
Tableau de bord (d’après le concours Polytechnique)

2 Parties de N

1. Le plus simple est sans doute de décomposer le test. On peut commencer par écrire
une fonction testant si une liste est strictement croissante (ce qui impose par ailleurs des
éléments distincts) :

let rec increasing = function
| h1::h2::t -> h1 < h2 && increasing (h2::t)
| _ -> true

Puis garantir qu’ils sont positifs en vérifiant la tête, si elle existe (on pourrait bien évi-
demment combiner ces deux fonctions en une seule) :

let valid lst =
lst = [] || List.hd lst >= 0 && increasing lst

Attention au style, même si « if XXX then true else false » n’est pas incorrect,
« XXX » étant un booléen, on peut l’utiliser directement et se passer du test ! De même,
« if XXX then YYY else false » peut s’écrire « XXX && YYY ». La concision n’est pas un
objectif en soi, mais elle conduit souvent à une fonction plus aisée à lire, ce qui doit en
revanche être une préoccupation lorsque l’on écrit du code.

2. On peut distinguer les différents cas de figure :

let rec delta p1 p2 = match p1, p2 with
| _, [] -> p1
| [], _ -> p2
| h1::t1, h2::t2 when h1<h2 -> h1::delta t1 p2
| h1::t1, h2::t2 when h1>h2 -> h2::delta p1 t2
| h1::t1, h2::t2 -> delta t1 t2

3 Énumération des parties par incrément
3. Pour s’aider, il ne faut pas hésiter à considérer des exemples (nombreux) : [] donne

[0], puis [1], puis [0; 1], puis [2], puis [0; 2], puis [1; 2], puis 0; 1; 2], puis [3],
puis [0; 3] (il s’agit d’une décomposition des entiers de 0 à 9). [1; 3; 5] (42) donne
[0; 1; 3; 5], puis [2; 3; 5], puis [0; 2; 3; 5]...

Il s’agit en fait d’ajouter le plus petit entier n’apparaissant pas dans la partie et de retirer
tous les entiers plus petits présents. On peut y parvenir avec une fonction auxiliaire qui
prend en argument un entier i et une partie constituée d’entiers supérieurs ou égaux à

i, et qui ajoute i à la partie si i n’y figure pas (il serait en tête par construction), et sinon
tente d’ajouter i+1 à la partie privée de i :

let succ lst =
let rec aux i lst = match lst with
| h::t when i=h -> aux (i+1) t
| _ -> i::lst

in aux 0 lst

Une autre solution pertinente que j’ai vue dans certaines copies consiste à ajouter un 0
en tête de liste (ce qui ajoute bien 20 = 1 au total associé), et tant que la liste commence
par deux éléments égaux h, on les remplace tous les deux par un unique h +1 :

let succ lst =
let rec aux = function
| h1::h2::t when h1=h2 -> aux (h1+1::t)
| lst -> lst

in aux (0::lst)

4. On peut énumérer les parties avec succ jusqu’à parvenir à une partie réduite à N (la
première faisant intervenir un entier supérieur ou égal à N, et la 2Ne partie incidemment).
Pour obtenir les interrupteurs à basculer, on utilise delta (excepté pour la dernière étape
où on rebascule tous les interrupteurs).

let sequence n =
let rec aux p = match succ p with
| [i] when i=n -> [p]
| p' -> delta p p'::aux p'

in aux []

Il existe quantité d’autres façon d’obtenir la liste demandée. Par exemple, on peut remar-
quer que 0 apparaît chaque fois, 1 une fois sur deux, 2 une fois sur quatre, etc. Et remarquer
que k apparaît à la position i dans la liste si et seulement si il y a au moins k zéros à droite
de l’écriture binaire de i +1. On peut construire une liste des entiers de 0 à k où k est le
nombre de zéros à droite dans l’écriture binaire d’un entier n > 0 en écrivant :

let build n =
let rec aux i n =
if n mod 2 = 0 then i::aux (i+1) (n/2) else [i]

in aux 0 n

1

On définit également une fonction permettant de déterminer 2n :

let rec pow2 n =
if n=0 then 1 else 2*pow2 (n-1)

On serait alors tenté d’écrire

let sequence n =
List.init (pow2 n) (fun i -> build (i+1)) (* faux ! *)

Mais il y a un petit souci : N apparaîtrait en dernière place de la dernière liste, ce que l’on
ne souhaite pas. Plutôt que de l’enlever, on peut remarquer que la première moitié de la
liste demandée est identique à la seconde, et écrire plutôt :

let sequence n =
let lst = List.init (pow2 (n-1)) (fun i -> build (i+1))
in lst @ lst

Cela dit, si l’on remarque que la seconde moitié de la liste est identique à la première,
on peut aussi remarquer que la seconde moitié de la première moitié est identique à la
première moitié de la première moitié, au seul ajout près d’un n −1 en fin de la toute
dernière liste. Et récursivement. Pour des raisons de simplicité, on peut construire la liste
retournée des listes retournées, et opérer tous les retournements à la fin. Ce qui donne
la fonction ci-dessous, qui devrait être davantage commentée, mais que je vous laisse
analyser.

let sequence n =
let rec aux = function
| 0 -> [[0]]
| n -> let lst = aux (n-1) in (n::List.hd lst)::List.tl lst @ lst

in let lst = aux (n-1) in List.rev (List.map List.rev (lst @ lst))

Comme vous le voyez, il y a des dizaines de solutions différentes, mais elles néces-
sitent d’être expliquées, d’autant qu’il est aisé de commettre une petite erreur dans la
construction.

5. La discussion précédente contient la réponse à cette question : l’interrupteur 0 est
commuté 2N fois, le 1 l’est 2N−1 fois, jusqu’au N−1 qui l’est deux fois.

Au total, 2N +2N−1 +2N−2 + . . .+2 = 2N+1 −2 commutations.

4 Énumération des parties par un code de Gray
6. T(4) = [0,1,0,2,0,1,0,3,0,1,0,2,0,1,0].

7. S0 = ;, S1 = {0}, S2 = {0,1}, S3 = {1}, S4 = {1,2}, S5 = {0,1,2}, S6 = {0,2}, S7 = {2},
S8 = {2,3}, S9 = {0,2,3}, S10 = {0,1,2,3}, S11 = {1,2,3}, S12 = {1,3}, S13 = {0,1,3}, S14 =
{0,3}, S15 = {3}

8. Pour parvenir à S2n−1, si n > 0, on commute un nombre pair de fois tous les interrup-
teurs inférieurs ou égaux à n −2 (du fait de la double apparition de T(n) dans l’expression)
et une seule fois l’interrupteur n −1, donc S2n−1 = {n −1}.

Dans le cas particulier n = 0, on a S20−1 = S0 =;.

9. On a S2n = S2n−1 ∆ t2n = {n −1}∆ {n } = {n,n −1}.

Ensuite, on remarquera que t2n+i = ti par construction de T (à cause de la répétition
de T(n) dans la définition, et en remarquant que la longueur de Tn est 2n −1) pour tout
i < 2n−1. On peut donc montrer que pour tout i < 2n , S2n+i = Si ∆ {n,n −1} par récurrence
sur i :

• c’est vrai pour i = 0, puisque S0 =; et S2n = {n,n −1} ;
• si S2n+i = Si ∆ {n,n −1} et i < 2n − 1, alors S2n+i+1 = S2n+i ∆ t2n+i =

(Si ∆ {n,n −1}) ∆ t2n+i = (Si ∆ {n,n −1}) ∆ ti = (Si ∆ ti) ∆ {n,n −1} =
Si+1 ∆ {n,n −1} (respectivement définition de Sk , hypothèse de récurrence,
remarque précédente sur t2n+i , associativité et commutativité de ∆).

Par récurrence, on a donc bien pour tout i < 2n , S2n+i = Si ∆ {n,n −1}.

10. On peut le faire par récurrence sur n.

Hn : Pn = {S0,S1, . . . ,S2n−1 } est l’ensemble des parties de In .

C’est vrai pour H1, H2, H3 et H4 comme on peut le voir ci-dessus.

Supposons Hn vrai, et étudions Hn+1. Pour montrer qu’il s’agit des parties de In+1, il suffit
demontrer que tout les Sk sont distincts puisque le cardinal est celui attendu. La première
moitié des Sk représente, par réccurrence, les parties de In , donc ils sont tous distincts et
n n’y apparaît pas. Pour les 2n restants, d’après la question précédente, n apparaît dans
chacun d’entre eux.

Il ne reste donc qu’à prouver que les 2n parties de la seconde moitié des Sk sont
distincts deux à deux. Mais s’il existe k et k ′ différents tels que S2n+k = S2n+k ′ , alors
S2n+k ∆ {n −1,n } = S2n+k ′ ∆ {n −1,n }, donc Sk = Sk ′ , ce qui est impossible.

Tous les éléments sont donc bien distincts deux à deux, et Hn est vérifié.

11. On remarquera que si le sujet laisse une certaine ambiguité sur la question, chacune
des 2N listes d’indices est une liste à un seul élément ! Il s’agit par ailleurs pratiquement
des ti , à une seule exception : le dernier qui ne doit pas être N mais N−1. Par exemple,
pour N = 3, on veut

[[0]; [1]; [0]; [2]; [0]; [1]; [0]; [2]]

Là encore, il existe énormément de façons d’obtenir cette liste. Une amusante (mais ineffi-

2

cace) consisterait simplement à prendre le dernier élément de chaque liste de sequence n :

let sequence_gray n =
List.map (fun lst -> [List.hd (List.rev lst)]) (sequence n)

Plus efficacement, on peut simplement construire T(n) (attention, on ne peut pas utiliser
de majuscule pour les noms en OCaml, on écrit donc « t ») :

let rec t = function
| 0 -> []
| n -> let lst = t (n-1) in lst @ (n-1) :: lst

Et ajouter un n −1 à la fin, et on place chaque élément seul dans une liste :

let sequence_gray n =
List.map (fun x -> [x]) (t n @ [n-1])

Même si le sujet n’impose pas de complexité, on peut vérifier que malgré la présence de
concaténations, la fonction reste de complexité linéaire en la longueur de la liste, 2N.

12. Comme chaque liste est de longueur 1, et qu’il y en a 2N, il y a donc exactement 2N

interrupteurs à commuter. Et comme il y a 2N configurations distinctes à visiter, et qu’il
faut au moins commuter un interrupteur pour passer de l’une à l’autre, il faut au moins
2N −1 commutations pour les visiter toutes, et une dernière pour revenir à la situation
initiale. On ne peut pas faire mieux.

13. Montrons que ti = min(Si)+1 lorsque i est impair.

Pour ce faire, utilisons une récurrence sur n pour montrer que pour tout i impair dans
�2n . . 2n+1 −1� on a ti = min(Si)+1.

C’est vrai pour n = 0 (soit i = 1) car t1 = 1 et S1 = {0}.

Supposons cela vrai pour n. Soit i impair dans �2n+1 . . 2n+2 −1�.

Si i = 2n+2 −1, d’après les questions précédentes, Si = {n +1} et ti = n +2, donc cela
convient.

Sinon, i < 2n+2 −1, Si = Si−2n+1 ∆ {n,n +1}. Or i −2n+1 est impair et 0 < i −2n+1 < 2n+1.
Donc par récurrence, ti−2n+1 = 1+min

(
Si−2n+1

)
. Et on sait que par construction, ti = ti−2n+1 .

Il ne reste donc qu’à montrer que min
(
Si−2n+1

) = min(Si), en sachant que Si =
Si−2n+1 ∆ {n +1,n }. Or Si ne peut être parmi ;, {n +1}, {n } et {n,n +1} puisque ces confi-
gurations sont S0, S2n+2−1, S2n+1−1 et S2n+1 . Par conséquent, il y a nécessairement un entier
strictement inférieur à n dans Si et Si−2n+1 , donc on a bien min

(
Si−2n+1

)= min(Si).

Par récurrence, pour tout n, pour tout i impair dans �2n . . 2n+1 −1� on a ti = min(Si)+1,
donc la relation est vraie pour tout entier positif i impair !

14. Notons que si i est pair, alors ti = 0. En outre, pour savoir à partir d’un Si , si i est pair,
il suffit de regarder le cardinal de Si : en effet, comme on part d’une partie vide et que l’on
commute un unique interrupteur à chaque étape, le cardinal de Si et i ont même parité.

Par ailleurs, même si la question précédente fait référence au minimum, il ne faut pas
oublier que les parties sont triées, donc que le minimum est simplement la tête de la liste
(qui ne peut être vide dans le cas qui nous intéresse puisque de longueur impaire).

Par conséquent, cela donne :

let succ_gray p =
let ti = if List.length p mod 2 = 0 then 0 else List.hd p + 1
in delta p [ti]

5 Système défaillant

15. Pour passer d’une partie p1 à une partie p2, on peut commencer par lever les
interrupteurs de p1 qui ne sont pas dans p2, puis baisser ceux de p2 qui ne sont pas dans
p1. À aucun moment on aura plus d’interrupteurs baissés que dans les configurations
initiales et finales, qui sont valides.

On peut commencer par écrire une différence non symétrique (P1 \ P2) :

let rec diff p1 p2 = match p1, p2 with
| _, [] -> p1
| [], _ -> []
| h1::t1, h2::t2 when h1<h2 -> h1::diff t1 p2
| h1::t1, h2::t2 when h1=h2 -> diff t1 t2
| h1::t1, h2::t2 -> diff p1 t2

Et donc

let test p1 p2 =
diff p1 p2 @ diff p2 p1

16. Appliquons simplement la formule fournie (la complexité peut sembler importante
du fait des concaténations et retournements, mais les tailles des listes croissent suffisam-
ment vite pour que ce ne soit en pratique pas un réel problème si l’on y regarde de plus
près).

let rec t n k =
if n=1 then [0] else
if k=1 then t (n-1) 1 @ [n-2; n-1] else
t (n-1) k @ (n-1) :: (List.rev (t (n-1) (k-1)))

3

17. On a naturellement, d’après la définition de T(n,k) :
l1,k = 1

ln+1,1 = ln,1 +2

ln+1,k+1 = ln,k+1 + ln,k +1

Notons que les deux premières relations donnent aisément ln,1 = 2n −1, et que la pre-
mière et la troisième conduisent naturellement à l2,k = 3 pour tout k > 0, et ln,k = 2n −1
pour n > 2 et pour tout k Ê n−1. En particulier, ln,n−1 = 2n −1. Nous aurons besoin de cela
plus loin.

Le nombre de configurations avec n interrupteurs où au plus k sont baissés est, si k Ê 1

sn,k =
min(n,k)∑

k ′=0

Ck ′
n

En posant Ck
n = 0 si k > n ou k < 0, on a sn,k =

k∑
k ′=0

Ck ′
n .

On a donc
• s1,k = 2 ;
• sn,1 = n +1 donc sn+1,1 = sn,1 +1 ;

• sn+1,k+1 =
k+1∑
k ′=0

Ck ′
n+1 =

k+1∑
k ′=0

Ck ′
n +

k∑
k ′=0

Ck ′
n = sn,k+1 + sn,k .

Puisque l’on cherche une relation entre ln,k et sn,k , considérons an,k = ln,k − sn,k . On a,
d’après les relations précédentes,

an+1,k+1 = ln+1,k+1 − sn+1,k+1 = ln,k+1 + ln,k +1− sn,k+1 − sn,k = an,k+1 +an,k +1

Cette relation est proche de celle du triangle de Pascal, à un +1 près. Posons donc
bn,k = an,k +1 = ln,k − sn,k +1. On a

bn+1,k+1 = bn,k+1 +bn,k

Par ailleurs, bn+1,1 = (2n +1)− (1+n +1)+1 = n et bn+1,n = 2n+1 −1−2n+1 +1 = 1.

On a donc bn+1,k = Ck
n , soit bn,k = Ck

n−1, et donc

ln,k = sn,k +Ck
n−1 −1

18. Montrons par récurrence que Pn,k =P
(
In,k

)
où In,k est l’ensemble des parties de In

de cardinal inférieur ou égal à k. L’idée est similaire à la question 10. On peut décomposer
la séquence en :

Sk,0
∆ t0→ Sk,1

∆ t1→ . . .
∆ tln,k−1→ Sk,ln−1,k

{n−1}→ Sk,ln−1,k+1

∆ tln−1,k+1→ . . .
∆ tln,k−1→ Sk,ln,k

L’interrupteur n − 1 n’est commuté qu’une seule fois dans cette séquence. En effet,
avant le 〈n −1,n −2〉, on a une séquence Tn−1,k et ensuite une séquence T̃n−1,k−1 par
construction.

On peut donc procéder par récurrence sur n et montrer que, pour chaque n > 0, pour
tout k > 0, Pn,k =P

(
In,k

)
et Sn,ln,k

= {n −1}.

Pour n = 1, l1,k = 1, on a P1,k = {;, {0}}, ce qui convient (on visite tous les états pos-
sibles avec un seul interrupteur et au plus un interrupteur baissé, et on termine avec
l’interrupteur n −1 = 0 baissé).

Supposons cela vrai pour n, et considérons deux cas !
• Si k = 1, alors Pn+1,1 = {;, {0},;, {1}, . . . ,;, {n } }, et cela convient.
• Si k > 1, les Sn+1,k décrivent d’abord P

(
Pn,k

)
, l’ensemble des états où n est levé à

au plus k interrupteurs baissés, et termine avec n −1 baissé. Ensuite, on commute
n (ce que l’on peut faire puisque n −1 est le seul baissé et k > 1, et on se retrouve
avec n et n −1 seuls baissés et tous les autres interrupteurs levés. Puis on exécute
une séquence qui ne touche plus à n et visite toutes les possibilités où l’on baisse au
plus k −1 des n −1 interrupteurs restants (ce qui avec n fait k interrupteurs baissés),
suivant exactement la séquence Pn,k−1 à l’envers (on part de son état final où seul
n −1 est baissé) jusqu’à relever tous les interrupteurs (sauf n donc).

On a donc bien Pn,k =P
(
In,k

)
pour tout k et pour tout n.

19. Il s’agit en fait d’utiliser la liste T(N,K) en ajoutant simplement un N−1 au bout

let test_panne n k =
t n k @ [n-1]

20. Il faut évidemment au moins visiter l’ensemble des sN,K configurations et revenir au
départ, ce qui impose au moins sN,K commutations. Mais pourquoi en faut-il davantage?
Pour le comprendre, il faut s’intéresser aux nombres de configurations avec au plus K
interrupteurs baissés parmi N.

Par exemple, pour N = 6 et K = 3, il y a 1 configuration où ils sont tous levés, 6 où il y en a
un baissé, 15 où il y en a deux, et 20 où il y en a trois. Donc 42 configurations.

Seulement, on constate que l’on a 26 configurations avec un nombre pair d’interrupteurs
baissés, et seulement 16 avec un nombre impair. Or, en basculant un interrupteur, on ne
peut passer que d’un nombre pair à un nombre impair ou inversement. Pour visiter les 26
configurations avec un nombre impair d’interrupteurs baissés, il faut donc au moins 52
étapes, soit 10 étapes de plus !

Le nombre de commutations est donc égal au moins au double du maximum du cardinal
des configurations à un nombre d’interrupteurs pairs baissés et du cardinal des configura-
tions à un nombre d’interrupteurs impair baissés. Il faut donc ajouter la valeur absolue de

4

la différence entre les deux cardinaux. Soit au moins

sN,K +
∣∣∣∣∣ K∑
k=0

(−1)k Ck
N

∣∣∣∣∣= sN,K + ∣∣(−1)KCK
N−1

∣∣= sN,K +CK
N−1 = lN,K +1

� Résultats

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

2

4

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

2

4

6

5

	Parties de N
	Énumération des parties par incrément
	Énumération des parties par un code de Gray
	Système défaillant

