0 n −1

h(i )

Dans la suite, des constantes H et D sont considérées définies sous la forme de valeurs
flottantes (de type double) globales, donc disponibles dans toutes les fonctions. Il est éga-
lement fourni une fonction double h(int i) prenant en argument une abscisse entière i
et retournant l’altitude du terrain h(i ) pour cette abscisse, qui peut, elle aussi, être appelée
depuis n’importe quelle fonction. Ce sont les seules informations supposées disponibles
à l’intérieur d’une fonction, exception faite des arguments de la fonction.

3.2 Premiers tests et fonctions

1. Proposer une fonction double hauteur(int i, int j, int k) prenant en argu-
ment trois entiers i, j et k vérifiant i É k É j . i et j représentent l’abscisse de deux poteaux
consécutifs. La fonction devra retourner la hauteur du fil par rapport au sol au point
d’abscisse k.

2. Justifier brièvement que pour vérifier la validité d’une installation, il suffit de vérifier
que la condition sur la hauteur du fil par rapport au sol est vérifiée pour toutes les abscisses
entières.

1. En réalité, la forme dessinée par le fil entre deux supports est celle d’un cosinus hyperbolique.

2



3. Proposer une fonction bool direct_possible(int i, int j) prenant deux abs-
cisses i et j vérifiant i < j , et retournant un booléen indiquant s’il est légal de tirer un cable
entre deux poteaux placés aux abscisses i et j.

On suppose que l’on dispose d’un tableau idx de p entiers contenant la position de
chacun des poteaux que l’on souhaite poser. Conformément aux hypothèses, on suppose
idx[0] = 0, idx[p-1] = n-1 et pour tout i < j , idx[i] < idx[j]. Pour l’implantation
prise en exemple, le tableau serait donc :

0 1 5 14 18idx

4. Proposer une fonction bool allowed(int idx[], int p) retournant un booléen
indiquant si l’implantation fournie en argument est valide. On admettra que, dans une
telle fonction il est possible d’utiliser l’écriture idx[k] pour obtenir la valeur dans la case k
du tableau fourni comme premier argument de la fonction.

5. Proposer une fonction double length(int idx[], int p) retournant un flottant
indiquant la longueur de cable nécessaire pour l’implémentation proposée en argument.

Dans la suite, on suppose qu’il n’est pas possible de tirer un cable directement entre les
poteaux placés aux abscisses 0 et n −1. On souhaite, tout d’abord, savoir s’il est possible
d’obtenir une implémentation légale en ajoutant un unique poteau supplémentaire à une
abscisse k vérifiant 0 < k < n −1.

6. Proposer une fonction int possible_3(int n) prenant n pour seul argument et
retournant un entier k représentant une abscisse k pour un poteau intermédiaire s’il est
possible d’effectuer une installation avec trois poteaux, et -1 sinon. Si plusieurs solutions
sont possibles pour k, on retournera une quelconque de ces solutions, au choix.

7. Quelle est la complexité de la fonction précédente ?

3.3 Recherche de solution

On souhaite à présent trouver une implémentation légale utilisant un nombre quel-
conque de poteaux, mais sans aller jusqu’à en poser pour chaque abscisse entière. On
propose l’algorithme suivant, appelé glouton avant : les poteaux sont posés par abscisses
croissantes, le premier poteau étant placé en 0. Pour calculer l’emplacement du prochain
poteau, on part du dernier poteau planté et on avance (vers les abscisses croissantes) avec
le fil tendu tant que la législation est respectée (et que l’abscisse n −1 n’est pas atteinte).
Un nouveau poteau est alors planté, et on recommence jusqu’à atteindre l’abscisse n −1.

La figure ci-après illustre la solution produite par cet algorithme. Les poteaux gris et
les morceaux de ligne électrique en pointillés indiquent les implantations étudiées par
l’algorithme qui ne sont pas conformes à la réglementation.

D

H

i = 0 n −1

h(i )

8. Proposer une fonction int nb_posts_forward(int n) prenant n pour seul argu-
ment et retournant le nombre de poteaux intermédiaires (on ne compte pas les poteaux
en i = 0 et i = n −1) nécessaires pour poser le cable en utilisant l’algorithme du « glou-
ton avant ». On ne demande pas de complexité particulière, ni de fournir la position des
poteaux, la fonction retournera par exemple simplement « 4 » dans l’exemple précédent.

9. Quelle est la complexité, en fonction de n de la fonction proposée?

10. Décrire une approche permettant d’obtenir une complexité linéaire (O (n)) pour la
fonction précédente. On ne demande pas ici d’implémentation, juste une explication
détaillée.

La méthode gloutonne avant a pour défaut de placer plus de poteaux que nécessaire,
comme on pourra le constater sur l’exemple proposé. Un autre algorithme possible est
l’algorithme de glouton arrière. on place toujours les poteaux de la gauche vers la droite,
mais on choisit à chaque fois la position légale la plus à droite possible pour le prochain
poteau.

Cela donne par exemple ce résultat pour le terrain utilisé comme exemple :

D

H

i = 0 n −1

h(i )

11. Proposer une fonction int nb_posts_backwards(int n) prenant n pour seul argu-

3



ment et retournant le nombre de poteaux intermédiaires (on ne compte pas les poteaux
en i = 0 et i = n −1) nécessaires pour poser le cable en utilisant l’algorithme du « glouton
arrière ». On ne demande pas de complexité particulière, ni de fournir la position des
poteaux, la fonction retournera par exemple simplement « 2 » dans l’exemple précédent.

12. Le nombre de poteaux retournés par la fonction est-il plus petit possible pour une
implémentation licite ? Le prouver ou proposer un contre-exemple.

4


	Enveloppes
	Correction algorithmique du gnome sort
	Pose de poteaux
	Description du problème
	Premiers tests et fonctions
	Recherche de solution


