
Devoir d’informatique

� Quelques remarques avant de commencer

Le sujet est constitué de trois problèmes indépendants, de difficultés comparables mais
sur des thématiques différentes. Les deux premiers sont en langage C (le premier est un
algorithme d’optimisation numérique, le second une étude d’un algorithme de tri de
tableau), le dernier en langage OCaml (et étudie des propriétés de fonctions de �0 . . n −1�
dans �0 . . n −1�). N’hésitez pas à privilégier les problèmes qui vous inspirent davantage.

On prendra bien soin à veiller à la lisibilité du code proposé, en choisissant judicieuse-
ment les noms de variables utilisés, et en assortissant les fonctions de commentaires ou
d’explications brèves mais pertinentes permettant de comprendre les choix effectués.

Vous pouvez introduire toutes les fonctions auxiliaires dont vous avez besoin. Vous pou-
vez également utiliser dans une question toutes les fonctions décrites dans les questions
précédentes du même problème, et ce même si vous n’avez pas réussi à en proposer une
implémentation.

Si d’aventure vous trouvez ce que vous pensez être une erreur dans le sujet, indiquez-le
sur votre copie, en précisant les choix que vous avez fait pour la contourner.

1 Régulation de vol (langage C, d’après CentraleSupélec)

1.1 Description du problème

Ce problème s’intéresse à la régulation du trafic aérien, et plus précisément à la détermi-
nation des paramètres des plans de vol permettant de minimiser les risques de collisions
entre deux appareils.

Afin d’éviter les collisions entre avions, les altitudes de vol en croisière sont normalisées.
Dans la majorité des pays, les avions volent à une altitude multiple de 1000 pieds (un pied
vaut 30,48 cm) au-dessus de la surface isobare à 1013,25 hPa. L’espace aérien est ainsi
découpé en tranches horizontales appelées niveaux de vol et désignées par les lettres « FL »
(flight level) suivies de l’altitude en centaines de pieds : « FL310 » désigne une altitude de
croisière de 31000 pieds au-dessus de la surface isobare de référence.

Eurocontrol est l’organisation européenne chargée de la navigation aérienne, elle gère
plusieurs dizaines de milliers de vols par jour. Toute compagnie qui souhaite faire tra-
verser le ciel européen à un de ses avions doit soumettre à cet organisme un plan de vol
comprenant un certain nombre d’informations : trajet, heure de départ, niveau de vol
souhaité, etc. Muni de ces informations, Eurocontrol peut prévoir les secteurs aériens qui
vont être surchargés et prendre des mesures en conséquence pour les désengorger : retard
au décollage, modification de la route à suivre, etc.

Lors du dépôt d’un plan de vol, la compagnie aérienne doit préciser à quel niveau de
vol elle souhaite faire évoluer son avion lors de la phase de croisière. Ce niveau de vol
souhaité, le RFL pour requested flight level, correspond le plus souvent à l’altitude à laquelle
la consommation de carburant sera minimale. Cette altitude dépend du type d’avion, de
sa charge, de la distance à parcourir, des conditions météorologiques, etc.

Cependant, du fait des similitudes entre les différents avions qui équipent les compa-
gnies aériennes, certains niveaux de vols sont très demandés ce qui engendre des conflits
potentiels, deux avions risquant de se croiser à des altitudes proches. Les contrôleurs
aériens de la région concernée par un conflit doivent alors gérer le croisement de ces deux
avions.

Pour alléger le travail des contrôleurs et diminuer les risques, le système de régulation
s’autorise à faire voler un avion à un niveau différent de son RFL. Cependant, cela engendre
généralement une augmentation de la consommation de carburant. C’est pourquoi on
limite le choix aux niveaux immédiatement supérieur et inférieur au RFL.

On peut modéliser ce problème de régulation est modélisé par un « graphe » dans lequel
chaque vol est représenté par trois sommets. Le sommet 0 correspond à l’attribution du
RFL, le sommet + au niveau supérieur et le sommet − au niveau inférieur. Chaque conflit
potentiel entre deux vols sera représenté par une arête reliant les deux sommets concernés.
Le coût d’un conflit potentiel (plus ou moins important en fonction de sa durée, de la
distance minimale entre les avions, etc.) sera représenté par une valuation sur l’arête
correspondante.

+

−
0

+

−
0

0+

−

50

100

100
200

150

300

50

400

200

100

A B

C

FIGURE 1 – Exemple de conflits potentiels entre trois vols.

Dans l’exemple de la figure 1, faire voler les trois avions à leur RFL engendre un cout de
régulation entre A et B de 100 et un cout de régulation entre B et C de 400, soit un cout total

1

de la régulation de 500 (il n’y a pas de conflit entre A et C). Faire voler l’avion A à son RFL et
les avions B et C au-dessus de leur RFL engendre un conflit potentiel de cout 100 entre A et
B et 150 entre A et C, soit un cout total de 250 (il n’y a plus de conflit entre B et C).

On peut observer que cet exemple possède des solutions de cout nul, par exemple faire
voler A et C à leur RFL et B au-dessous de son RFL. Mais en général le nombre d’avions en
vol est tel que des conflits potentiels sont inévitables. Le but de la régulation est d’imposer
des plans de vol qui réduisent le plus possible le cout total de la résolution des conflits.

1.2 Implémentation du problème

Chaque vol étant représenté par trois sommets, le graphe des conflits associé à n vols
v0, v1, . . . , vn−1 possède 3n sommets que nous numéroterons de 0 à 3n −1. Nous convien-
drons que pour 0 É k < n :

• le sommet 3k représente le vol vk à son RFL ;
• le sommet 3k +1 représente le vol vk au-dessus de son RFL ;
• le sommet 3k +2 représente le vol vk au-dessous de son RFL.

Le coût de chaque conflit potentiel est stocké dans un tableau de 3n lignes et 3n co-
lonnes, accessible grâce à nom global conflit : si i et j désignent deux sommets du
graphe, alors conflit[i][j] est égal au cout du conflit potentiel (s’il existe) entre les
plans de vol représentés par les sommets i et j . S’il n’y a pas de conflit entre ces deux
sommets, conflit[i][j] vaut 0. On convient que conflit[i][j] vaut 0 si les sommets i
et j correspondent au même vol (figure 2).

On notera que pour tout couple de sommets
(
i , j

)
, conflit[i][j] et conflit[j][i],

représentent un seul et même conflit et donc conflit[i][j] == conflit[j][i].

int conflit[9][9] = { { 0, 0, 0, 100, 100, 0, 0, 150, 0 },
{ 0, 0, 0, 0, 0, 50, 0, 0, 0 },
{ 0, 0, 0, 0, 200, 0, 0, 300, 50 },
{ 100, 0, 0, 0, 0, 0, 400, 0, 0 },
{ 100, 0, 200, 0, 0, 0, 200, 0, 100 },
{ 0, 50, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 400, 200, 0, 0, 0, 0 },
{ 150, 0, 300, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 50, 0, 100, 0, 0, 0, 0 } };

FIGURE 2 – Tableau des couts des conflits associé au graphe représenté figure 3

1. Écrire une fonction int nb_conflits(int n) prenant en argument le nombre de
vols n et qui renvoie le nombre de conflits potentiels, c’est-à-dire le nombre d’arêtes de
valuation non nulle du graphe. On rappelle que le tableau conflits, de taille 3n ×3n, est
supposé global et disponible depuis n’importe quelle fonction.

2. Exprimer en fonction de n la complexité de cette fonction.

1.3 Régulation

Pour un vol vk , on appelle niveau relatif l’entier rk valant 0, 1 ou 2 tel que :
• rk = 0 représente le vol vk à son RFL ;
• rk = 1 représente le vol vk au-dessus de son RFL ;
• rk = 2 représente le vol vk au-dessous de son RFL.

On appelle régulation le tableau d’entiers (r0,r1, . . . ,rn−1) des niveaux relatifs de chacun
des vols. Par exemple, la régulation (0,0, . . . ,0) représente la situation dans laquelle chaque
avion se voit attribuer son RFL.

Il pourra être utile d’observer que les sommets du graphe des conflits choisis par la
régulation r portent les numéros 3k + rk pour 0 É k < n. On remarque également qu’au
sommet s du graphe correspond le niveau relatif rk = s mod 3 et le vol vk tel que k = ⌊s/3⌋.

3. Écrire une fonction int* nb_vols_par_niveau_relatif(int reg[], int n) qui
prend en paramètre une régulation (tableau de n entiers rk) et le nombre de vols, et qui
retourne un tableau de 3 entiers « a, b et c » dans lequel a est le nombre de vols à leurs
niveaux RFL, b le nombre de vols au-dessus de leurs niveaux RFL et c le nombre de vols
au-dessous de leurs niveaux RFL. La libération de la mémoire liée à l’allocation dynamique
du tableau retourné sera à la charge de la fonction appelante.

On appelle coût d’une régulation la somme des couts des conflits potentiels que cette
régulation engendre.

4. Écrire une fonction int cout_regulation(int reg[], int n) qui prend en para-
mètre un tableau de n entiers représentant une régulation et le nombre n de vols, et qui
renvoie le coût de celle-ci.

5. Écrire une fonction int* regulation_RLF(int n) prenant en argument un nombre
de vols et retournant un tableau représentant la régulation où tous les vols ont à leur
niveau RFL. La libération de la mémoire liée à l’allocation dynamique du tableau retourné
sera à la charge de la fonction appelante.

6. En déduire une fonction int cout_RFL(int n) qui renvoie le coût de la régulation
pour laquelle chacun des n avions vole à son RFL.

7. Est-il envisageable de calculer les coûts de toutes les régulations possibles pour
trouver celle de cout minimal (on attends un réponse justifiée) ?

1.4 L’algorithme Minimal

On définit le coût d’un sommet comme la somme des coûts des conflits potentiels dans
lesquels ce sommet intervient. Par exemple, le cout du sommet correspondant au niveau
RFL de l’avion A dans le graphe de la figure 1 est égal à 100+100+150 = 350.

L’algorithme Minimal consiste à sélectionner le sommet du graphe de cout minimal ;
une fois ce dernier trouvé, les deux autres niveaux possibles de ce vol sont supprimés

2

du graphe et on recommence avec le graphe modifié jusqu’à avoir attribué un niveau à
chaque vol.

Lorsque l’on calcule la somme des coûts des conflits potentiels pour un sommet donné,
on ne considère que les conflits potentiels avec des sommets qui n’ont pas encore été
supprimés. Dans la pratique, plutôt que de supprimer effectivement des sommets du
graphe, on utilise une tableau etat_sommet de 3n entiers tels que :

• etat_sommet[s] vaut 0 lorsque s désigne un sommet qui a été supprimé du graphe ;
• etat_sommet[s] vaut 1 lorsque s désigne un sommet choisi dans la régulation;
• etat_sommet[s] vaut 2 lorsque s désigne un sommet qui n’a encore été ni choisi, ni

supprimé.

8. Écrire une fonction int cout_du_sommet(int s, int etat_sommet[], int n)
qui prend en paramètres un numéro de sommet s (n’ayant pas été supprimé) ainsi que
le tableau etat_sommet et le nombre de vols, et qui renvoie le cout du sommet s dans le
graphe défini par la variable globale conflit et le paramètre etat_sommet.

9. Écrire une fonction int sommet_de_cout_min(int etat_sommet[], int n) qui,
parmi les sommets qui n’ont pas encore été choisis ou supprimés, renvoie le numéro du
sommet de coût minimal (si plusieurs sommets sont de coût minimal, vous pouvez en
choisir un librement parmi ces derniers).

10. En déduire une fonction int* minimal(int n) qui renvoie la régulation résultant
de l’application de l’algorithme Minimal. Là encore, la libération de la mémoire allouée
pour le stockage du tableau résultat est à la charge de la fonction appelante.

11. Quelle est sa complexité? Commenter.

1.5 Recuit simulé

Une autre solution pour trouver une régulation raisonnablement bonne consiste à
utiliser un algorithme dit de recuit simulé, s’inspirant de la façon dont les métaux, en se
refroidissant, tendent à se diriger vers un état d’énergie aussi faible que possible.

Dans le cadre de notre problème, l’algorithme de recuit simulé part d’une régulation
initiale quelconque (par exemple la régulation pour laquelle chacun des avions vole à son
RFL) et d’une valeur positive flottante T choisie empiriquement.

Il réalise un nombre fini d’étapes se déroulant ainsi :
– un vol vk est tiré au hasard;
– on modifie rk en tirant au hasard parmi les deux autres valeurs possibles ;

• si cette modification diminue le cout de la régulation, cette modification est
conservée ;

• sinon, cette modification n’est conservée qu’avec une probabilité p = exp(−∆c/T)
où ∆c est l’augmentation de coût liée à la modification de la régulation;

– le paramètre T est diminué d’une certaine quantité.

On fournit une fonction int rand_i(int p)qui retourne un entier choisi aléatoirement,
avec une distribution uniforme, dans �0 . . p − 1�, et d’une fonction double rand_d()
retournant un flottant choisi aléatoirement, avec une distribution uniforme, dans [0,1].

On dispose également d’une fonction double exp(double x) permettant de calculer
exp(x).

12. Écrire une fonction void etape_recuit(int reg[], int n, double T) qui effec-
tue les deux premières opérations d’une itération de l’algorithme de recuit simulé, telles
que décrites ci-dessus. La fonction ne retourne rien, mais elle modifie éventuellement le
contenu du tableau reg si les conditions sont atteintes.

13. En déduire une fonction int* recuit(int n) qui prend en argument le nombre de
vols et retourne un tableau représentant une régulation obtenue avec l’algorithme de recuit
simulé. On fera débuter l’algorithme avec la valeur T = 1000 et une régulation où tous les
vols sont à leur RFL. À chaque étape, la valeur de T sera diminuée de 1 %. L’algorithme se
terminera lorsque T < 1.0. La libération de la mémoire éllouée pour le tableau retourné est
à la charge de la fonction appelante, mais on prendra garde à ce qu’il n’y ait pas d’autre
fuite de mémoire.

Remarque : dans la pratique, l’algorithme de recuit simulé est fréquemment appliqué plu-
sieurs fois de suite en partant à chaque fois de la régulation obtenue à l’étape précédente,
jusqu’à ne plus trouver d’amélioration notable.

2 Problème 2 : Tri faire-valoir (langage C)

2.1 Implémentation

On s’intéresse, dans ce problème à un tri appelé « tri faire-valoir » (ou Stooge sort en
anglais, en hommage à la troupe comique américaine The Three Stooges), permettant de
trier en place les éléments d’un tableau par ordre croissant. Son principe est le suivant :

• si le tableau est de taille 1, il n’y a rien à faire ;
• si le tableau est de taille 2, on échange les deux éléments si le premier est plus grand

que le second;
• si le tableau est de taille n > 2,

— on trie les ⌈2n/3⌉ premières cases du tableau de manière récursive ;
— on trie les ⌈2n/3⌉ dernières cases du tableau de manière récursive ;
— on trie à nouveau les ⌈2n/3⌉ premières cases du tableau de manière récursive.

1. Proposer une fonction void sort2(int arr[]) prenant en argument l’adresse d’un
tableau à deux éléments et le triant en place par ordre croissant.

2. En déduire une fonction void stooge_sort(int arr[], int n) prenant en argu-
ment l’adresse d’un tableau d’entiers arr ainsi que sa taille n (supposée strictement posi-
tive) et appliquant l’algorithe de tri présenté.

3

2.2 Analyse

On cherche à présent à justifier le bon fonctionnement de cette approche, ainsi que sa
complexité. On s’intéresse tout d’abord à sa correction.

On considère un tableau de taille n > 2. L’algorithme considéré effectue donc trois tris
successifs sur des parties du tableau.

3. Après le premier de ces trois tris, y a-t-il des éléments bien placés, et si oui lesquels
(on justifiera la réponse) ?

4. Après le second de ces trois tris, y a-t-il des éléments bien placés, et si oui lesquels (on
justifiera la réponse) ?

5. En déduire la correction partielle de la méthode.

6. Justifier avec soin que l’algorithme de tri termine.

7. Le tri est-il stable ? On justifiera la réponse.

On note un le nombre de comparaisons effectuées lorsque l’on trie un tableau de taille n
avec le tri faire-valoir.

8. Déterminer une relation de récurrence sur un .

9. En déduire une estimation de un . Que penser de l’efficacité de ce tri ?

3 Problème 3 : points fixes (langage OCaml, d’après X)

3.1 Introduction

Dans ce problème, on s’intéresse aux fonctions f : En 7→ En où En est l’ensemble des
entiers

{
0, 1, ..., n −1

}
.

On appelle point fixe de f tout entier i de En vérifiant f (i) = i .

On note f k l’itérée ke de f . Par exemple, f 3 sera la fonction

{
En 7−→ En

i 7−→ f
(

f
(

f (i)
))

On représentera une fonction f : En 7→ En par une fonction OCaml de signature
int -> int. On admettra que pour tout i entre 0 et n −1, f i est bien un entier entre 0 et
n −1. Il n’est jamais besoin de le vérifier.

Par exemple, la fonction f0 qui à i ∈ E10 associe 2i +5[10], définie ci-dessous, est une
fonction de E10 7→ E10.

let f_0 i = (2 * i + 5) mod 10;;

val f_0 : int -> int = <fun>

3.2 Attracteurs

1. Proposer une fonction f1 bijective de E4 vers E4 qui ne possède aucun point fixe.

2. Combien existe-t-il de telles fonctions bijectives de E4 vers E4 sans point fixe?

3. Écrire une fonction has_fixed_point de signature (int -> int) -> int -> bool
prenant en argument une fonction f et un entier n et qui renvoie true si la fonction
f admet un point fixe et false sinon. Par exemple, « has_fixed_point f_0 10 » devra
renvoyer true, puisque 5 est un point fixe de f0, et « has_fixed_point f_1 4 », false.

4. Écrire une fonction iter de signature (int -> int) -> int -> int -> int qui
prend en premier argument une fonction f , en second un entier i de En et en troisième un
entier naturel k et renvoie f k (i).

On dit que la fonction f possède un attracteur si, pour tout x ∈ En , il existe un k Ê 0 tel
que f k (x) est un point fixe de f . On pourra vérifier que la fonction f2 définie sur E7 par les
relations ci-dessous possède un attracteur :

f2(0) = 5, f2(1) = 1, f2(2) = 2, f2(3) = 1, f2(4) = 0, f2(5) = 2 et f2(6) = 3

En revanche, on notera que la fonction f0 donnée en introduction n’admet pas d’attrac-
teur puisque f k

0 (1) n’est jamais un point fixe de f quelle que soit la valeur de k.

5. Décrire précisément une méthode permettant de vérifier qu’une fonction f admet
un attracteur. On justifiera que cette méthode fonctionne.

6. Déduire de la méthode proposée une fonction has_attractor de signature
(int -> int) -> int -> bool qui prend en argument une fonction f et un entier n
et renvoie true si et seulement si la fonction f définie sur En admet un attracteur et false
sinon. On ne demande pas la meilleure complexité possible pour cette fonction.

7. Quelle est la complexité de la fonction précédente ?

On suppose dans les deux questions suivantes que la fonction f admet un attracteur. Le
temps de convergence de f en i ∈ En est le plus petit entier k Ê 0 tel que f k (i) soit un point
fixe de f . Pour la fonction f2, le temps de convergence en 4 est 3 car f2(4) = 0, f 2

2 (4) = 5,
f 3

2 (4) = 2 et 2 est un point fixe.

8. Écrire une fonction time_convde signature (int -> int) -> int -> intqui prend
en premier argument une fonction f et en second un entier i de En et qui renvoie, en
temps linéaire, le temps de convergence de f en i .

3.3 Recherche efficace de points fixes.

On cherche à présent à écrire une fonction fixed_point de signature
(int -> int) -> int -> int prenant en argument une fonction f et n retournant un
quelconque point fixe de la fonction f de En dans En (la fonction peut posséder plusieurs
points fixes, on ne cherche ici à en exhiber qu’un seul).

4

Pour une fonction quelconque, la complexité de la fonction fixed_point sera au mieux
linéaire dans le pire des cas. On s’intéresse dans la suite à des améliorations possibles de
cette complexité lorsque la fonction considérée possède certaines propriétés spécifiques.

•
• •

• • •
• • •

•
f (x)

x

On s’intéresse dorénavant au cas d’une
fonction croissante de En dans En pour
l’ordre usuel É.

On rappelle qu’une fonction f : E 7−→ E
est croissante pour l’ordre usuel si et seule-
ment si pour tous x, y ∈ E2 tels que x É y ,
on a f (x) É f (y).

À titre d’exemple, la fonction f3 sur E10,
dont le graphe est donné ci-contre, est crois-
sante.

9. Écrire un prédicat incr de signature (int -> int) -> int -> bool prenant en
argument une fonction f : En 7−→ En et n, et renvoyant un booléen indiquant si f est
croissante sur En . On impose un temps de calcul de complexité linéaire en n (on ne
demande pas de justifier la complexité).

10. Montrer qu’une fonction croissante d’un ensemble En dans ce même ensemble En

admet toujours au moins un point fixe.

11. Écrire une fonction fixed_point de signature (int -> int) -> int -> int pre-
nant en argument une fonction croissante f : En 7−→ En et n. Cette fonction retourne un
entier i de En tel que f (i) = i . On impose un temps de calcul de complexité logarithmique
(on ne demande pas ici de justifier la complexité).

12. Exhiber une propriété qui reste vraie lors de tous les appels récursifs dans la fonction
précédente permettant de justifier sa correction.

13. Démontrer soigneusement que la fonction termine en proposant un variant, et
justifier brièvement que sa complexité est logarithmique.

5

On peut généraliser la notion de fonction croissante comme suit. On rappelle qu’une
relation binaire ⪯ sur un ensemble E est une relation d’ordre si et seulement si elle est
réflexive (x ⪯ x pour tout x ∈ E), anti-symétrique (pour tous x, y ∈ E2, si x ⪯ y et y ⪯ x,
alors x = y) et transitive (pour tous x, y, z ∈ E3, si x ⪯ y et y ⪯ z alors x ⪯ z).

Soit ⪯ une relation d’ordre (pas nécéssairement totale) sur un ensemble E . Une fonction
f : E 7−→ E est croissante au sens de ⪯ si et seulement si, pour tous x, y ∈ E2 tels que x ⪯ y ,
on a f (x) ⪯ f (y).

On dit qu’un élément m de E est un plus petit élément de E au sens de ⪯ si et seulement
si pour tout x de E , m ⪯ x.

Soit une relation d’ordre ⪯ sur En admettant un plus petit élément m au sens de ⪯. Soit
f : En 7−→ En une fonction croissante au sens de ⪯.

14. Montrer que la suite dans En m, f (m), f 2(m), . . . est croissante pour ⪯.

15. En déduire qu’il existe un entier k > 0 tel que f k (m) est un point fixe de f dans En .

16. Démontrer que f k (m) est en fait le plus petit point fixe de f au sens de ⪯.

1

2 3 5 7

4 6 9

8

0

Nous nous intéressons maintenant à un choix
particulier d’ordre ⪯ appelé ordre de divisibilité
et noté |. On note a|b la relation d’ordre « a divise
b » sur les entiers positifs, vraie si et seulement
si il existe un entier c Ê 0 tel que ca = b. Ainsi,
l’ensemble E10 ordonné par la divisibilité peut se
représenter ainsi :

D’après la définition donnée précédemment,
une fonction f : En 7−→ En croissante au sens de
l’ordre de divisibilité est une fonction telle que
pour tous x, y ∈ E2

n tels que x|y , on a f (x)| f (y).

Par exemple, la fonction f4 telle que définie ci-dessous est croissante au sens de l’ordre
de divisibilité :

f (0) = 0, f4(1) = 2, f4(2) = 4, f4(3) = 6, f4(4) = 4, f4(5) = 8, f4(6) = 0, f4(7) = 2, f4(8) = 0 et f4(9) = 6

17. Proposer une fonction div_incr de signature (int -> int) -> int -> bool pre-
nant en argument une fonction f sur En et n, et renvoyant un booléen indiquant si elle est
croissante au sens de la divisibilité.

18. Quelle est sa complexité?

19. En déduire une fonction div_fixed_point de signature
(int -> int) -> int -> int prenant en argument une fonction f (croissante pour |
sur En) et n, et retournant un point fixe de f en temps logarithmique en n.

20. Démontrer que la fonction termine et justifier que sa complexité est logarithmique.

6

	Régulation de vol (langage C, d'après CentraleSupélec)
	Description du problème
	Implémentation du problème
	Régulation
	L'algorithme Minimal
	Recuit simulé

	Problème 2 : Tri faire-valoir (langage C)
	Implémentation
	Analyse

	Problème 3 : points fixes (langage OCaml, d'après X)
	Introduction
	Attracteurs
	Recherche efficace de points fixes.

