
Tableau de bord (d’après le concours Polytechnique)

La durée du devoir est de 3h. Les fonctions dont on demande une implémentation sont
à écrire dans le langage OCaml. Toutes les fonctions de la bibliothèque standard sont
autorisées. Cela inclue en particulier les fonctions de la forme List.XXX, incluant (mais
non limitées à) celles rappelées ci-dessous.

List.length : 'a list -> int

Renvoie le nombre d’éléments dans la liste fournie en argument. Complexité linéaire
en la taille de la liste (O (n)).

List.hd : 'a list -> 'a

Renvoie le premier élément de la liste fournie en argument. Complexité constante
(O (1)).

List.tl : 'a list -> 'a

Renvoie la liste en argument privée de son premier élément. Complexité constante
(O (1)).

List.rev : 'a list -> 'a list

Retourne une nouvelle liste contenant les éléments de la liste fournie en argument
en ordre inverse. Complexité linéaire en la taille de la liste (O (n)).

List.init : int -> (int -> 'a) -> 'a list

« List.init n f » crée la liste [f 0; f 1; ...; f (n-1)] à n éléments obtenus
en appelant la fonction f successivement avec les entiers de 0 à n-1 (dans cet ordre).

List.map : ('a -> 'b) -> 'a list -> 'b list

« List.map f lst » renvoie la liste [fa0; fa1; ...; fan−1] où les ai sont les élé-
ments de la liste lst. L’ordre d’évaluation des f ai n’est pas spécifiée.

Toute fonction peut librement être réutilisée dans les questions suivantes, y compris les
fonctions demandées par l’énoncé que vous n’êtes pas parvenus à écrire.

Il est demandé d’attacher une attention toute particulière à la clarté et la lisibilité
des fonctions. On attend d’une fonction qu’elle soit juste, mais également qu’elle ne soit
pas inutilement compliquée. Pour toute fonction de plus de quelques lignes, il convient
d’en expliquer clairement le fonctionnement (ce que les noms désignent, ce que font les
éventuelles fonctions auxilliaires et la signature de celles-ci, etc.). Il est recommandé de
proposer des invariants de boucles chaque fois que cela fait sens.

1 Introduction

Nous considérons un système commandé par un tableau de bord comportant N inter-
rupteurs, chacun pouvant être baissé ou levé. On désire tester ce système (pour le valider
ou pour effectuer une opération de maintenance) en essayant mécaniquement chacune
des 2N configurations possibles pour l’ensemble des interrupteurs.

Le coût de cette opération, qu’elle soit réalisée par un opérateur humain ou par un
robot, sera le nombre total de mouvements d’interrupteurs nécessaires. Nous suppo-
sons que chaque fois qu’un interrupteur est commuté le système effectue un diagnostic
automatiquement et instantanément. Les interrupteurs sont indexés de 0 à N−1.

0 1 2 3 4

System OK
System OK
System OK

2 Parties de N

Nous appelons partie un sous-ensemble fini de l’ensemble N des entiers naturels. Un
élément d’une partie est appelé indice. La différence symétrique de deux parties P et Q est
définie par :

P ∆ Q = (P \ Q)∪ (Q \ P) = (P∪Q) \ (P∩Q)

On vérifie facilement que la différence symétrique est commutative et associative, ce
que l’on ne demande pas de démontrer. Pour tout entier n positif ou nul, nous notons
In = {0, . . . ,n −1} l’ensemble des entiers naturels inférieurs strictement à n.

Une partie sera représentée par une liste d’indices distincts apparaissant dans l’ordre
croissant des entiers. On utilisera les types suivants :

type indice == int
type partie == indice list

1. Proposer une fonction valid, de signature partie -> bool, prenant en argument de
type partie et renvoyant un booléen indiquant s’il valide toutes les hypothèses (indices

1



positifs, distincts, rangés par ordre croissant).

Dans la suite, tous les objets de type partie fournis en argument sont réputés vérifier
ces hypothèses (il n’est pas demandé de le contrôler, tout comportement de la fonction
est admissible si ce n’est pas le cas), et tous les objets de type partie retournés par vos
fonctions devront les vérifier également.

2. Écrire la fonction delta, de signature partie -> partie -> partie qui réalise la
différence symétrique de 2 parties. Le nombre d’opérations ne devra pas excéder O (m +n),
où m et n sont les cardinaux des arguments. Nous rappelons que dans toute liste de type
partie les indices sont distincts et doivent apparaître dans l’ordre croissant des entiers.

3 Énumération des parties par incrément

À toute partie P, nous associons l’entier e(P) =∑
i∈P 2i (avec la convention e(;) = 0). Nous

définissons le successeur de P comme l’unique partie dont l’entier associé est (e(P)+1).
Par exemple, le successeur de la partie P =[0; 1; 3] (e(P) = 20 +21 +23 = 11) est la partie
[2; 3] (e(P) = 22 +23 = 12).

3. Écrire la fonction succ, de signature partie -> partie qui prend en argument une
partie et renvoie le successeur de la partie. Le nombre d’opérations ne devra pas excéder
O (l ) où l est le plus petit indice absent dans la partie donnée en argument.

Dans le cadre du problème des interrupteurs, on associe à chacune des configurations
possibles la partie formée des indices des interrupteurs baissés. En application de ce
mode d’énumération des parties, nous voulons réaliser le test de toutes les configurations
d’interrupteurs. Au début et à la fin du test tous les interrupteurs seront levés. Par exemple,
pour N = 2, on considère la séquence suivante :

0 1 0 1 0 1 0 1 0 1

4. Proposer une fonction sequence de signature int -> partie list prenant en argu-
ment le nombre d’interrupteurs et renvoyant la liste des listes des indices des interrupteurs
à commuter pour réaliser la totalité du test pour les N interrupteurs et qui examine les
configurations dans l’ordre défini par le successeur. Par exemple, pour N = 2, le résultat
attendu sera [[0]; [0; 1]; [0]; [0; 1]] : en partant de tous les interrupteurs levés,
on commence par abaisser l’interrupteur 0 pour obtenir la première configuration, puis
on remonte l’interrupteur 0 tout en baissant l’interrupteur 1 pour obtenir la seconde
configuration, puis on baisse à nouveau l’interrupteur 0 pour obtenir la troisième confi-
guration, puis on relève les deux interrupteurs pour revenir à la configuration où tous les
interrupteurs sont levé.

5. Exprimer, en fonction de N, le nombre total d’interrupteurs à commuter pour réaliser
le test de cette manière.

4 Énumération des parties par un code de Gray
Nous notons 〈u0, . . . ,ul−1〉 une suite finie de l entiers. La concaténation de deux suites

finies de longueur l et l ′ respectivement est une suite finie de longueur l + l ′ définie par
〈u0, . . . ,ul−1〉 · 〈u′

0, . . . ,u′
l ′−1〉 = 〈u0, . . . ,ul−1,u′

0, . . . ,u′
l ′+1〉.

La suite vide, notée 〈〉, est la suite de longueur 0. Une suite finie U est préfixe d’une autre
suite finie V s’il existe une suite finie W telle que V = U ·W (autrement dit U est le début de
V).

Pour tout entier positif ou nul n, nous considérons la suite finie T(n) de longueur 2n −1
définie par T(0) = 〈 〉 et T(n +1) = T(n) · 〈n〉 ·T(n). Nous avons par exemple T(1) = [0],
T(1) = [0,1,0] et T(3) = [0,1,0,2,0,1,0].

Pour tout entier i positif ou nul nous notons ti le (i + 1)e élément de T(n) s’il existe.
Puisque T(n) est préfixe de T(n +1), la suite (ti )iÊ0 est définie sans ambiguïté.

Enfin, nous posons S0 =; et pour tout entier i positif ou nul nous définissons l’ensemble
Si+1 = Si ∆ { ti }.

6. Donner la valeur de T(4).

7. Donner la valeur de Si pour tout i inférieur ou égal à 15.

Nous voulons montrer que les Si peuvent être utilisés pour énumérer les parties de In , et
ainsi résoudre notre problème d’interrupteurs.

8. Donner la valeur de S2n−1 pour tout n Ê 0.

9. Montrer que pour tout n > 0 et tout i < 2n , on a S2n+i = Si ∆ {n −1,n }.

10. En déduire que pour tout n Ê 0 l’ensemble Pn = {S0,S1, . . . ,S2n−1 } est l’ensemble des
parties de In .

Revenons au problème des interrupteurs. Comme dans la section précédente, nous
imposons que les interrupteurs soient levés au début et à la fin du test.

11. En s’inspirant des résultats de cette partie, proposer une fonction sequence_gray
de signature int -> partie list prenant en argument le nombre d’interrupteurs et
renvoyant la liste des listes des indices des interrupteurs à commuter pour réaliser la
totalité du test pour les N interrupteurs.

12. Quel est le coût du test avec cette méthode (c’est-à-dire le nombre total d’interrup-
teurs à commuter)? Peut-on réaliser le test à un coût moindre ?

Pour tout i > 0, on note min(Si ) le plus petit élément de Si .

13. Donner une expression de ti en fonction de Si pour i impair.

14. En déduire une fonction succ_gray de signature partie -> partie qui prend en
argument une partie et retourne celle qui la suit immédiatement dans l’ordre défini par la
suite (Si )iÊ0.

2



5 Système défaillant

Chaque interrupteur baissé active une composante du système, et un mauvais fonc-
tionnement de l’alimentation électrique provoque une défaillance dès que plus de K
interrupteurs sur les N sont baissés.

15. Écrire une fonction test de signature partie -> partie -> indice liste qui
renvoie une liste d’interrupteurs à commuter, de taille minimale, permettant de passer
d’une configuration non défaillante à une autre sans provoquer de défaillance. Les argu-
ments de ce programme seront la partie de départ et la partie cible. Par exemple, pour
K = 4, on peut passer de [1; 3; 4] à [0; 4; 5] en commutant successivement les inter-
rupteurs 1, 0, 5 et 3 (à aucun moment il n’y a strictement plus de 4 interrupteurs baissés).
[1; 0; 5; 3] est donc un résultat acceptable (mais ce n’est pas le seul). On remarquera
que la liste des interrupteurs à commuter n’est pas nécessairement une partie (dans notre
exemple, les indices ne sont pas par ordre croissant).

L’inverse d’une suite finie T est obtenue en prenant ses éléments dans l’ordre inverse,
nous la notons T̃. Soit T(n,k) la suite définie pour tout k Ê 1 et pour tout n Ê 1 par

T(1,k) = 〈0〉
T(n +1,1) = T(n,1) · 〈n −1,n〉
T(n +1,k +1) = T(n,k +1) · 〈n〉 · T̃(n,k)

16. Proposer une fonction t de signature int -> int -> int list prenant en argu-
ments n, k et renvoyant la liste T(n,k).

Soit k un entier strictement positif. Pour tout entier i positif ou nul nous notons tk,i

le (i +1)e élément de T(n,k) s’il existe. Puisque T(n,k) est préfixe de T(n +1,k), la suite(
tk,i

)
iÊ0 est définie sans ambiguïté.

Enfin, nous posons Sk,0 = ; et pour tout entier i positif ou nul nous définissons l’en-
semble Sk,i+1 = Sk,i ∆

{
tk,i

}
.

17. Exprimer la longueur ln,k de T(n,k) en fonction de n, de k et du nombre sn,k de
parties de In de cardinal inférieur ou égal à k.

18. Montrer que pour tout k Ê 1 et tout n Ê 1 l’ensemble Pn,k =
{

Sk,0,Sk,1, . . . ,Sk,ln,k

}
est

l’ensemble des parties de In de cardinal inférieur ou égal à k.

19. Écrire un programme test_panne de signature int -> int -> indice list qui
renvoie une liste de lN,K +1 interrupteurs à commuter permettant de vérifier toutes les
configurations non défaillantes sans provoquer de défaillance, en commençant et en
finissant avec des interrupteurs tous levés. Les entiers N et K sont donnés en arguments.

20. Montrer que le coût d’un test commençant et en finissant avec des interrupteurs
tous levés et ne provoquant pas de défaillance ne peut pas être inférieur à lN,K +1.

3


	Introduction
	Parties de N
	Énumération des parties par incrément
	Énumération des parties par un code de Gray
	Système défaillant

