Devoir d’'informatique

Quelques remarques avant de commencer

Le sujet est constitué de trois problémes indépendants, de difficultés comparables mais
sur des thématiques différentes. Les deux premiers sont en langage C (le premier est un
algorithme d’optimisation numérique, le second une étude d’un algorithme de tri de
tableau), le dernier en langage OCaml (et étudie des propriétés de fonctions de [0.. n — 1]
dans [0.. n—1]). N'hésitez pas a privilégier les problemes qui vous inspirent davantage.

On prendra bien soin a veiller a la lisibilité du code proposé, en choisissant judicieuse-
ment les noms de variables utilisés, et en assortissant les fonctions de commentaires ou
d’explications bréves mais pertinentes permettant de comprendre les choix effectués.

Vous pouvez introduire toutes les fonctions auxiliaires dont vous avez besoin. Vous pou-
vez également utiliser dans une question toutes les fonctions décrites dans les questions
précédentes du méme probléme, et ce méme si vous n'avez pas réussi a en proposer une
implémentation.

Si d’aventure vous trouvez ce que vous pensez étre une erreur dans le sujet, indiquez-le
sur votre copie, en précisant les choix que vous avez fait pour la contourner.

Régulation de vol (langage C, d’aprés CentraleSupélec)

1.1 Description du probléeme

Ce probleme s’intéresse a la régulation du trafic aérien, et plus précisément a la détermi-
nation des parametres des plans de vol permettant de minimiser les risques de collisions
entre deux appareils.

Afin d’éviter les collisions entre avions, les altitudes de vol en croisiére sont normalisées.
Dans la majorité des pays, les avions volent a une altitude multiple de 1000 pieds (un pied
vaut 30,48 cm) au-dessus de la surface isobare a 1013,25 hPa. L'espace aérien est ainsi
découpé en tranches horizontales appelées niveaux de vol et désignées par les lettres « FL »
(flight level) suivies de I'altitude en centaines de pieds : « FL310 » désigne une altitude de
croisiere de 31000 pieds au-dessus de la surface isobare de référence.

Eurocontrol est I'organisation européenne chargée de la navigation aérienne, elle gere
plusieurs dizaines de milliers de vols par jour. Toute compagnie qui souhaite faire tra-
verser le ciel européen a un de ses avions doit soumettre a cet organisme un plan de vol
comprenant un certain nombre d’'informations : trajet, heure de départ, niveau de vol
souhaité, etc. Muni de ces informations, Eurocontrol peut prévoir les secteurs aériens qui
vont étre surchargés et prendre des mesures en conséquence pour les désengorger : retard
au décollage, modification de la route a suivre, etc.

Lors du dépot d’'un plan de vol, la compagnie aérienne doit préciser a quel niveau de
vol elle souhaite faire évoluer son avion lors de la phase de croisiere. Ce niveau de vol
souhaité, le RFL pour requested flight level, correspond le plus souvent a I'altitude a laquelle
la consommation de carburant sera minimale. Cette altitude dépend du type d’avion, de
sa charge, de la distance a parcourir, des conditions météorologiques, etc.

Cependant, du fait des similitudes entre les différents avions qui équipent les compa-
gnies aériennes, certains niveaux de vols sont tres demandés ce qui engendre des conflits
potentiels, deux avions risquant de se croiser a des altitudes proches. Les contrbleurs
aériens de la région concernée par un conflit doivent alors gérer le croisement de ces deux
avions.

Pour alléger le travail des controleurs et diminuer les risques, le systéme de régulation
s’autorise a faire voler un avion a un niveau différent de son RFL. Cependant, cela engendre
généralement une augmentation de la consommation de carburant. C’est pourquoi on
limite le choix aux niveaux immédiatement supérieur et inférieur au RFL.

On peut modéliser ce probleme de régulation est modélisé par un « graphe » dans lequel
chaque vol est représenté par trois sommets. Le sommet 0 correspond a l'attribution du
RFL, le sommet + au niveau supérieur et le sommet — au niveau inférieur. Chaque conflit
potentiel entre deux vols sera représenté par une aréte reliant les deux sommets concernés.
Le cofit d'un conflit potentiel (plus ou moins important en fonction de sa durée, de la
distance minimale entre les avions, etc.) sera représenté par une valuation sur 1'aréte
correspondante.

FIGURE 1 — Exemple de conflits potentiels entre trois vols.

Dans I'exemple de la figure 1, faire voler les trois avions a leur RFL engendre un cout de
régulation entre A et B de 100 et un cout de régulation entre B et C de 400, soit un cout total

de la régulation de 500 (il n'y a pas de conflit entre A et C). Faire voler I'avion A a son RFL et
les avions B et C au-dessus de leur RFL engendre un conflit potentiel de cout 100 entre A et
B et 150 entre A et C, soit un cout total de 250 (il n'y a plus de conflit entre B et C).

On peut observer que cet exemple possede des solutions de cout nul, par exemple faire
voler A et C a leur RFL et B au-dessous de son RFL. Mais en général le nombre d’avions en
vol est tel que des conflits potentiels sont inévitables. Le but de la régulation est d’'imposer
des plans de vol qui réduisent le plus possible le cout total de la résolution des conflits.

1.2 Implémentation du probléme

Chaque vol étant représenté par trois sommets, le graphe des conflits associé a n vols
Vg, U1, ..., Un—1 possede 3n sommets que nous numéroterons de 0 a 3n — 1. Nous convien-
drons que pour0<sk<n:

o le sommet 3k représente le vol vy a son RFL;
e le sommet 3k + 1 représente le vol v au-dessus de son RFL;
o le sommet 3k + 2 représente le vol vy au-dessous de son RFL.

Le cofit de chaque conflit potentiel est stocké dans un tableau de 37 lignes et 3n co-
lonnes, accessible grace a nom global conflit : si i et j désignent deux sommets du
graphe, alors conflit[i][j] est égal au cout du conflit potentiel (s'il existe) entre les
plans de vol représentés par les sommets i et j. S’il n'y a pas de conflit entre ces deux
sommets, conflit[i][j] vaut 0. On convient que conflit[i][j] vaut 0 siles sommets i
et j correspondent au méme vol (figure 2).

On notera que pour tout couple de sommets (i, j), conflit[i1[j] et conflit[jI[i],

représentent un seul et méme conflit et donc conflit[i][j] == conflit[jI[i].

int conflit[9][91 ={ { ©, o, o, 100, 100, ©, 0, 150, 0 },
{ o, o, o, @, © 50, 0, ©, 031,
{ Q, Q, Q, 0, 200, Q, 0, 300, 50 3},
{ 100, Q, Q, Q, Q, 0, 400, Q, Q0 3,
{ 100, 0, 200, Q, Q, 0, 200, 9, 100 3,
{ 0, 50, Q, Q, Q, Q, Q, Q, Q0 3,
{ o, o, o, 400, 200, o, ©, ©, 031,
{ 150, 0, 300, Q, Q, Q, Q, Q, Q 3,
{ Q, 0, 50, 0, 100, Q, Q, Q, 03} 3,

FIGURE 2 — Tableau des couts des conflits associé au graphe représenté figure 3

1. Ecrire une fonction int nb_conflits(int n) prenant en argument le nombre de
vols n et qui renvoie le nombre de conflits potentiels, c’est-a-dire le nombre d’arétes de
valuation non nulle du graphe. On rappelle que le tableau conflits, de taille 3n x 3n, est
supposé global et disponible depuis n'importe quelle fonction.

2. Exprimer en fonction de 7 la complexité de cette fonction.

1.3 Régulation

Pour un vol v, on appelle niveau relatif!’entier ry valant 0, 1 ou 2 tel que :
o 1 =0représente le vol vy a son RFL;
o 1y = 1 représente le vol vy au-dessus de son RFL;
* 1y = 2représente le vol vy au-dessous de son RFL.

On appelle régulation le tableau d’entiers (rg, r1,..., rp—1) des niveaux relatifs de chacun
des vols. Par exemple, la régulation (0,0, ...,0) représente la situation dans laquelle chaque
avion se voit attribuer son RFL.

Il pourra étre utile d’observer que les sommets du graphe des conflits choisis par la
régulation r portent les numéros 3k + rr pour 0 < k < n. On remarque également qu'au
sommet s du graphe correspond le niveau relatif r = s mod 3 etle vol vy tel que k = [s/3].

3. Ecrire une fonction int* nb_vols_par_niveau_relatif(int reg[], int n) qui
prend en parametre une régulation (tableau de n entiers r¢) et le nombre de vols, et qui
retourne un tableau de 3 entiers «a, b et c» danslequel a est le nombre de vols a leurs
niveaux RFL, b le nombre de vols au-dessus de leurs niveaux RFL et ¢ le nombre de vols
au-dessous de leurs niveaux RFL. La libération de la mémoire liée & I'allocation dynamique
du tableau retourné sera a la charge de la fonction appelante.

On appelle coiit d'une régulationla somme des couts des conflits potentiels que cette
régulation engendre.

4. Ecrire une fonction int cout_regulation(int reg[], int n) quiprend en para-
metre un tableau de n entiers représentant une régulation et le nombre 7 de vols, et qui
renvoie le cott de celle-ci.

5. Ecrire une fonction int* regulation_RLF(int n) prenant en argument un nombre
de vols et retournant un tableau représentant la régulation ou tous les vols ont a leur
niveau RFL. La libération de la mémaoire liée a I’allocation dynamique du tableau retourné
sera a la charge de la fonction appelante.

6. En déduire une fonction int cout_RFL(int n) quirenvoie le cotit de la régulation
pour laquelle chacun des n avions vole a son RFL.

7. Est-il envisageable de calculer les cofits de toutes les régulations possibles pour
trouver celle de cout minimal (on attends un réponse justifiée) ?

1.4 Lalgorithme Minimal

On définit le cotit d'un sommet comme la somme des cofits des conflits potentiels dans
lesquels ce sommet intervient. Par exemple, le cout du sommet correspondant au niveau
RFL de I'avion A dans le graphe de la figure 1 est égal a 100 + 100 + 150 = 350.

L'algorithme Minimal consiste a sélectionner le sommet du graphe de cout minimal;
une fois ce dernier trouvé, les deux autres niveaux possibles de ce vol sont supprimés

du graphe et on recommence avec le graphe modifié jusqu’a avoir attribué un niveau a
chaque vol.

Lorsque I'on calcule la somme des coftits des conflits potentiels pour un sommet donné,
on ne considere que les conflits potentiels avec des sommets qui n’ont pas encore été
supprimés. Dans la pratique, plutdt que de supprimer effectivement des sommets du
graphe, on utilise une tableau etat_sommet de 37 entiers tels que :

o etat_sommet[s] vaut 0 lorsque s désigne un sommet qui a été supprimé du graphe;

e etat_sommet[s] vaut 1lorsque s désigne un sommet choisi dans la régulation;

o etat_sommet[s] vaut 2 lorsque s désigne un sommet qui n’a encore été ni choisi, ni
supprimé.

8. FEcrire une fonction int cout_du_sommet(int s, int etat_sommet[], int n)
qui prend en parametres un numéro de sommet s (n’ayant pas été supprimé) ainsi que
le tableau etat_sommet et le nombre de vols, et qui renvoie le cout du sommet s dans le
graphe défini par la variable globale conflit et le parametre etat_sommet.

9. Ecrire une fonction int sommet_de_cout_min(int etat_sommet[], int n) qui,
parmi les sommets qui n’ont pas encore été choisis ou supprimés, renvoie le numéro du
sommet de cotit minimal (si plusieurs sommets sont de cotit minimal, vous pouvez en
choisir un librement parmi ces derniers).

10. En déduire une fonction int* minimal(int n) quirenvoie la régulation résultant
de I'application de 'algorithme Minimal. La encore, la libération de la mémaoire allouée
pour le stockage du tableau résultat est a la charge de la fonction appelante.

11. Quelle est sa complexité? Commenter.

1.5 Recuit simulé

Une autre solution pour trouver une régulation raisonnablement bonne consiste a
utiliser un algorithme dit de recuit simulé, s'inspirant de la fagcon dont les métaux, en se
refroidissant, tendent a se diriger vers un état d’énergie aussi faible que possible.

Dans le cadre de notre probleme, I'algorithme de recuir simulé part d'une régulation
initiale quelconque (par exemple la régulation pour laquelle chacun des avions vole a son
RFL) et d'une valeur positive flottante T choisie empiriquement.

Il réalise un nombre fini d’étapes se déroulant ainsi :
— un vol vy est tiré au hasard;
— on modifie ry en tirant au hasard parmi les deux autres valeurs possibles;
 si cette modification diminue le cout de la régulation, cette modification est
conservée;
 sinon, cette modification n’est conservée qu’avec une probabilité p = exp(—Ac/T)
oul Ac est 'augmentation de cofit liée a la modification de la régulation;
- le parametre T est diminué d'une certaine quantité.

On fournitune fonction int rand_i(int p) quiretourne un entier choisi aléatoirement,
avec une distribution uniforme, dans [0 .. p — 1], et d'une fonction double rand_d()
retournant un flottant choisi aléatoirement, avec une distribution uniforme, dans [0, 1].

On dispose également d’'une fonction double exp(double x) permettant de calculer
exp(x).

12. Ecrire une fonction void etape_recuit(int reg[], int n, double T) qui effec-
tue les deux premieres opérations d’'une itération de I'algorithme de recuit simulé, telles
que décrites ci-dessus. La fonction ne retourne rien, mais elle modifie éventuellement le
contenu du tableau reg si les conditions sont atteintes.

13. En déduire une fonction int* recuit(int n) qui prend en argument le nombre de
vols et retourne un tableau représentant une régulation obtenue avec I'algorithme de recuit
simulé. On fera débuter I’algorithme avec la valeur T = 1000 et une régulation ol tous les
vols sont a leur RFL. A chaque étape, la valeur de T sera diminuée de 1 %. Lalgorithme se
terminera lorsque T < 1.0. La libération de la mémoire éllouée pour le tableau retourné est
ala charge de la fonction appelante, mais on prendra garde a ce qu’il n'y ait pas d’autre
fuite de mémoire.

Remarque : dans la pratique, I'algorithme de recuit simulé est fréquemment appliqué plu-
sieurs fois de suite en partant a chaque fois de la régulation obtenue a 1'étape précédente,
jusqu’a ne plus trouver d’amélioration notable.

Probléme 2 : Tri faire-valoir (langage C)

2.1 Implémentation

On s’intéresse, dans ce probléme a un tri appelé « tri faire-valoir » (ou Stooge sort en
anglais, en hommage a la troupe comique américaine The Three Stooges), permettant de
trier en place les éléments d'un tableau par ordre croissant. Son principe est le suivant :

« sile tableau est de taille 1, il n'y a rien a faire;
« sile tableau est de taille 2, on échange les deux éléments si le premier est plus grand
que le second;
o sijle tableau est de taille n > 2,
— ontrie les [2n/3] premiéres cases du tableau de maniere récursive;
— on trie les [2n/3] derniéres cases du tableau de maniére récursive;
— on trie a nouveau les [2rn/3] premieéres cases du tableau de maniére récursive.

1. Proposer une fonction void sort2(int arr[]) prenant en argumentl’adresse d'un
tableau a deux éléments et le triant en place par ordre croissant.

2. En déduire une fonction void stooge_sort(int arr[], int n) prenanten argu-
ment I'adresse d'un tableau d’entiers arr ainsi que sa taille n (supposée strictement posi-
tive) et appliquant I’algorithe de tri présenté.

2.2 Analyse
On cherche a présent a justifier le bon fonctionnement de cette approche, ainsi que sa
complexité. On s’intéresse tout d’abord a sa correction.

On considere un tableau de taille n > 2. L'algorithme considéré effectue donc trois tris
successifs sur des parties du tableau.

3. Apreés le premier de ces trois tris, y a-t-il des éléments bien placés, et si oui lesquels
(on justifiera la réponse) ?

4. Apres le second de ces trois tris, y a-t-il des éléments bien placés, et si oui lesquels (on
justifiera la réponse) ?

5. En déduire la correction partielle de la méthode.
6. Justifier avec soin que I'algorithme de tri termine.
7. Le tri est-il stable? On justifiera la réponse.

On note u; le nombre de comparaisons effectuées lorsque I'on trie un tableau de taille n
avec le tri faire-valoir.

8. Déterminer une relation de récurrence sur u,,.

9. En déduire une estimation de u,. Que penser de I'efficacité de ce tri?

Probléme 3 : points fixes (langage OCaml, d’apres X)

3.1 Introduction
Dans ce probleme, on s’intéresse aux fonctions f : &, — &, ol £, est 'ensemble des
entiers {0, 1, .., n—1}.
On appelle point fixe de f tout entier i de &, vérifiant f(i) = i.
En—En
i— f(F(r@)

On représentera une fonction f : £, — &, par une fonction OCaml de signature
int -> int. On admettra que pour tout i entre 0 et n— 1, f i est bien un entier entre 0 et
n—1. I n'est jamais besoin de le vérifier.

On note f* I'itérée ke de f. Par exemple, f° serala fonction {

Par exemple, la fonction fy qui a i € 19 associe 2i + 5[10], définie ci-dessous, est une
fonction de &9 — &E1p.

#let f.0i=(C=*1i+5) mod 10;;

val f_0 : int -> int = <fun>

3.2 Attracteurs
1. Proposer une fonction fj bijective de &4 vers £ qui ne posséde aucun point fixe.
2. Combien existe-t-il de telles fonctions bijectives de &4 vers £, sans point fixe?

3. Ecrire une fonction has_fixed_point de signature (int -> int) -> int -> bool
prenant en argument une fonction f et un entier n et qui renvoie true si la fonction
f admet un point fixe et false sinon. Par exemple, « has_fixed_point f_0 » devra
renvoyer true, puisque 5 est un point fixe de fj, et « has_fixed_point f_1 4», false.

4. Ecrire une fonction iter de signature (int -> int) -> int -> int -> int qui
prend en premier argument une fonction f, en second un entier i de £, et en troisieme un
entier naturel k et renvoie f k().

On dit que la fonction f possede un attracteur si, pour tout x € &, il existe un k = 0 tel
que f*(x) est un point fixe de f. On pourra vérifier que la fonction f, définie sur & par les
relations ci-dessous posseéde un attracteur :

L0)=5 =1 f£2)=2 fB=1 fA4=0, 6)=2 et f(6)=3

En revanche, on notera que la fonction fy donnée en introduction n’admet pas d’attrac-
teur puisque fok (1) n’est jamais un point fixe de f quelle que soit la valeur de k.

5. Décrire précisément une méthode permettant de vérifier qu'une fonction f admet
un attracteur. On justifiera que cette méthode fonctionne.

6. Déduire de la méthode proposée une fonction has_attractor de signature
(int -> int) -> int -> bool qui prend en argument une fonction f et un entier n
et renvoie true si et seulement si la fonction f définie sur £, admet un attracteur et false
sinon. On ne demande pas la meilleure complexité possible pour cette fonction.

7. Quelle est la complexité de la fonction précédente?

On suppose dans les deux questions suivantes que la fonction f admet un attracteur. Le
temps de convergence de f en i € £, est le plus petit entier k = 0 tel que f*(i) soit un point
fixe de f. Pour la fonction f, le temps de convergence en 4 est 3 car f>(4) =0, f22(4) =5,
f5(4) =2 et 2 est un point fixe.

8. Ecrire une fonction time_conv de signature (int -> int) -> int -> int quiprend
en premier argument une fonction f et en second un entier i de £, et qui renvoie, en
temps linéaire, le temps de convergence de f en i.

3.3 Recherche efficace de points fixes.

On cherche a présent a écrire une fonction fixed_point de signature
(int -> int) -> int -> int prenant en argument une fonction f et n retournant un
quelconque point fixe de la fonction f de £, dans &, (la fonction peut posséder plusieurs
points fixes, on ne cherche ici a en exhiber qu'un seul).

Pour une fonction quelconque, la complexité de la fonction fixed_point sera au mieux
linéaire dans le pire des cas. On s’intéresse dans la suite a des améliorations possibles de
cette complexité lorsque la fonction considérée possede certaines propriétés spécifiques.

On s’intéresse dorénavant au cas d'une
fonction croissante de &£, dans &, pour F(x)
I'ordre usuel <. 1

On rappelle qu'une fonction f: & +— & ‘
est croissante pour |'ordre usuel si et seule- ‘
ment si pour tous x, y € £2 tels que x < y,
ona f(x) < f(y). A

A titre d’exemple, la fonction f3 sur &, .
dont le graphe est donné ci-contre, est crois- /
sante.

? x

9. Ecrire un prédicat incr de signature (int -> int) -> int -> bool prenant en
argument une fonction f : £, — &, et n, et renvoyant un booléen indiquant si f est
croissante sur £,. On impose un temps de calcul de complexité linéaire en n (on ne
demande pas de justifier la complexité).

10. Montrer qu’'une fonction croissante d’'un ensemble £, dans ce méme ensemble &,
admet toujours au moins un point fixe.

11. Ecrire une fonction fixed_point de signature (int -> int) -> int -> int pre-
nant en argument une fonction croissante f : £, — &, et n. Cette fonction retourne un
entier i de &, tel que f(i) = i. On impose un temps de calcul de complexité logarithmique
(on ne demande pas ici de justifier la complexité).

12. Exhiber une propriété qui reste vraie lors de tous les appels récursifs dans la fonction
précédente permettant de justifier sa correction.

13. Démontrer soigneusement que la fonction termine en proposant un variant, et
justifier brievement que sa complexité est logarithmique.

On peut généraliser la notion de fonction croissante comme suit. On rappelle qu'une
relation binaire < sur un ensemble £ est une relation d’ordre si et seulement si elle est
réflexive (x < x pour tout x € &), anti-symétrique (pour tous x,y € £2,si x <yety < x,
alors x = y) et transitive (pour tous x,y,z€ £3,six < y et y < z alors x < 2).

Soit < une relation d’ordre (pas nécéssairement totale) sur un ensemble £. Une fonction
f: & — & est croissante au sens de < si et seulement si, pour tous x, y € £2 tels que x < y,
ona f(x) = f(y).

On dit qu'un élément m de & est un plus petit élément de £ au sens de =< si et seulement
si pour tout x de £, m < x.

Soit une relation d’ordre =< sur £,, admettant un plus petit élément m au sens de <. Soit
f:&En— &, une fonction croissante au sens de <.

14. Montrer que la suite dans £, m, f(m), f2(m),... est croissante pour <.
15. En déduire qu'il existe un entier k > 0 tel que f*(m) est un point fixe de f dans &,.
16. Démontrer que f¥(m) est en fait le plus petit point fixe de f au sens de <.

Nous nous intéressons maintenant a un choix
particulier d’ordre < appelé ordre de divisibilité 0

et noté |. On note a|b la relation d’ordre « a divise /

b » sur les entiers positifs, vraie si et seulement 8

si il existe un entier ¢ = 0 tel que ca = b. Ainsi, \
4 9
2

I'ensemble &y ordonné par la divisibilité peut se

représenter ainsi : / \
D’apres la définition donnée précédemment, \

une fonction f: &, — &, croissante au sens de

I'ordre de divisibilité est une fonction telle que

pour tous x, y € £2 tels que x|y, ona f(x)|f ().

Par exemple, la fonction f; telle que définie ci-dessous est croissante au sens de I'ordre
de divisibilité :

FO)=0, fa(1)=2, fa2) =4, faB) =6, fa(4) =4, fu(5) =8, fa(6)=0, fa(7) =2, fa(8)=0et f4(9) =6

17. Proposer une fonction div_incr de signature (int -> int) -> int -> bool pre-
nant en argument une fonction f sur £, et n, et renvoyant un booléen indiquant si elle est
croissante au sens de la divisibilité.

18. Quelle est sa complexité?

19. En déduire une fonction div_fixed_point de signature
(int -> int) -> int -> int prenant en argument une fonction f (croissante pour |
sur £,) et n, et retournant un point fixe de f en temps logarithmique en n.

20. Démontrer que la fonction termine et justifier que sa complexité est logarithmique.

	Régulation de vol (langage C, d'après CentraleSupélec)
	Description du problème
	Implémentation du problème
	Régulation
	L'algorithme Minimal
	Recuit simulé

	Problème 2 : Tri faire-valoir (langage C)
	Implémentation
	Analyse

	Problème 3 : points fixes (langage OCaml, d'après X)
	Introduction
	Attracteurs
	Recherche efficace de points fixes.

