
Devoir d’informatique

1 Régulation de vol (langage C, d’après CentraleSupélec)

1.2 Implémentation du problème

1. On peut par exemple compter le nombre de valeurs non-nulles strictement sous
la diagonale, soit pour tous les couples

(
i , j

)
vérifiant 0 É j < i < 3n. Attention à ne pas

oublier le 3 (ni le symbole « * » entre le 3 et le n) ! Précisons qu’il est inutile de considérer le
cas i = j , il y a de toute façon des zéros sur la diagonale.

int nb_conflits(int n) {
int nb=0;
for (int i=1; i<3*n; ++i) {

for (int j=0; j<i; ++j) {
if (conflit[i][j] > 0) { nb = nb+1; }

}
}
return nb;

}

On peut également effectuer la somme sur l’intégralité du tableau (également pour j > i ),
et diviser le résultat par deux, le tableau étant symétrique par rapport à sa diagonale.

2. Le test et l’éventuelle incrémentation ont une complexité constante, donc les deux
boucles imbriquées conduisent à une complexité quadratiqueΘ

(
n2

)
.

1.3 Régulation

3. On alloue ici un tableau de taille 3, que l’on remplit avec des zéros. Puis on considère
les vols un à un et on incrémente la case correspondant à leur régulation :

int* nb_vols_par_niveau_relatif(int reg[], int n) {
int* count = (int*)malloc(3 * sizeof(int));
for (int i=0; i<3; ++i) { // On initialise les trois cases à 0

count[i] = 0;
}
for (int i=0; i<n; ++i) { // On décompte chacun des niveaux

count[reg[i]] = count[reg[i]] + 1;
}
return count;

}

Il faut impérativement une allocation dynamique (avec malloc) ici, car s’il est possible

de faire le calcul dans un tableau statique, il n’est en revanche pas permis de retourner
ledit tableau (qui disparaîtrait en arrivant à la limite de sa portée, à la fin de la fonction).

4. Il nous faut sommer les coûts, pour chaque paire de vols
(
i , j

)
(en considérant par

exemple 0 É j < i < n), qui se trouvent dans le tableau conflits à la ligne 3× i +reg[i ] et
à la colonne 3× j +reg[ j ]. Cela donne :

int cout_regulation(int reg[], int n) {
int cout=0;
for (int i=1; i<n; ++i) {

for (int j=0; j<i; ++j) {
cout = cout + conflit[3*i+reg[i]][3*j+reg[j]];

}
}
return cout;

}

5. La fonction doit très simplement retourner un tableau de n entiers, rempli avec autant
de zéros :

int* regulation_RFL(int n) {
int* reg = (int*)malloc(n * sizeof(int));
for (int i=0; i<n; ++i) { reg[i] = 0; }
return reg;

}

6. On utilise le résultat de la fonction précédente pour un appel à cout_regulation, en
n’oubliant pas de libérer le tableau reg avant d’en finir avec notre fonction.

int cout_RFL(int n) {
int reg = regulation_RFL(n);
int cout = cout_regulation(reg, n);
free(reg);
return cout;

}

7. Il y a 3n régulations possibles, et le calcul du coût d’une régulation est quadratique.
La fonction aurait donc une complexitéΘ

(
3nn2

)
, très rapidement trop grande pour être

utilisable même pour des valeurs raisonnables de n. Même si l’on trouve un moyen de
gagner du temps sur le calcul des coûts, cela resterait trop important enΩ (3n).

1



1.4 L’algorithme Minimal

8. On effectue la somme des coefficients sur la ligne s qui sont sur des colonnes k telles
que 1 etat_sommet[k] soit 1 (choisi) ou 2 (ni choisi ni supprimé), donc différent de 0 :

int cout_du_sommet(int s, int etat_sommet[], int n) {
int cout = 0;
for (int k=0; k<3*n; ++k) {

if (etat_sommet[k] != 0) {
cout = cout + conflit[s][k];

}
}
return cout;

}

9. Il s’agit d’une simple recherche de minimum, mais uniquement parmi les sommets
encore à considérer, ceux dont l’état est « 2 ». La difficulté qui en découle est que l’on ne
sait pas quel est le premier de ces sommets (voire même s’il en existe). On ne peut donc
pas initialiser notre recherche avec le coût du sommet s = 0.

On utilise ici la valeur −1 pour la variable meilleur_sommet pour indiquer que l’on n’a
encore identifié aucun sommet convenable (c’est la valeur qui sera retournée si aucun som-
met n’est disponible). Si on a identifié au moins un sommet convenable, plus_petit_cout
est le plus petit coût identifié, et meilleur_sommet le sommet correspondant.

int sommet_de_cout_min(int etat_sommet[], int n) {
int meilleur_sommet = -1; // Pas encore identifié
int plus_petit_cout; // Pas de coût associé
for (int s=0; s<3*n; ++s) { // Pour tous les sommets s possibles

if (etat_sommet[s] == 2) { // Si le sommet s est à considérer
int cout = cout_du_sommet(s, etat_sommet, n);
if (meilleur_sommet == -1 || cout <= plus_petit_cout) {

meilleur_sommet = s;
plus_petit_cout = cout;

}
}

}
return meilleur_sommet;

}

On pourrait également initialiser plus_petit_cout avec INT_MAX pour se dispenser de
la condition meilleur_sommet == -1 du second if.

1. Comme un vol n’est jamais en conflit avec lui-même (la diagonale par blocs 3×3 ne contient que des zéros),
il n’est pas utile ici de s’en préoccuper.

10. Pour l’algorithme « Minimal », on crée un tableau etat_sommet repli de 2, puis on
fait appel n fois à la fonction précédente pour choisir un sommet. Cela détermine un vol
et sa régulation, et on met alors à jour l’état des sommets associé au vol sélectionné :

int* minimal(int n) {
int* reg = regulation_RFL(n);
int* etat_sommet = (int*)malloc(3*n * sizeof(int));
for (int i=0; i<3*n; ++i) {

etat_sommet[i] = 2;
}
for (int i=0; i<n; ++i) {

int s = sommet_de_cout_min(etat_sommet, n);
int v = s//3; // vol sélectionné
int r = s%3; // régulation sélectionnée
reg[v] = r; // On mémorise la régulation
for (int k=0; k<3; ++k) { etat_sommet[3*v+k] = 0; }
etat_sommet[s] = 1; // On élimine/sélectionne les sommets

}
free(etat_sommet); // etat_sommet n'est plus utile
return reg;

}

11. La fonction sommet_de_cout_min a une complexité quadratique (Θ
(
n2

)
) dans le

pire des cas car elle effectue jusqu’à 3n calculs de coûts en temps linéaire en n. C’est par
exemple le cas lorsqu’il reste au moins la moitié des sommets. La fonction Minimal, qui
l’appelle n fois (et au moins n/2 fois avec la moitié des sommets restants) a donc une
complexité cubique (Θ

(
n3

)
).

1.5 Recuit simulé

12. Il s’agit ici d’implémenter ce qui est décrit par le sujet. Plusieurs points à noter :
• choisir un vol revient simplement à effectuer un tirage aléatoire entre 0 et n −1 ;
• pour choisir une nouvelle régulation pour ce vol, la solution la plus simple consiste

à ajouter, à l’ancienne régulation r , soit 1, soit 2 (ce qui peut être obtenu avec
rand_i(2)+1) et ramener le résultat dans �0 . . 2� grâce à l’opérateur % ;

• pour déterminer la différence de coût∆c entre la précédente régulation et la nouvelle
régulation, on pourrait faire appel à cout_regulation (mais la fonction a un coût
quadratique) ou bien à cout_du_sommet (linéaire, mais cela nécessite de construire
un tableau etat_sommet). On peut aussi plus simplement revenir directement à la
matrice conflits, ce qui n’est pas bien compliqué et la solution choisie ici ;

• pour savoir si la nouvelle régulation vient remplacer l’ancienne, on peut remarquer
que rand_d() < exp(−∆C/T) est toujours vrai si ∆c est négatif, ce qui signifie qu’il
n’est pas utile de considérer les deux situations ∆c É 0 et ∆c > 0 séparément.

2



Ces précisions faites, la fonction ne présente guère de difficultés :

void etape_recuit(int reg[], int n, double T) {
int vol = rand_i(n); // On choisit un vol
int r = reg[vol]; // Sa régulation actuelle
int n_r = (r + rand_i(2) + 1); // Une nouvelle régulation
int diff_cout = 0; // Calcul de ∆c

for (int i=0; i<n; ++i) {
diff_cout = diff_cout + conflits[3*vol+n_r][3*i+reg[i]]

- conflits[3*vol+r][3*i+reg[i]]
}
if (rand_d() < exp(-diff_cout/T)) {

reg[vol] = n_r; // On adopte la nouvelle régulation
}

}

13. La fonction recuit alloue un tableau contenant une régulation grâce à
regulation_RFL, puis fait des appels à la fonction précédente tant que T Ê 1.0 :

int* recuit(int n) {
int* reg = regulation_RFL(n);
double T = 1000.0;
while (T >= 1.0) {

etape_recuit(reg, n, T);
T = 0.99*T;

}
return reg;

}

2 Problème 2 : Tri faire-valoir (langage C)

2.1 Implémentation

1. Il suffit d’échanger les deux valeurs si nécessaire :

void sort2(int arr[]) {
if (arr2[0] > arr2[1]) {

int tmp = arr2[0];
arr2[0] = arr2[1];
arr2[1] = tmp;

}
}

2. On applique l’algorithme proposé :

void stooge_sort(int arr[], int n) {
if (n==0) { return; }
if (n==1) { sort2(arr); return; }
int s = (2*n-1)/3+1;
stoogesort(arr, s);
stoogesort(&arr[n-s], s);
stoogesort(arr, s);

}

2.2 Analyse

3. Après le premier tri, on ne peut pas affirmer qu’un quelconque élément soit bien
placé. En effet, si les éléments étaient initialement dans l’ordre inverse, le dernier tiers
du tableau, non modifié, ne contient pas d’éléments bien placés. Et si les éléments étaint
initialement dans l’ordre croissant, à l’exception du dernier élément plus petit que tous les
autres, alors le premier tri ne modifie pas la position des éléments dans les deux premiers
tiers du tableau, or ceux-ci sont mal placés.

4. Les ⌊n/3⌋ derniers éléments sont bien placés.

5. Les ⌈2n/3⌉ premiers éléments ne sont pas nécessairement bien placés avant le dernier
des trois tri, mais ils le deviennent après celui-ci.

6. Pour n Ê 3, on a ⌈2n/3⌉ < n.

7. Les seuls déplacements d’éléments dans le tableau sont effectués par sort2, qui ne
fait que permuter des éléments si celui de gauche est strictement plus grand que celui de
droite, donc le tri est stable.

8. On a un = 3u⌈2n/3⌉.

9. Le nombre d’éléments lorsque l’on est dans le ke appel récursif imbriqué est de l’ordre

de n × ( 2
3

)k
. Il atteint 2 lorsque k log(2/3) ≃ log(1/2).

3 Problème 3 : points fixes (langage OCaml, d’après X)

3.2 Attracteurs

1. Par exemple la fonction qui à i ∈ E4 associe i +1[4].

2. Il existe neuf solutions, trois consistant en deux échanges (1032, 2301 et 3210) et six
permutations circulaires (1230, 1302, 2031, 2310, 3012 et 3201).

Pour les curieux, la formule générale est n!
n∑

k=0

(−1)k

k !
, soit l’entier le plus proche de n!

e .

3



3. Nous allons essayer tous les entiers de n −1 à 0, au moyen d’une fonction récursive,
jusqu’à trouver un point fixe de la fonction, ou épuiser les entiers candidats :

let has_fixed_point f n =
let rec loop = function
| -1 -> false
| i -> f i = i || loop (i-1)

in loop (n-1)

4. On utilise à profit la récursion ici, en remarquant que f k (i ) = f k1 par ens ∗ f (i )
lorsque k > 0 :

let rec iter f i k =
if k=0 then i else iter f (f i) (k-1)

On peut également écrire, en considérant f k (i ) = f
(

f k1(i )
)

lorsque k > 0 :

let rec iter f i k =
if k=0 then i else f (iter f i (k-1))

5. On prendra garde à toujours prêter une grande attention aux définitions de l’énoncé,
ici à la notion d’attracteur. Un malentendu sur ce que cela signifie risque de conduire à un
gaspillage de temps à écrire des fonctions qui ne répondent pas aux besoins exprimés par
le sujet. f k (x) point fixe signifie f

(
f k (x)

)= f k (x) et non f k (x) = x !

Pour un x donné, s’il existe k tel que f k (x) est un point fixe de f , alors nécessairement
f n−1(x) est un point fixe de f . En effet, si l’on considère la suite x, f (x), f 2(x), ..., f n(x), il y
a nécessairement un entier y qui apparaît au moins deux fois. Notons p et q les rangs dans
la suite où y apparaît pour les deux premières fois (y = f p (x) = f q (x), avec 0 É p < q É n).
Deux cas sont possibles :

• q = p +1, donc f (y) = y , y est un point fixe, et dans ce cas f n−1(x) = f n−1−p
(
y
)= y

(on a n −1−p Ê 0) est un point fixe;
• q > p + 1 auquel cas au-delà du rang p, les valeurs f k (x) sont un cycle

f p (x), f p+1(x), . . . , f q−1(x) de q −p Ê 2 valeurs distinctes qui se répêtent (pour tout
k Ê p, f k (x) = f p+r (x) où r est le reste de la division entière de k −p par q −p), donc
f n−1(x) ̸= f n(x).

On peut donc simplement vérifier que, pour tout x ∈ En , f n−1(x) = f n(x) (on pourrait
aussi vérifier qu’il y a un point fixe parmi x, f (x), . . . , f n−1(x)).

Dans une telle question, l’explication doit être très claire (et dans la mesure du possible
succinte), pour qu’il n’y ait aucune ambiguïté sur l’algorithme proposé. Au besoin, n’hésitez
pas à écrire les choses en pseudo-code.

6. On applique l’idée proposée à la question précédente. Cette fois encore, pour tester,
pour tout i ∈ En on a f

(
f n−1(i )

)= f n−1(i ), on utilise une fonction récursive. On notera y

la valeur de f n−1(i ) pour ne pas la calculer deux fois lorsque l’on teste si f
(
y
) = y . Cela

donne :

let has_attractor f n =
let rec loop = function
| -1 -> true
| k -> let y = iter f k (n-1) in

y = f y && loop (k-1)
in loop (n-1)

7. Dans le pire des cas, on doit calculer f n(i ) pour tout i ∈ En , avant d’effectuer un test
en temps constant. Chaque calcul de f n(i ) a un coût linéaire en n, donc la fonction a une
complexité temporelle dans le pire des cas quadratique en n (O (n))

8. On utilise à nouveau la récursion, en notant que le temps de convergence de i est nul
si f (i ) = i , et sinon il vaut le temps de convergence de f (i ) plus 1. Cela donne donc :

let rec time_conv f i =
if f i = i then 0 else time_conv f (f i)

3.3 Recherche efficace de points fixes.

9. On teste, pour tout i ∈ �1 . . n − 1�, si f (i −1) É f (i ). Toujours avec une fonction
récursive pour implémenter l’itération :

let incr f n =
let rec loop = function
| 0-> true
| k -> f (k-1) <= f k && loop (k-1)

in loop (n-1)

10. Il existe de nombreuses façons de procéder. Considérons par exemple l’ensemble
des entiers p ∈ �0 . . n −1� tels que f

(
p

)> p.

Si cet ensemble est vide, alors nécessairement f (0) = 0, donc f admet un point fixe.

Sinon, notons k le plus grand élément de l’ensemble. On a nécessairement k < n −1
puisque f (n −1) É n −1, donc k +1 ∈ En .

On a donc f (k +1) É k +1 et f (k +1) Ê f (k) > k dont f (k +1) Ê k +1.

Les deux inégalités imposent f (k +1) = k +1, donc k +1 est un point fixe.

On aurait également pu étudier la fonction g (n) = f (n)−n et montrer l’existence d’une
racine (attention, le théorème des valeurs intermédiaires concerne normalement les fonc-
tions continues), ou utiliser une démonstration par récurrence sur la taille de En (c’est

4



nécessairement vrai pour E1, et si c’est vrai pour En , pour le montrer pour En+1, on dis-
tingue le cas où fn = n et celui où f (n) < n, auquel cas la restriction de la fonction à En est
à valeur dans En), ou que sans points fixes, ∀x ∈ En , f (x) > x donc f (n −1) ∉ En ...

11. On va ici s’inspirer de la recherche dichotomique :

let fixed_point f n =
let rec search i j =
(* Invariant : il y a un point fixe dans [i..j] *)
let k = (i+j)/2 in
let image = f k in
if image = k then k else
if image > k then search i (k-1)

else search (k+1) j
in search 0 (n-1)

12. La propriété est l’invariant indiqué la fonction précédente : lors de tous les appels,
il existe un point fixe de f dans �i . . j �. On l’a montré dans la question précédente pour
l’appel initial, et les conditions des appels récursifs maintiennent cet invariant.

13. Si l’on considère la quantité j-i, elle décroit strictement à chaque appel (en effet
k ∈ �i . . j �, donc k +1 > i ou k −1 < j , selon le cas considéré) dans l’ensemble des entiers
naturels.

Pour justifier la complexité, on peut noter qu’après k itérations, on a donc j-iÉ
(n −1)/2k . Si l’on tente d’effectuer log2(n −1) itérations, on parvient donc à j == i (et
l’algorithme s’arrête, car compte tenu de l’invariant de boucle, mini est un point fixe).

Chaque itération de la boucle while s’effectuant en temps constant (ne pas oublier
ce point, il n’est pas possible par exemple d’effectuer une copie d’une partie de la liste à
chaque itération!), on a bien une complexité logarithmique.

Remarque : il faut s’efforcer d’être rigoureux sur ce genre de question. Il est généralement
faux de dire que le nombre d’éléments restant à considérer est divisé par deux (il y a parfois
un nombre impair d’éléments), et possiblement faux de dire qu’il est divisé au moins par
deux. Cela étant dit, il suffit de majorer la suite par une suite géométrique de raison k < 1
pour obtenir une complexité logarithmique.

� Résultats

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

5

10

0 1 2 3 4 5 6 7 8 9
0

5

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.0

2.5

5.0

5


	Régulation de vol (langage C, d'après CentraleSupélec)
	Implémentation du problème
	Régulation
	L'algorithme Minimal
	Recuit simulé

	Problème 2 : Tri faire-valoir (langage C)
	Implémentation
	Analyse

	Problème 3 : points fixes (langage OCaml, d'après X)
	Attracteurs
	Recherche efficace de points fixes.


