Tableau de bord (d’apres le concours Polytechnique)

Parties de N

1. Le plus simple est sans doute de décomposer le test. On peut commencer par écrire
une fonction testant si une liste est strictement croissante (ce qui impose par ailleurs des
éléments distincts) :

let rec increasing = function
| h1::h2::t -> h1 < h2 && increasing (h2::t)
| _ => true

Puis garantir qu’ils sont positifs en vérifiant la téte, si elle existe (on pourrait bien évi-
demment combiner ces deux fonctions en une seule) :

let valid 1Ist =

Ist = [] || List.hd 1st >= 0 && increasing lst

Attention au style, méme si « if XXX then true else false » n’est pas incorrect,
« XXX » étant un booléen, on peut I'utiliser directement et se passer du test! De méme,
«if XXX then YYY else false » peuts’écrire « XXX && YYY ». La concision n’est pas un
objectif en soi, mais elle conduit souvent a une fonction plus aisée a lire, ce qui doit en
revanche étre une préoccupation lorsque I'on écrit du code.

2. On peut distinguer les différents cas de figure :

let rec delta pl1 p2 = match pl1, p2 with
[ _, [1 ->p1
| [1, - ->p2
| h1::t1, h2::t2 when h1<h2 -> hl::delta t1 p2
| h1::t1, h2::t2 when h1>h2 -> h2::delta p1 t2
| h1::t1, h2::t2 -> delta t1 t2

Enumération des parties par incrément

3. Pour s’aider, il ne faut pas hésiter a considérer des exemples (nombreux) : [] donne

(0], puis [1], puis [0; 1], puis [2], puis [0; 2],puis[1; 2], puis©; 1; 2], puis [3],
puis [0; 3] (il s’agit d'une décomposition des entiers de 0a9). [1; 3; 5] (42) donne
[0; 1; 3; 51,puis[2; 3; 5],puis[0; 2; 3; 5].

1l s’agit en fait d’ajouter le plus petit entier n’apparaissant pas dans la partie et de retirer
tous les entiers plus petits présents. On peut y parvenir avec une fonction auxiliaire qui
prend en argument un entier i et une partie constituée d’entiers supérieurs ou égaux a

i, et qui ajoute i ala partie si i n'y figure pas (il serait en téte par construction), et sinon
tente d’ajouter i+1 a la partie privée de i :

let succ lst =
let rec aux i lst = match 1lst with
| h::t when i=h -> aux (i+1) t
| _ -> i::1st
in aux 0 1st

Une autre solution pertinente que j'ai vue dans certaines copies consiste a ajouter un 0
en téte de liste (ce qui ajoute bien 2° = 1 au total associé), et tant que la liste commence
par deux éléments égaux h, on les remplace tous les deux par un unique 2 +1:

let succ 1lst =
let rec aux = function
| h1::h2::t when h1=h2 -> aux (h1+1::t)
| Ist -> 1st
in aux (0::1st)

4. On peut énumérer les parties avec succ jusqu’a parvenir a une partie réduite a N (la
premiére faisant intervenir un entier supérieur ou égal a N, et la 2N¢ partie incidemment).
Pour obtenir les interrupteurs a basculer, on utilise delta (excepté pour la derniere étape
ol on rebascule tous les interrupteurs).

let sequence n =
let rec aux p = match succ p with
| [i] when i=n -> [p]
| p' -> delta p p'::aux p'
in aux []

Il existe quantité d’autres fagon d’obtenir la liste demandée. Par exemple, on peut remar-
quer que 0 apparait chaque fois, 1 une fois sur deux, 2 une fois sur quatre, etc. Et remarquer
que k apparait a la position i dans la liste si et seulement si il y a au moins k zéros a droite
de I'écriture binaire de i + 1. On peut construire une liste des entiers de 0 & k ou k est le
nombre de zéros a droite dans I'écriture binaire d'un entier n > 0 en écrivant :

let build n =
let rec aux i n =
if nmod 2 =
in aux 0 n

then i::aux (i+1) (n/2) else [i]




On définit également une fonction permettant de déterminer 2" :

let rec pow2 n =
if n=0 then 1 else 2*pow2 (n-1)

On serait alors tenté d’écrire

let sequence n =
List.init (pow2 n) (fun i -> build (i+1)) (* faux ! *)

Mais il y a un petit souci : N apparaitrait en derniere place de la derniére liste, ce que l'on
ne souhaite pas. Plutdt que de I'enlever, on peut remarquer que la premiére moitié de la
liste demandée est identique a la seconde, et écrire plutot :

let sequence n =
let 1st = List.init (pow2 (n-1)) (fun i -> build (i+1))
in Ist @ 1lst

Cela dit, si 'on remarque que la seconde moitié de la liste est identique a la premiere,
on peut aussi remarquer que la seconde moitié de la premiere moitié est identique a la
premiere moitié de la premiere moitié, au seul ajout prés d'un n —1 en fin de la toute
derniere liste. Et récursivement. Pour des raisons de simplicité, on peut construire la liste
retournée des listes retournées, et opérer tous les retournements a la fin. Ce qui donne
la fonction ci-dessous, qui devrait étre davantage commentée, mais que je vous laisse
analyser.

let sequence n =
let rec aux = function
| -> [[0]]
| n -> let 1st = aux (n-1) in (n::List.hd 1lst)::List.tl lst @ lst
in let 1st = aux (n-1) in List.rev (List.map List.rev (Ist @ lst))

Comme vous le voyez, il y a des dizaines de solutions différentes, mais elles néces-
sitent d’étre expliquées, d’autant qu’il est aisé de commettre une petite erreur dans la
construction.

5. La discussion précédente contient la réponse a cette question : I'interrupteur 0 est
commuté 2N fois, le 1 'est 2N~! fois, jusqu’au N — 1 qui I'est deux fois.

Au total, 2N 4 2N-1 4 oN=24 4 5 — 9N+l _ 5 commutations.

n Enumération des parties par un code de Gray
6. T(4) =10,1,0,2,0,1,0,3,0,1,0,2,0,1,0].

7. So =@, 81 =10}, S2 =1{0,1}, S3 = {1}, S4 = {1,2}, S5 = {0,1,2}, S = {0,2}, S7 = {2},
S8 = {2’3}1 SQ = {0)2v3}1 SIO = {011)2;3}) Sll = {1)213}) SIZ = {1;3}) Sl3 = {0)1y3}) Sl4 =
{0,3}, S15={3}

8. Pour parvenir a Syn_1, si n > 0, on commute un nombre pair de fois tous les interrup-
teurs inférieurs ou égaux a n — 2 (du fait de la double apparition de T(n) dans I’expression)
et une seule fois 'interrupteur n—1, donc Spn_y = {n—1}.

Dans le cas particulier n=0,0na S,_; =Sp = @.
9.0naSy;n=Syn-1Atpn={n-1}A{n}={n,n-1}.

Ensuite, on remarquera que f»; = t; par construction de T (a cause de la répétition
de T(n) dans la définition, et en remarquant que la longueur de T, est 2" — 1) pour tout
i <2"—1.0n peut donc montrer que pour tout i < 2", Son,; =S; A {n,n—1} parrécurrence
suri:

e c'estvrai pour i =0, puisque So =@ et Syn ={n,n—1};

e si Sony; = S; A {nn—1} et i < 2" -1, alors Synyjp1 = Sony; A tng; =
SiAf{n,n—-1H) A iy = S;A{n,n-1}) A t; = S;At) A {n,n-1} =
Si+1 A {n,n—1} (respectivement définition de Sy, hypothese de récurrence,
remarque précédente sur f»»,;, associativité et commutativité de A).

Par récurrence, on a donc bien pour tout i <2”,Syny; =S; A{n,n—1}
10. On peut le faire par récurrence sur n.

H, : P, ={S0,S1,...,S2n_1} est 'ensemble des parties de I,,.

C’est vrai pour Hy, H, H3 et H4 comme on peut le voir ci-dessus.

Supposons H,, vrai, et étudions H;,,;. Pour montrer qu’il s’agit des parties de I 41, il suffit
demontrer que tout les Sy sont distincts puisque le cardinal est celui attendu. La premieére
moitié des Sj représente, par réccurrence, les parties de I,;, donc ils sont tous distincts et
n n'y apparait pas. Pour les 2” restants, d’aprées la question précédente, n apparait dans
chacun d’entre eux.

Il ne reste donc qu’a prouver que les 2" parties de la seconde moitié des Sy sont
distincts deux a deux. Mais s'il existe k et k' différents tels que Syn, g = Sony g, alors
Sonyr A {n—1,n}=Som,p A {n-1,n}, donc Sy =Sy, ce qui estimpossible.

Tous les éléments sont donc bien distincts deux a deux, et H;, est vérifié.

11. On remarquera que si le sujet laisse une certaine ambiguité sur la question, chacune
des 2N listes d’indices est une liste 2 un seul élément! Il s’agit par ailleurs pratiquement
des t;, a une seule exception : le dernier qui ne doit pas étre N mais N — 1. Par exemple,
pour N = 3, on veut

[[el; [11; [el; [21; [el; [11; [el; [2]1] ]

La encore, il existe énormément de facons d’obtenir cette liste. Une amusante (mais ineffi-



cace) consisterait simplement a prendre le dernier élément de chaque liste de sequence n:

let sequence_gray n =
List.map (fun 1lst -> [List.hd (List.rev 1lst)]) (sequence n)

Plus efficacement, on peut simplement construire T(7) (attention, on ne peut pas utiliser
de majuscule pour les noms en OCaml, on écrit donc « t ») :

let rec t = function
| -> []
| n->1let Ist =t (n-1) in 1st @ (n-1) :: 1Ist

Et ajouter un n —1 ala fin, et on place chaque élément seul dans une liste :

let sequence_gray n =
List.map (fun x -> [x]) (t n @ [n-1])

Méme si le sujet n'impose pas de complexité, on peut vérifier que malgré la présence de
concaténations, la fonction reste de complexité linéaire en la longueur de la liste, 2N,

12. Comme chaque liste est de longueur 1, et qu'il y en a 2V, il y a donc exactement 2N
interrupteurs a2 commuter. Et comme il y a 2N configurations distinctes 2 visiter, et qu’il
faut au moins commuter un interrupteur pour passer de I'une al'autre, il faut au moins
2N — 1 commutations pour les visiter toutes, et une derniére pour revenir a la situation
initiale. On ne peut pas faire mieux.

13. Montrons que t; = min(S;) + 1 lorsque i est impair.

Pour ce faire, utilisons une récurrence sur n pour montrer que pour tout i impair dans
[2"..2"*1 —1] ona t; = min(S;) + 1.

C’estvrai pour n =0 (soiti =1) car t; =1 et S; ={0}.

Supposons cela vrai pour 7. Soit i impair dans [2"+! .. 22 —1].

Sii=2"t2 -1, d’apres les questions précédentes, S; = {n+1} et t; = n+ 2, donc cela
convient.

Sinon, i <2"*2—1,8; =S;_on1 A{n,n+1}.0ri—2"*! estimpair et 0 <i—2"*! < 27*1,
Donc par récurrence, t;_,n+1 = 1+min(S;_,n+1 ). Et on sait que par construction, #; = ;_pn+1.

Il ne reste donc qu'a montrer que min(S;_,»+1) = min(S;), en sachant que S; =
S;_on1 A{n+1,n}. Or S; ne peut étre parmi @, {n+1}, {n} et {n, n+ 1} puisque ces confi-
gurations sont Sg, Syn+2_1, Son+1_7 €t Sone1. Par conséquent, il y a nécessairement un entier
strictement inférieur a n dans S; et S;_,n+1, donc on a bien min(S;_y»+1) = min(S;).

Par récurrence, pour tout n, pour tout i impair dans [2”..2"*! —1] on a t; = min(S;) +1,
donc la relation est vraie pour tout entier positif i impair!

14. Notons que si i est pair, alors #; = 0. En outre, pour savoir a partir d'un S;, si i est pair,
il suffit de regarder le cardinal de S; : en effet, comme on part d’'une partie vide et que 'on
commute un unique interrupteur a chaque étape, le cardinal de S; et i ont méme parité.

Par ailleurs, méme si la question précédente fait référence au minimum, il ne faut pas
oublier que les parties sont triées, donc que le minimum est simplement la téte de la liste
(qui ne peut étre vide dans le cas qui nous intéresse puisque de longueur impaire).

Par conséquent, cela donne :

let succ_gray p =
let ti = if List.length p mod 2 = 0 then
in delta p [til]

else List.hd p +

Systéeme défaillant

15. Pour passer d'une partie p; a une partie py, on peut commencer par lever les
interrupteurs de p; qui ne sont pas dans p», puis baisser ceux de p» qui ne sont pas dans
p1. A aucun moment on aura plus d’interrupteurs baissés que dans les configurations
initiales et finales, qui sont valides.

On peut commencer par écrire une différence non symétrique (P; \ P,) :

let rec diff p1 p2 = match p1, p2 with
| -, [0 ->pl
| [1, - > 0[]
| h1::t1, h2::t2 when h1<h2 -> h1::diff t1 p2
| h1::t1, h2::t2 when h1=h2 -> diff t1 t2
| h1::t1, h2::t2 -> diff p1 t2

Et donc

let test pl1 p2 =
diff pl p2 @ diff p2 p1

16. Appliquons simplement la formule fournie (la complexité peut sembler importante
du fait des concaténations et retournements, mais les tailles des listes croissent suffisam-
ment vite pour que ce ne soit en pratique pas un réel probléme sil’on y regarde de plus
pres).

let rec t n k =
if n=1 then [0] else
if k=1 then t (n-1) 1 @ [n-2; n-1] else
t (n-1) k@ (n-1) :: (List.rev (t (n-1) (k=-1)))




17. On a naturellement, d’apres la définition de T(n, k) :
hip=1
Ins11=1na+2
L1 =g +lne +1

Notons que les deux premieres relations donnent aisément /,,; =2n—1, et que la pre-
miere et la troisieme conduisent naturellement a I, ; = 3 pour tout k>0, et [, p =2" — 1
pour n > 2 et pour tout k = n— 1. En particulier, /,, ,—1 = 2" — 1. Nous aurons besoin de cela
plus loin.

Le nombre de configurations avec n interrupteurs ou au plus k sont baissés est, si k = 1

min(n,k) W
Snk = Z Ch
k'=0

Enposant Ck =0sik>nouk<0,0onas,;= > CZ’.

k'=0
On adonc
* S k=2;
e sy =n+1ldoncsyi1,1=5,1+1;
k+1 K k+1 K k y
® Sp+l,k+l = Z CI’H—I = Z Cn + Z Cn =Sn,k+1 1 Sn k-
k'=0 k'=0 k'=0

Puisque 'on cherche une relation entre [, i et s, i, considérons a, i = I, — Sp,x- On a,
d’apres les relations précédentes,

An+1,k+1 = Ine1 k1 = Snake1 = b1 + lnk + 1= Spkr1 = Snpk = Ank1 + An i +1
Cette relation est proche de celle du triangle de Pascal, a un +1 pres. Posons donc

buk=ank+1=1Ilpr—spr+1.0na

bpi1,k+1 = b1 + bk

Parailleurs, by411 = @2n+1)—(1+n+1)+1=netbys,=2""1-1-2""14+1=1.

Onadonc by k= Cf,, soit by, = C’nc_l, et donc

k
ln,k =Skt Cn—l -1

18. Montrons par récurrence que P, x = P(I,, ) olt I, x est’ensemble des parties de I,
de cardinal inférieur ou égal a k. L'idée est similaire a la question 10. On peut décomposer
la séquence en :

Aty g en Aty -1

Aty An A”ln,k—ls (n=1ig S
kvln—l,k - k’ln—l,k+1 - - kvln,k

Sko — Sk1 — ... —

Linterrupteur n — 1 n'est commuté qu'une seule fois dans cette séquence. En effet,
avant le (n—1,n-2), on a une séquence T,_, ; et ensuite une séquence T,_; 1 par
construction.

On peut donc procéder par récurrence sur n et montrer que, pour chaque 7 > 0, pour
tout k>0, P =PI, 1) et Sy, , = {n—1}

Pourn=1, 1y =1,0onaP;;={®,{0}}, ce qui convient (on visite tous les états pos-
sibles avec un seul interrupteur et au plus un interrupteur baissé, et on termine avec
I'interrupteur n — 1 = 0 baissé).

Supposons cela vrai pour 7, et considérons deux cas!

e Sik=1,alorsP,411={%,{0},8,{1},...,8,{n}}, et cela convient.

e Sik>1,lesS,;  décrivent d’abord P(Pn,k), I’ensemble des états ol n est levé a
au plus k interrupteurs baissés, et termine avec n — 1 baissé. Ensuite, on commute
n (ce que I'on peut faire puisque n — 1 est le seul baissé et k > 1, et on se retrouve
avec n et n— 1 seuls baissés et tous les autres interrupteurs levés. Puis on exécute
une séquence qui ne touche plus a n et visite toutes les possibilités o1 ]'on baisse au
plus k —1 des n — 1 interrupteurs restants (ce qui avec n fait k interrupteurs baissés),
suivant exactement la séquence P, ;_; al’envers (on part de son état final ou1 seul
n—1 est baissé) jusqu’a relever tous les interrupteurs (sauf n donc).

On a donc bien P, . = P(I,,x) pour tout k et pour tout 7.

19. Il s’agit en fait d’utiliser la liste T(N, K) en ajoutant simplement un N — 1 au bout

let test_panne n k =
tnke@[n-1]

20. Il faut évidemment au moins visiter 'ensemble des sy x configurations et revenir au
départ, ce qui impose au moins sy x commutations. Mais pourquoi en faut-il davantage?
Pour le comprendre, il faut s’intéresser aux nombres de configurations avec au plus K
interrupteurs baissés parmi N.

Par exemple, pour N =6 et K= 3, il ya 1 configuration ot ils sont tous levés, 6 ouilyen a
un baissé, 15 oltil y en a deux, et 20 ol il y en a trois. Donc 42 configurations.

Seulement, on constate que I'on a 26 configurations avec un nombre pair d’interrupteurs
baissés, et seulement 16 avec un nombre impair. Or, en basculant un interrupteur, on ne
peut passer que d'un nombre pair a un nombre impair ou inversement. Pour visiter les 26
configurations avec un nombre impair d’interrupteurs baissés, il faut donc au moins 52
étapes, soit 10 étapes de plus!

Le nombre de commutations est donc égal au moins au double du maximum du cardinal
des configurations a un nombre d’interrupteurs pairs baissés et du cardinal des configura-
tions a un nombre d’interrupteurs impair baissés. Il faut donc ajouter la valeur absolue de



la différence entre les deux cardinaux. Soit au moins

K
SNK + Z (—l)ka = SNK T |(—1)KC§_1| =SNK+ CII\(]_l = lN,K +1
k=0

Résultats

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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