
Systèmes monétaires (d’après le concours Polytechnique)

La durée du devoir est de 3h, les calculatrices ne sont pas autorisées.

Les parties sont partiellement indépendantes, mais les définitions, en particulier dans
l’introduction, valent pour l’intégralité du sujet. Toute fonction peut librement être réuti-
lisée dans les questions suivantes, y compris les fonctions demandées par l’énoncé que
vous n’êtes pas parvenus à écrire.

Les fonctions dont on demande une implémentation sont à écrire dans le langage OCaml.
Toutes les fonctions de la bibliothèque standard sont autorisées. Cela inclue en particulier
les fonctions de la forme List.XXX et Array.XXX, incluant (mais non limitées à) celles
rappelées ci-dessous.

List.length : 'a list -> int

Renvoie le nombre d’éléments dans la liste fournie en argument. Complexité linéaire en la
taille de la liste (O (n)).

List.hd : 'a list -> 'a

Renvoie le premier élément de la liste fournie en argument. Complexité constante (O (1)).

List.tl : 'a list -> 'a

Renvoie la liste en argument privée de son premier élément. Complexité constante (O (1)).

List.rev : 'a list -> 'a list

Retourne une nouvelle liste contenant les éléments de la liste fournie en argument en ordre
inverse. Complexité linéaire en la taille de la liste (O (n)).

List.init : int -> (int -> 'a) -> 'a list

« List.init n f » crée la liste [f 0; f 1; ...; f (n-1)] à n éléments obtenus en appelant
la fonction f successivement avec les entiers de 0 à n-1 (dans cet ordre).

List.mem : 'a -> 'a list -> bool

« List.mem x lst » renvoie un booléen indiquant si au moins un élément de la liste lst est
égal à x. Complexité dans le pire des cas linéaire en la taille de la liste (O (n)).

List.iter : ('a -> unit) -> 'a list -> unit

« List.iter f lst » exécute f ai successivement pour chacun des éléments ai de la liste lst
(dans l’ordre).

List.map : ('a -> 'b) -> 'a list -> 'b list

« List.map f lst » renvoie la liste [fa0; fa1; ...; fan−1] où les ai sont les éléments de
la liste lst. L’ordre d’évaluation des f ai n’est pas spécifiée.

Array.length : 'a array -> int

Renvoie la taille (longueur) du tableau passé en argument. Complexité constante (O (1)).

Array.make : int -> 'a -> 'a array

« Array.make n elem » construit et renvoie un tableau de taille n contenant elemdans chacune
de ses cases. Complexité linéaire en n (O (n)).

Array.copy : 'a array -> 'a array

Renvoie un nouveau tableau, de même taille que celui passé en argument, et contenant les
mêmes éléments. Complexité linéaire en la taille du tableau (O (n)).

Array.map : ('a -> 'b) -> 'a array -> 'b array

« Array.map f arr » renvoie un nouveau tableau dont les éléments bi sont obtenus en éva-
luant f ai , où les ai sont les éléments du tableau passé en argument.

Array.iter : ('a -> unit) -> 'a array -> unit

« Array.iter f arr » exécute f ai successivement (dans l’ordre) sur chacun des éléments ai
du tableau arr.

Il est demandé d’attacher une attention toute particulière à la clarté et la lisibilité
des fonctions. On attend d’une fonction qu’elle soit juste, mais également qu’elle ne soit
pas inutilement compliquée. Pour toute fonction de plus de quelques lignes, il convient
d’en expliquer clairement le fonctionnement (ce que les noms désignent, ce que font les
éventuelles fonctions auxilliaires et la signature de celles-ci, etc.). Il est recommandé de
proposer des invariants de boucles chaque fois que cela fait sens.

Un soin identique doit être apporté aux preuves demandées. Aucune ne nécessite plus
d’une dizaine de lignes, veillez à bien extraire les arguments importants et à faire ressortir
les articulations logiques de votre raisonnement.

1 Introduction

Dans tout le problème un système monétaire est un ensemble de n > 0 entiers naturels
non-nuls distincts D = {d0,d1, . . . ,dn−1 } vérifiant ∀0 É i < n −1, di > di+1 et dn−1 = 1. Les
di sont les dénominations du système. Par exemple, le système de l’euro est l’ensemble
{500,200,100,50,20,10,5,2,1}.

Une somme (d’argent) est une suite finie [e0;e1; . . . ;em−1] de m Ê 0 entiers appartenant à
D, avec ∀0 É i < m −1, ei Ê ei+1. Les éléments de cette suite sont des espèces. Notez que
deux espèces d’une somme peuvent porter la même dénomination, qu’une somme peut
être vide, et qu’il n’y a pas nécessairement d’espèces de dénomination 1 dans une somme.

La valeur d’une somme S , notée V (S), est tout simplement la somme de ses espèces,
tandis que sa taille, notée |S|, est le nombre de ses éléments (l’entier m ci-dessus). Étant
donné un entier naturel v , une somme de valeur v est un représentant de v .

1

Par exemple, le portefeuille d’un citoyen européen peut contenir 3 billets de 10 euros,
deux billets de 5 euros et une pièce de 1 euro. Cette somme est notée [10;10;10;5;5;1], sa
valeur est 41 et sa taille 6.

Dans les sections 1 à 3 de ce problème, les systèmes monétaires et les sommes sont
représentés en machine par des listes d’entiers. Attention, cette représentation sera
modifiée dans la section 4.

type systeme == int list;;
type somme == int list;;

En outre, on supposera (pour les arguments) et on garantira (pour les résultats) les
propriétés suivantes :

• tous les entiers présents dans les listes sont strictement positifs ;
• toutes les listes sont triées en ordre décroissant ;
• les listes de type systeme sont non-vides, contiennent des entiers deux à deux dis-

tincts, et leur dernier élément est toujours 1.

1. Écrire la fonction valeur, de signature somme -> int (c’est-à-dire int list -> int)
qui prend une somme S en argument et renvoie sa valeur V (S).

Une somme S est dite extraite d’une autre somme Pf (dite portefeuille), si et seulement
si S est une suite extraite de Pf . Intuitivement, « la somme S est extraite de Pf » signifie
que l’on paye sa valeur à l’aide d’espèces prises dans le portefeuille Pf . Par exemple, notre
citoyen européen peut payer exactement 15 euros en extrayant un billet de 10 euros et un
autre de 5 euros de son portefeuille. Notez bien qu’un portefeuille est une somme.

2. Proposer une fonction est_extraite, de signature somme -> somme -> bool (c’est-
à-dire int list -> int list -> bool) qui prend en argument une somme S et une
somme S ′ et renvoie un booléen indiquant si S a pu être extraite de S ′.

2 Payer le compte exact

2.1 Cas de ressources infinies

Dans cette partie on considère le problème du paiement exact. Dans les termes du
préambule, cela revient, étant donné un entier naturel p, à trouver un représentant de p.
Par exemple, pour p = 42, la somme [20;10;5;5;2], dont la valeur est 42, serait une solution
possible pour le système de l’euro (parmi d’autres).

Une démarche possible pour payer exactement le prix p est la démarche dite gloutonne,
que l’on peut décrire informellement ainsi :

• donner l’espèce la plus élevée possible – c’est à dire de la plus grande dénomination
d disponible et telle que d É p ;

• recommencer en enlevant l’espèce donnée au prix à payer – c’est dire poser p égal à
p −d .

Évidemment, le processus s’arrête lorsque le prix initial est entièrement payé.

Dans un premier temps, on suppose que l’acheteur dispose toujours des espèces dont
il a besoin (il dispose d’une quantité infinie d’espèces pour chacune des dénominations
du système). Pour p = 42 et le système de l’euro, on choisit donc dans un premier temps la
dénomination 20 (la plus grande des dénominations du système inférieure ou égale à p), il
reste alors p = 22. On choisit à nouveau la dénomination 20, et il reste p = 2. On choisit
enfin la dénomination 2 et la somme est payée. Cela donne donc la somme [20;20;2].

3. Montrer soigneusement que dans ce cas, quelle que soit la somme p Ê 0, la démarche
gloutonne réussit toujours.

4. Écrire une fonction glouton de signature int -> systeme -> somme (c’est-à-dire
int -> int list -> int list) qui prend en argument un prix p à payer et un système
monétaire D, et renvoie la somme (soit liste d’espèces) que l’on peut utiliser pour payer.
La somme renvoyée sera calculée en suivant la démarche gloutonne.

2.2 Cas de ressources finies

On tient dorénavant compte des ressources de l’acheteur. Dans les termes du préam-
bule, cela revient à essayer de trouver une somme S ayant pour valeur le prix à payer p et
extraite d’une somme donnée, dite portefeuille, et notée Pf .

5. Montrer, à l’aide d’un exemple utilisant le système européen, que la stratégie glou-
tonne peut échouer à trouver une somme convenable, pour un prix p donné et un porte-
feuille donné Pf , même si il est possible de payer ce prix p avec des espèces contenues
dans le portefeuille Pf .

6. Écrire une fonction paye_glouton de signature int -> somme -> somme (donc
int -> int list -> int list) qui prend en argument un prix p et une somme repré-
sentant le contenu du portefeuille Pf , et qui renvoie, dans la mesure du possible, une
somme extraite de Pf et dont la valeur est p. La somme renvoyée sera calculée en suivant
la démarche gloutonne. Si cette démarche échoue, la fonction paye_glouton doit renvoyer
la liste vide. Par exemple,

paye_glouton 42 [20; 10; 5; 5; 5; 2; 1];;
- : int list = [20; 10; 5; 5; 2]

paye_glouton 42 [50; 20; 10; 5; 2; 2; 1];;
- : int list = []

7. Proposer une fonction paye de signature int -> somme -> somme (donc
int -> int list -> int list) qui prend en argument un prix p et une somme repré-
sentant le contenu du portefeuille Pf , et qui renvoie une somme extraite de Pf et dont la
valeur est p si une telle somme existe, et une liste vide sinon. On ne suit pas ici la stratégie
gloutonne, la fonction doit retourner une liste vide si, et seulement si, il n’existe aucune

2

somme extraite de Pf de valeur p. On demande ici une solution simple, pas nécessairement
efficace en terme de complexité.

8. Quelle est, dans le pire des cas, la complexité en temps de la fonction précédente ?

3 Payer le compte exact et optimal

Une somme est optimale lorsque sa taille est minimale parmi un ensemble de sommes
de valeur donnée. Par exemple, pour un portefeuille Pf = [50;20;20;10;5;5;2], la somme
S = [20;20;2] est optimale, mais la somme S ′ = [20;10;5;5;2] n’est pas optimale parmi les
sommes de valeur 42 que l’on peut extraire de Pf .

Dans cette partie, un portefeuille Pf est fixé, et on cherche une façon optimale de payer
un prix p à partir des espèces contenues dans le portefeuille.

Dans un premier temps, on établit quelques opérations sur les sommes, qui nous seront
utiles dans la suite pour déterminer un représentant optimal.

Soit une somme S comprenant k espèces de dénomination d (et possiblement des
espèces d’autres dénominations). On définit l’ajout d’une dénomination d àS , noté [d]⊕S ,
comme la somme qui comprend k +1 espèces de dénomination d et qui est inchangée
autrement.

9. Écrire la fonction ajout de signature int -> somme -> somme, qui prend en argu-
ment une dénomination d et une somme S et qui renvoie la liste représentant la somme
correspondant à l’ajout de d à S .

ajout 10 [20; 10; 5; 5; 2];;
- : int list = [20; 10; 10; 5; 5; 2]

Soient deux sommes S et S ′. On définit la différence de S et S ′, notée S ⊖S ′, comme
suit. Pour toute dénomination d , soit k le nombre d’espèces de dénomination d comprises
dans S et k ′ le nombre d’espèces de dénominations d comprises dans S ′ :

• si k > k ′, alors S⊖S ′ comprend k −k ′ espèces de dénomination d ;
• sinon, S−S ′ ne comprend aucune espèce de dénomination d .

10. Écrire la fonction diff de signature somme -> somme -> somme (soit
int list -> int list -> int list) qui prend deux sommes S puis S ′ en arguments
et renvoie leur différence.

diff [20; 10; 5; 5; 2] [10; 5];;
- : int list = [20; 5; 2]

diff [20; 10; 5; 5; 2] [50; 10; 10; 2];;
- : int list = [20; 5; 5]

Soit un portefeuillePf et un entier naturel i . On note T (i) l’ensemble des entiers naturels
v tels que le ou les représentants optimaux de v parmi les sommes extraites de Pf soient
de taille i .

11. Déterminer T (0), T (1) et T (2) pour le portefeuille Pf = [50;20;20;10;5;5;2].

Pour déterminer une somme optimale, on propose la fonction suivante, de signature
int -> somme -> somme (soit int -> int list -> int list), qui prend en argument
un prix à payer p et un portefeuille Pf , et retourne une somme optimale extraite de Pf de
valeur p s’il en existe, et une liste vide sinon :

let optimal p pf =
let tab_m = Array.make (p+1) []
and t_i = ref [0] in
while !t_i <> [] do
t_i := suivant tab_m pf !t_i

done;
tab_m.(p);;

Dans cette fonction, la liste !t_i recevra successivement les valeurs de T (0)∩�0 . . p�,
T (1)∩ �0 . . p�, T (2)∩ �0 . . p�, etc. où ∩ représente l’intersection et �0 . . p� les entiers
naturels inférieurs ou égaux à p.

Le tableau contiendra quant à lui, dans chaque case tab_m.(k) pour tout k É p, une
liste représentant une somme optimale pour k si une telle somme a pu être identifiée, et
une liste vide sinon.

La fonction suivant, de signature somme array -> somme -> int list -> int list
prend donc en argument le tableau tab_m, le portefeuille Pf et l’ensemble des valeurs de
T (i)∩�0 . . p�, et retourne l’ensemble des valeurs T (i +1)∩�0 . . p�, tout en ayant renseigné
les cases de tab_m correspondant aux valeurs T (i +1)∩�0 . . p�. Les listes contenant les
valeurs de T (i)∩�0 . . p� n’ont pas à être triées.

12. Proposer une implémentation de la fonction suivant, que l’on détaillera avec soin.

4 Systèmes monétaires canoniques

Un système monétaire est dit canonique lorsque la stratégie gloutonne appliquée à tout
prix p produit une somme optimale parmi les représentants de p.

13. Montrer, en exhibant un prix à payer p et la somme obtenue par l’algorithme glouton,
que l’ancien système britannique D′ = {240,60,30,24,12,6,3,1} n’est pas canonique.

Le but de cette dernière partie est de produire un programme permettant de déterminer
si un système monétaire donné est canonique.

Dans cette étude on fixe un système monétaire D de n dénominations, représenté cette

3

fois par un tableau (int array) de n entiers naturels D = �d0;d1; . . . ;dn−1�. Une somme S
sera également représentée par un tableau de n entiers naturels, S = �s0; s1; . . . ; sn−1�, mais
si est cette fois le nombre d’espèces de dénomination di présentes dans la somme S .

Ainsi le système européen correspond au tableau D = �500;200;100;50;20;10;5;2;1� et
le portefeuille contenant trois billets de dix euros, deux billets de cinq euros et une pièce de
un euro au tableau Pf = �0;0;0;0;0;3;2;0;1�. Les définitions (et les notations) de la valeur
et de la taille sont inchangées, soit :

V (S) =
n−1∑
i=0

si di |S| =
n−1∑
i=0

si

Dans cette partie on considère l’entier n (nombre de dénominations du système moné-
taire considéré) fixé. Les systèmes monétaires et les sommes sont représentées en machine
par des tableaux d’entiers de taille n, on définit donc :

type tsysteme == int array;;
type tsomme == int array;;

14. Écrire la fonction t_taille, de signature tsomme -> int (c’est-à-dire
int array -> int) qui prend une somme S en argument et renvoie sa taille |S|
(le nombre d’espèces contenues dans la somme).

15. Écrire la fonction t_valeur, de signature tsysteme -> tsomme -> int (c’est-à-dire
int array -> int array -> int) qui prend un système monétaire et une somme S en
argument et renvoie sa valeur V (S).

Par ailleurs, les sommes sont ordonnées (totalement) selon l’ordre lexicographique,
noté <ℓ et défini de la sorte : pour tous tableaux U = [u0, . . . ,un−1] et V = [v0, . . . , vn−1]
reeprésentant deux sommes, on a U <ℓ V si et seulement si :

• ∃i ∈ �0 . . n −1� | ui < vi ;
• et ∀ j , 0 É j < i , on a u j = v j .

On a par exemple �0;1� <ℓ �0;2� et �0;4� <ℓ �1;0�. On note Éℓ la relation d’ordre définie
par U Éℓ V si et seulement si U <ℓ V ou U = V.

On définit un second ordre total sur l’ensemble des sommes, noté ⊑, de la façon suivante :

U ⊑ V si et seulement si |U| > |V| ou
(|U| = |V| et U Éℓ V

)
16. Montrer que si S est une somme et S ′ une somme non nulle, alors S Éℓ S⊕S ′, où la

somme ⊕ doit être comprise comme une réunion de sommes, que l’on peut voir comme
l’addition, composante par composante, des deux tableaux représentant les sommes S
et S ′. On notera sk le nombre d’espèces de dénomination dk dans S et s′k le nombre
d’espèces de dénomination dk dans S ′ (on utilisera ces notations dans la suite). On pourra
commencer par envisager le cas où S ′ ne contient qu’une seule espèce (soit

∣∣S ′∣∣= 1).

Les relations d’ordre introduites permettent les définitions suivantes des représentants
gloutons et optimaux (il n’est pas demandé de comparer ces nouvelles définitions aux
anciennes).

Étant donné un entier naturel p, le représentant glouton de p, noté G
(
p

)
, est le plus

grand pour l’ordre lexicographique Éℓ des représentants de p (cette définition correspond
bien au même représentant glouton que précédemment). On notera gk

(
p

)
le nombre

d’espèces de dénomination dk dans G
(
p

)
.

Le représentant optimal de p, noté M
(
p

)
, est le plus grand pour l’ordre ⊑ des représen-

tants de p (cette définition choisit pour représentant optimal de p le plus grand, pour
l’ordre lexicographique, parmi tous ceux qualifiés de représentants optimaux avec la défi-
nition de la section précédente). On notera mk

(
p

)
le nombre d’espèces de dénomination

dk dans M
(
p

)
.

Dès lors, le système D est canonique si et seulement si on a G
(
p

) = M
(
p

)
pour tout

entier naturel p. En revanche, D n’est pas canonique si et seulement si il existe un ou des
entiers naturels w , dits contre-exemples, tel(s) que M(w) ̸= G(w), c’est-à-dire tel(s) que
M(w) <ℓ G(w).

17. Écrire la fonction t_glouton de signature int -> tsysteme -> tsomme (soit
int -> int array -> int array)) qui prend en argument un prix à payer p et un sys-
tème monétaire D (sous la forme d’un tableau de taille n, conformément au nouveau type),
et qui renvoie le représentant glouton de ce prix. Le coût de t_glouton doit être linéaire
en n.

18. Montrer que si p < q , alors G
(
p

)<ℓ G
(
q
)
.

Soit k un indice, k ∈ �0 . . n −1�. On note Ik la somme composée d’une seule espèce de
dénomination dk .

19. Montrer que pour deux sommes S et S ′ quelconques vérifiant S Éℓ S ′, pour toute
espèce dk , on a S⊕Ik Éℓ S ′⊕Ik .

20. Soit p un entier naturel. On suppose que G
(
p

)
contient au moins une espèce de dé-

nomination dk . Montrer que G
(
p −dk

)= G
(
p

)⊖Ik où la soustraction ⊖ doit être comprise
comme une différence de sommes, que l’on peut voir comme la soustraction, composante
par composante, des deux tableaux représentant les sommes G

(
p

)
et Ik .

21. Montrer, de même, que si M
(
p

)
contient au moins une espèce de dénomination dk ,

on a M
(
p −dk

)= M
(
p

)⊖Ik .

On suppose le système monétaire non-canonique, et on considère le contre-exemple w
minimal, c’est-à-dire l’entier w tel que M(w) <ℓ G(w) et ∀w ′ < w , M

(
w ′)= G

(
w ′).

On note M(w) = �
m0;m1; . . . ;mn−1

�
et G(w) = �

g0; g1; . . . ; gn−1
�

. On pose i ∈ �0 . . n −1�
l’indice minimal tel que mi > 0 et j ∈ �0 . . n −1� l’indice maximal tel que m j > 0.

22. Montrer qu’il n’existe pas d’indice k tel que mk > 0 et gk > 0.

4

23. Montrer que l’on a i > 0.

24. Montrer que di−1 < w .

25. Montrer que w < di−1 +d j .

Toujours en supposant le système monétaire non-canonique, et en conservant les nota-
tions de la question précédente, on admet l’encadrement suivant, montré par D. Pearson
en 1994, qui s’applique aux sommes :

M(w)⊖ I j Éℓ G(di−1 −1) <ℓ M(w)

26. Montrer que, pour i et j donnés, l’encadrement permet de construire M(w) à partir
de G(di−1 −1).

27. En déduire une fonction canonique de signature tsysteme -> bool prenant en
argument un système monétaire, et retournant un booléen indiquant si celui-ci est cano-
nique.

28. Quelle est, en fonction de n = |D|, la complexité en temps dans le pire des cas de la
fonction précédente?

5

	Introduction
	Payer le compte exact
	Cas de ressources infinies
	Cas de ressources finies

	Payer le compte exact et optimal
	Systèmes monétaires canoniques

