Devoir d’'informatique

Enveloppes

1. On compte dans un accumulateur count les enveloppes avec la propriété souhaitée :

int nb_inf(void) {
int count = 0;
for (int i=0; i<N; ++i) {
// count contient le nombre d'enveloppes avec la propriété
// parmi les i premiéres enveloppes
if (content(i) < i) { count++; }
}

return count;

2. 1l s’agit ici d'une variation sur la recherche d'un maximum d’un ensemble :

int max_diff(void) {
int max = 0;
for (int i=0; i<N; ++i) {
// count contient la plus grande différence en valeur absolue
// parmi les i premiéres enveloppes
if (abs(content(i)-i) > max) { max = abs(content(i)-i); }
}

return max;

J

3. Puisque I'on souhaite la plus grande enveloppe vérifiant la propriété, il est plus simple
de faire la recherche en commencant par les enveloppes portant les nombres les plus
élevés, donc de I'enveloppe N — 1 jusqu’a trouver (auquel cas on renvoie le résultat de
suite), ou bien les avoir toutes examinées jusqu’a I’enveloppe 0 incluse :

int max_over(int v) {
for (int i=N-1; i>=0; --i) {
if (content(i) >= v) { return i; }
3

return -1;

4. Pour une paire (i, j), il faut i # j avec content(i) = j et content(j) = i, soit
content(content(i)) =1i.

Pour éviter de compter deux fois la méme paire, on ne comptera que les cas ou j > i, soit
content(i)>1i:

int nb_pairs(void) {
int count = 0;
for (int i=0; i<N; ++i) {
// count contient le nombre de paires (i1, j1) avec 11<j1
// pour lesquelles i1 figure parmi les i premieres enveloppes
if (content(i)>i && content(content(i))==i) { count++; }
3

return count;

5. On consideére ici tous les ag possible, et pour chacun on détermine la longueur de la
séquence strictement croissante. Attention aux indices! Bien évidemment, on effectue des
calculs inutiles en recomptant des morceaux de séquences déja comptées, mais comme le
sujet le suggeére, on ne s’en préoccupe pas ici.

int max_incr(void) {
int max = 0;
for (int i=0; i<N; ++i) {
// max contient la longueur de la plus longue séquence
// débutant par une des i premiéres enveloppes
// (ou @ si i=0, par défaut)
int count=T;
for (int j=i; content(j)>j; j=content(j)) {
count++;
3
// count contient la longueur de la plus longue séquence
// strictement croissante débutant par 1'enveloppe i
if (count > max) { max = count; }
3

return max;

6. Aucune séquence ne peut étre plus longue que n, et on considere n points de départ.
La complexité dans le pire des cas est ici quadratique (O(n?)), cette limite étant effecti-
vement atteinte si chaque enveloppe i contient i + 1, a I’exception de I'enveloppe n— 1.
Dans ce cas, les points de départ 0 a n/2 nécessitent chacun au moins n/2 itérations, ce
qui conduit bien a une complexité quadratique.

7. On remarquera que si content(i) = i, il ne s’agit pas d'un cycle (on renverra 0). Par
ailleurs, aucun cycle ne peut étre supérieur strictement a n, donc si on n’est pas revenu au

point de départ apres n enveloppes, c’est que I’enveloppe initiale n’est pas dans un cycle.

Cela donne par exemple :

int len_cycle(int v) {
int i = content(v);
if (i'=v) {
for (int k=2; k<=n; ++k) {
i = content(i);
if (i==v) { return k; }

b

return 0;

8. Le r recherché est le PPCM de tous les cycles. On commence par définir une fonction
calculant le PGCD :

int gcd(int a, int b) {
while (a!=0) {
int tmp = a; a = b%a; b = tmp;

}

return b;
)
Puis un PPCM :

int lcm(int a, int b) {
return a/gcd(a, b)*b;

Et enfin (attention a ignorer les 0 renvoyés par len_cyclel) :

int order(void) {
intr = 1;
for (int i=0; i<N; ++i) {
p = len_cycle(i);
if (p>0) { r = lem(r, p); }
}

return r

Correction algorithmique du gnome sort

1. Sile tableau est déja trié par ordre croissant, la condition du if sera toujours vérifiée,
et i incrémenté a chaque itération. Il y aura donc exactement n itérations de la boucle
while.

2. On peut proposer l'invariant suivant : « les 1 premiers éléments de tab (dans les
cases d'index 0 a i — 1 (inclus) si i > 0) sont rangés par ordre croissant ». Cette proposition
est vraie au début et a la fin de chaque itération de la boucle while. Pour le montrer,
remarquons d’abord qu’initialement, au début de la premiere itération de la boucle while
c’est nécessairement vrai (i = 0). Ensuite, si c’est vrai au début de la boucle :

e sii=0audébut delaboucle, on passe a i =1 alissue de la boucle, et un élément
seul est toujours trié;

 sinon, si les éléments dans les cases d'index 0 a i — 1 (inclus) sont triés par ordre
croissant, et que tab[i] >= tab[i-11], on peut en déduire que les éléments d’index
0 a i (inclus) sont rangés par ordre croissant, ce qu'exprime I'incrémentation de i;

e et enfin, si tab[i] < tab[i-1], la permutation ne touche pas aux positions des
éléments dans les cases d'index 0 a i — 2, lesquels sont par conséquent toujours triés
par ordre croissant, ce qui est en accord avec une décrémentation de i.

3. llya (%) = n(n—1)/2 couples (i, j) € [0.. n—1]? vérifiant i <j. Ils peuvent tous vérifier
tab[i]<=tab[j] (tableau trié par ordre croissant) ou tous vérifier tab[i]>tab[j] (trié
par ordre décroissant), donc le nombre d’inversions est nécessairement compris entre 0 et
n(n-1)/2 (inclus).

4. Sila condition du test « if » est vraie, rien ne change dans le tableau, donc le nombre
d’inversions n’évolue pas. Si elle est fausse, il y avait une inversion entre les cases i et
j =i—1, qui disparait avec I'échange. Pour les autres couples (i, j), la situation n'a pas
changé (méme sil'un des éléments du couple a pu étre décalé d'une case par I'inversion,
il ne peut se retrouver de 'autre c6té du second élément), donc le nombre d’inversions
décroit exactement de 1. Dans tous les cas, le nombre d’inversions dans le tableau décroit
(au sens large).

5. On ne peut pas prendre directement le nombre d’inversions comme variant de boucle,
car bien qu’étant toujours un entier positif, sa décroissance n’est pas stricte a chaque
itération! Cela dit, on peut s’en sortir en remarquant qu’entre deux décrémentation de
cette grandeur, a chaque itération, i augmente de 1 (et ne peut dépasser n), donc il ne peut
y avoir plus de 7 itérations sans décrémentation du nombre d’inversions, ce qui garantit
que I'algorithme va nécessairement terminer.

On peut étre plus malin en remarquant que 2N — i, o1 N est le nombre d’inversions, est
un variant de boucle : sila condition du « if » est vraie, N ne change pas et i est incrémenté,
donc 2N — i est décrémenté. Si la condition du « if » est fausse, N est décrémenté et i est
décrémenté, de sorte que 2N — i est décrémenté. 2N — i étant une valeur dans [-n.. n(n—
1) + n], il ne peut y avoir une infinité d’itération de la boucle while, donc la fonction
termine.

6. Comme on ne décrémente pas N a chaque itération, il n’est pas immédiat d’affirmer
que le nombre d’itérations est lié au nombre d’inversions (d’ailleurs, ce n’est pas vrai pour
un tableau trié).

Si on a été assez astucieux pour penser au 2N — i dans la question précédente, on peut
affirmer que la complexité dans le pire des cas est ©® (n(n—1)+n) =0 (nz) car on part
de 2N — i, soit n(n—1) si la liste est triée par ordre décroissant, et on termine a —n, en
décémentant a chaque itération de la boucle.

Sinon, on peut s’apercevoir que le tri est en fait un tri par insertion, avec toutefois une
petite différence : aprés avoir inséré 1'élément initialement en position i jusqu’a la position
i’ < i, avant de traiter 'élément en position i + 1, il faut « revenir » a cette position i + 1
en effectuant autant de tests dans I’autre sens. On a donc grossierement deux fois plus de
comparaisons que pour le tri par insertion, ce qui donne une complexité dans le pire des
cas en © (n?).

Pose de poteaux

1. En utilisant le théoréme de Thalés, on peut par exemple écrire ! :

double hauteur(int i, int j, int k) {
if (i==j) { return H; }
double slope = (h(j)-h(i))/(j-1);
return h(i) + H + slope * (k-i) - h(k);
}

Remarque : par « hauteur par rapport au sol », on entendait la différence entre la hauteur
dufil al’abscisse k et h(k) (Ualtitude référence h = 0 pourrait se rapporter a n'importe quoi,
il n'y a pas de raison qu’elle fasse référence au « sol »). Le sujet impose bien une hauteur
du fil au moins égale a D par rapport au sol, avec une représentation graphique de cette
marge, ce qui permet de lever une éventuelle ambiguité sur le terme.

Si, suite a un malentendu, on retourne l'altitude par rapport a 'altitude de référence
0, en ne retirant pas h (k) du résultat, il faudra penser a tenir compte de ce (k) dans les
fonctions ultérieures.

2. Entre deux abscisses entieres, I’évolution de I'altitude du fil (tendu) et celle du sol
sont deux fonctions affines de I'abscisse. La hauteur du fil par rapport au sol est donc une
fonction affine également. Si cette hauteur est supérieure ou égalea D en i et i + 1, alors
elle sera nécessairement supérieure ou égale a D pour toute abscisse comprise entre i et
i +1, il est donc bien inutile de le vérifier.

1. On s’est prémuni ici du cas i=3j qui aurait pu conduire a une forme indéterminée, méme si dans la suite la
fonction ne sera normalement jamais appelée avec i=j.

3. On teste toutes les abscisses entieres k entre i + 1 et j — 1 (pas besoin de tester i et j
puisque H = D). Cela donne :

bool direct_possible(int i, int j) {
for (int k=i+1; k<=j-1; ++k) {
if (hauteur(i, j, k) <D) {
return false;

}

return true;

b

4. On peut utiliser la fonction précédente pour chaque section du fil, entre chaque paire
de poteaux successifs ? :

bool allowed(int idx[], int p) {
for (int i=0; i<p-1; ++i) {
if (!direct_possible(idx[i], idx[i+11)) {
return false;

b

return true;

5. Rien de bien compliqué ici, on applique le théoreme de Pythagore (attention, iln'y a
pas d’opérateur puissance en C!), avec la méme remarque sur les parametres de la boucle
for:

double length(int idx[], int p) {
double len = :
for (int i=0; i<p-1; ++i) {
double dx = idx[i+1]-idx[i];
double dy = h(idx[i+1]1)-h(idx[i]);
len = len + sqgrt(dxxdx + dyxdy);
3

return len;

3

6. Il nous faut ici tester toutes les positions k possibles pour le pilier intermédiaire.

2. On ne se préoccupera pas ici de controler que I'utilisateur a bien mis 0 dans la premiere case et n—1 dans la
dernieére, on ne pourrait d’ailleurs de toute fagon pas accéder a la valeur de n. En revanche, on prendra bien soin,
en choisissant les parametres de la boucle, de tester la condition jusqu’a la derniére case du tableau idx mais pas
au-dela! Ainsi, dans la fonction proposée, lors de la derniéere itération on a i=p-2, ce qui conduit a un test entre
les positions idx[p-2] et idx[p-11], cette derniére position étant bien la derniére présente dans le tableau.

11 serait parfaitement possible d'utiliser la fonction allowed, en créant un tableau de
taille 3 contenant 0, k et n— 1, ou k prend successivement les valeurs 1 a n—2.

Attention, il n’existe pas de moyen, en C, d’écrire directement, dans les arguments, un

tableau que I'on pourrait passer a la fonction, il faut le déclarer explicitement avant 'appel.

Plutot que de déclarer un tableau a chaque itération, on a pris le parti ici de déclarer un
unique tableau pour foutela fonction, et de modifier le contenu de la seconde case pour
chaque itération.

int possible_3(int n) {
int idx[3] = {0, 1, n-13};
for (int k=1; k<=n-2; ++k) {
idx[1] = k;
if (allowed(idx, 3) {
return k;
}
}
return -1;
3

Cela étant dit, pour cette question, il est probablement plus simple d’utiliser deux appels
adirect_possible:

int trois_possible(int n) {
for (int k=1; k<=n-2; ++k) {
if (direct_possible(?, k) && direct_possible(i, n-1)) {
return k;

}

return -1;

7. Lors de chaque itération, on effectue deux appels a direct_possible (directement,
ou indirectement a travers la fonction allowed), dont la complexité est linéaire en la
distance entre les poteaux concernés. La somme des deux distances 0 — ket k — n—1 est
égale a n. Chaque itération a donc une complexité linéaire. Puisque dans le pire des cas on
effectue n — 2 itérations, on a donc pour possible_3 une complexité quadratique (O(n?))
en n.

8. On applique 'algorithme proposé par I'’énoncé : on considere toutes les positions
kdelan-1et, s'ilnest pas possible d’attendre la position k + 1 en partant du dernier
poteau posé (initialement le poteau en n = 0), il faut poser un poteau en k.

Pour s’assurer de ne pas écrire les choses de travers, il est recommandé de réfléchir a un
invariant de boucle!

Notons qu’il est impératif qu’il y ait au moins un appel a direct_possible dont le
second argument est 7 — 1. Il faut en effet envisager de poser un poteau en n — 2! On sait
en revanche qu'il est toujours possible d’atteindre 1'abscisse 1 depuis le poteau initial.

Cela donne par exemple :

int nb_posts_forward(int n) {
int last = 0;
int count = 0;
for (int k=1; k<n-1; ++i) {
// Inv. On peut atteindre 1'abscisse k en ligne directe
// depuis 1'abscisse last correspondant au dernier poteau posé
if (!direct_possible(last, k+1)) {
last = k;
count++;

3

return count;

Remarque : il peut étre intéressant, pour s’assurer que la fonction est bien écrite, de
regarder combien il est possible de comptabiliser de poteaux intermédiaires pour cette
fonction. Sila condition du if n’'est jamais vérifiée, le compte sera de 0. Si elle I'est toujours,
il sera de n —2. Il s’agit bien des nombres minimum et maximum de poteaux que I'on peut
avoir a poser, c¢’est un indice supplémentaire que la fonction peut étre correcte.

9. Sil'on pose un poteau en k et un poteau supplémentaire en k', les itérations de k a
k' auront une complexité quadratique en k' — k du fait des appels a direct_possible. La
complexité de nb_intermediaires_avant est donc de 'ordre de la somme des carrés des
longueurs de chaque section du cable. Cette somme est, dans le pire des cas, de I'ordre
de n? (par exemple s'il est inutile de poser un poteau intermédiaire). On a donc une
complexité quadratique (O(n?)) en n.

10. On peut obtenir une complexité linéaire en remarquant qu'’il est possible, lorsque
'on cherche le k' ol1 poser le prochain poteau apres celui en k, qu’il n’est en fait nécessaire
de vérifier qu'une seule altitude a chaque itération.

SiI'on note M, le point correspondant a position la plus basse tolérée pour le fil a
I'abscisse p, et I 1a position du sommet du dernier poteau posé, il est aisé de voir que
parmi tous les tests pour chaque p, si celui pour le p tel que I'angle m, mesuré par
rapport a 'horizontale dans le sens direct, est le plus grand possible est réussi, alors tous
les autres le seront également.

11 suffit donc de mémoriser et tenir a jour a chaque itération le p correspondant, ce qui
permet de ne faire qu'un seul test a chaque itération de cette méme boucle.

11. A nouveau, on implémente I'algorithme proposé :

int nb_posts_backward(int n) {

int last = 0;

int count = 0;

while (last < n-1) {
// On cherche la position k la plus a droite
// possible que 1'on puisse atteindre depuis
// le dernier poteau posé
int k = n-1;
while (!direct_possible(last, k) { k--; }
// On pose un nouveau poteau a la position identifiée
last = k;
count++;

3

return count - 1;

3

J

La boucle while va forcément trouver une position k qui convienne, puisque
dernier_pose+1, au moins, est une possibilité valide. Comme last est un entier qui
augmente strictement a chaque itération et majoré par n-1, on a la terminaison de notre
fonction (non demandée). Notons que I'on retire 1 au compteur a l'issue de la fonction,
car le poteau en n — 1 a été compté dans la boucle while.

12. Le nombre de poteaux retournés par la fonction n’est pas nécessairement le petit pos-
sible pour une implémentation licite, mais le contre-exemple n’est pas trivial a construire
ni méme a tracer proprement. On peut par exemple supposer D = 0 pour simplifier, et
considérer la situation suivante :

3

Elle correspond au tableau des hauteurs ci-dessous” avec H=1:

idx | 0.0 [0.995] 0.0 |-0.25]-0.25]-0.25]-0.25]-0.25[-0.25] 2.0 [-2.0 | -2.0 |

L'algorithme considéré va placer un premier poteau en k = 2 (on peut vérifier qu’il est
possible de I'atteindre depuis le point de départ, et que toutes les positions d’abscisse k > 2
ne le sont pas).

Seulement, il n’est pas possible d’atteindre directement le poteau en n — 1 depuis un
poteau placé en k = 2, car on a un souci en k = 8. Il faudra donc un second poteau
intermédiaire (qui sera placé par I'algorithme a cette méme abscisse k = 8).

Et pourtant, il était possible de lier les deux extrémités en n'utilisant qu'un seul poteau
intermédiaire, placé en k = 1.

Résultats

101

12

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3. Le schéma suffisait, il n’est pas nécessaire de fournir un tableau de hauteurs. Il n’est indiqué ici que pour
ceux qui voudraient vérifier numériquement que le cas proposé est effectivement problématique.

	Enveloppes
	Correction algorithmique du gnome sort
	Pose de poteaux

