Systemes monétaires (d’apres le concours Polytechnique)

Introduction

1. Il s’agit de sommer les éléments de la liste, par exemple avec une fonction récursive :

let rec valeur = function
| [1->
| t::q => t + valeur q

On pourrait aussi, éventuellement, utiliser un List.fold_left:

let valeur =
List.fold_left (+)

2. On utilise le fait que listes soient triées pour une solution de complexité linéaire :

let rec est_extraite s1 s2 = match s1, s2 with
| t1::91, t2::92 when t1=t2 -> est_extraite g1 g2
| t1::91, t2::92 when t1<t2 -> est_extraite s1 g2
| t1::q91, t2::92 -> false
| [1, _ -> true
| _, [1-> false

Notons que les trois derniers cas peuvent étre regroupés en un seul cas :

let rec est_extraite s1 s2 = match s1, s2 with
| t1::91, t2::92 when t1=t2 -> est_extraite g1 g2
| t1::91, t2::92 when t1<t2 -> est_extraite s1 g2
| _ =>s1 =[]

Payer le compte exact

3. On peut montrer I'affirmation « pour tout p = 0, la stratégie gloutonne réussit » par
exemple avec une recurrence forte sur p :

e C'estvrai pour p =0;

e pour p > 0, supposons que c’est vrai pour tout p’ vérifiant 0 < p’ < p et considérons le
cas de p : I'algorithme glouton peut toujours trouver une dénomination d inférieure
ou égale a p (puisque le systéme contient une dénomination égale a 1), il se poursuit
alors avec le prix p — d vérifiant 0 < p — d < p, qui réussit d’apres I'hypothese de
récurrence.

Donc I'algorithme glouton réussit bien pour tout p € IN.

On peut aussi remarquer que la somme restant a payer, dans I’algorithme, est une suite
d’entiers naturels (p,) strictement décroissante. Cette suite ne peut étre infinie, donc
I'algorithme va s’arréter soit parce qu'il est arrivé a 0, soit parce qu’il n’a pas trouvé de
dénomination suffisamment petite. Mais comme le systéme contient une dénomination
égale a 1, ce second cas est impossible, donc I’algorithme parvient a payer le prix p.

4. Encore une fonction récursive, ol si le prix p est plus petit que la plus grande des
especes du systeme monétaire t, on prend cette espéece et on continue a payer p-t avec le
méme systéme, et sinon on paye p avec les espéces restantes du systeme monétaire. On
a utilisé ici a nouveau le fait que les dénominations dans le systéme sont ordonnées par
ordre décroissant. La liste contenant les dénominations du systéme que ’on peut encore
utiliser contient toujours au moins la dénomination 1, donc le dernier cas n’est présent
que pour éviter un avertissement lors de la compilation.

let rec glouton p = function
| _ when p=0 > []
| t::q when t>p -> glouton p g
| t::q -> t::glouton (p-t) (t::q)
| [1 -> failwith "Situation impossible”;;

(* t ne pourra plus servir x*)

5. Payer 6 avec le portefeuille [5;2;2;2] est possible, mais la stratégie gloutonne échouera.
1l existe une infinité de contre-exemples (tel que 42 avec [20; 10;5;2;2;2;2;2;2]), mais on
s’efforcera dans ce genre de situation d’éviter un contre-exemple inutilement compliqué.

6. Il existe de nombreuses implémentations possibles. On prendra surtout garde a ce
que, sil’'on décide, pour payer une somme p, de choisir une dénomination ¢ et de faire un
appel récursif pour payer ¢ — p avec le reste du portefeuille, 'appel récursif peut échouer
a trouver une solution et retourner une liste vide. On ne veut alors pas retourner la liste
[t]!Toutefois, une liste vide peut également ne pas étre un échec mais simplement une
facon de payer une somme nulle (si p — ¢t = 0 par exemple).

Une solution possible est :

let paye_glouton p = function
| [1->11
| h::t when h=p -> [h]
| h::t when h>p -> paye_glouton p t
| h::t -> match paye_glouton (p-h) q with (* p-h>0 *)
| [1->1]
| Ist -> h::1st

On peut aussi utiliser utiliser la démarche gloutonne (sans réutilisation d'une espeéce) et

controler que le résultat est bien celui recherché :

let paye_glouton p pf =
let rec aux_glouton p = function
| h::t when h>p -> glouton p t
| h::t -> h::glouton (p-h) t
| - > [1
in let sol = aux_glouton p pf
in if valeur sol = p then sol else []

J

7. Pour toutes les especes du portefeuille, on envisage de les utiliser ou non pour payer le
prix p. Pour simplifier les choses, on peut utiliser une fonction auxiliaire récursive qui prend
en entrée les deux mémes arguments et qui renvoie un couple composé d'un booléen,
indiquant si le prix est payable avec le portefeuille, et une liste qui sera la solution si elle
existe, et une liste quelconque sinon. Cela peut s’écrire par exemple de la sorte :

let paye p pf =
let rec tente_payer p pf = match p, pf with
| o, _ -> true, [] (x on a réussi a payer *)
| _, [1 -> false, [] (* plus d'espéces, c'est un échec x*)
| _, h::t when h>p -> tente_payer p t (* h ne peut servir x)
| h::t >
let b, 1st = tente_payer (p-h) t in (* on tente avec h x)
if b then (true, h::1st)
else tente_payer p t (* puis sans h
si ca échoue %)

—

in let b, sol = tente_payer p pf
in if b then sol else [];;

8. Dans le pire des cas, la solution envisagera 2" facons de payer (chaque espéce pouvant
ou non étre prise), n étant le nombre d’espéces dans le portefeuille, en effectuant autant
d’appels a tente_payer. Toutes les opérations effectuées sont de cofit unitaire O(1), la
complexité de la fonction est donc O(2").

Payer le compte exact et optimal

9. Il s’agit d'une fonction similaire a I'insertion d'un élément dans une liste triée, utilisée
dans le tri par insertion. Cela s’écrit (voir cours) :

let rec ajout d = function
| h::t when h>d -> h::ajout d t
| 1st -> d::1st;;

10. Ici encore, on utilise le fait que les listes sont triées!

let rec diff s sp = match s, sp with

| [1, - > []
[1->s
_, hp::tp when hp > h -> diff s tp

’ (x Ce cas peut étre omis %)
::t, hp::tp when hp = h -> diff t tp

> S o |

t, _ -> h::diff q tp;;

On notera que le second cas peut étre librement omis.

11. Ona:
e T(0)=10],
e 7(1) =[50;20;10;5;2] (les especes de Pf)
e T(2) =[70;60;55;52;40;30;25;22;15;12;7] (les sommes de deux espéces distinctes de
Pf qui ne figurent pas dans 7 (1)).

12. 1l est bien précisé « que l'on détaillera avec soin»! Dés qu'une fonction est délicate,
les explications s'impose, mais ici la fonction est délicate etle sujet demande d’étre tres
précis.

La fonction suivant prend en dernier argument une liste 7; = { po, p1,...} de prix pour
lesquels on vient de trouver une solution optimale. On va donc prendre un a un chacun
de ces prix (les p;), récupérer dans la case tab_m. (pJ) une solution optimale pour payer
pj, faire la différence entre le portefeuille et cette solution optimale pour déterminer les
especes restantes (notons-les dy), et essayer d’ajouter chacune de ces espéces restantes a

Pk-

Sila case d’index p; + dj du tableau tab_m contient une liste vide (on veillera au passage
ane pas déborder du tableau), alors on vient de trouver une nouvelle solution optimale.
Dans ce cas, on ajoute d a la solution optimale de p;, on la place dans la case d’index
pj +dj du tableau tab_m, et on ajoute p; + dj al’ensemble ;.

Pour faciliter la construction de 7;,1, on va utiliser une référence t_ip1, initialisée avec
une liste vide. On va appeler la fonction aux sur toutes les valeurs p; de 7;. Pour chacune,
on utilise diff pour déterminer les especes dj restantes, et pour chaque espece dj, on
effectue le travail décrit précédemment.

Lécriture de la fonction proprement dite est délicate, car les itérations sur les listes ne
sont pas particulierement naturelles quand on est habitué aux langages impératifs. On
peut utiliser List.iter, en mettant en premier argument une fonction qui sera appelée
pour tous les éléments de la liste, placée en second argument.

Cela donne par exemple :

let suivant tab_m pf t_i =
let t_ipl1 = ref [] in (x Contiendra Tiy1 *)
let aux pj = (* Traitement d'une valeur p; *)
List.iter (* Pour chaque espece dj... *)
(fun dk -> if pj+dk < Array.length tab_m && tab_m.(pj+dk) = []
then begin
t_ipl:= (pj+dk) :: !t_ipl;
tab_m. (pj+dk) <- ajout dk tab_m. (pj)
end)
(diff pf tab_m.(pj)) (* Calcul des espéces d; restantes *)
in List.iter aux t_i; (x Appel de aux avec chaque p; dans 7; *)
It_ipl;; (* On retourne la liste construite *

On aurait évidemment pu donner un nom a « pj+dk », on a choisi sciemment ici de
laisser la somme pour faciliter la lecture de la fonction.

Y Systémes monétaires canoniques

13. Le contre-exemple le plus simple est probablement le prix p = 48, qui peut étre payé
avec 24 + 24, alors que le glouton proposerait 30 + 12 + 6.

14. 1l s’agit desommer les cases du tableau, soit par exemple dans un style impératif :

let t_taille somme =
let taille = ref
and n = Array.length somme in

for i =0 ton -1 do

taille := !taille + somme. (i)
done;
Itaille

Ou bien plus succintement :

let t_taille =
Array.fold_left (+) 0;;

15. La encore on applique la formule fournie :

let t_valeur systeme somme =
let prix = ref
and n = Array.length somme in

for i = 0 to n-1 do

prix := !prix + systeme. (i) * somme. (i)
done;
lprix;;

16. Notons s; le nombre d’espéces de dénomination d;. dans S et s’k celui dans S’.
Dans S@ S, on a s + s} espéces de dénomination dy.

Ainsi, pour tout k, sg < s + 5}, donc S < S+S'.

Note : puisque S’ est non nul, on peut d’ailleurs affirmer qu'’il existe un ou plusieurs k
vérifiant s < s + s;C. En prenant pour i le plus petit d’entre eux, on obtient S <¢ S +S’.

17. Rien de bien compliqué ici. On emploie un style impératif, puisque I'on travaille
avec des tableaux. On crée un tableau de taille égale au nombre de dénominations, puis
on remplit chaque case avec le nombre d’espéces nécessaires. Attention a bien utiliser une
division entiere pour obtenir la complexité demandée!

let t_glouton prix systeme =
let n = Array.length systeme in
let res = Array.make n
and reste = ref prix in

for i = 0 to n-1 do
res.(i) <- !reste / systeme.(i);
reste := !reste mod systeme. (i)
done;
res;;

18. Soient p et g tels que p < g. Soit S une somme quelconque de valeur g — p > 0.
OnaG(p)<¢G(p)+S

Or G(p) + S apourvaleur p+ (g - p) =q.

Par définition du glouton, on a donc G(p) +S <¢ G(qg).

Donc par transitivité G(p) <¢ G(q).

19. SiS=S",alorsS+Z; =S+ T, etdonc S + Ty <p S’ + I,

Sinon, il existe i tel que S; < S} et pour tout 0< j <i,S; = S;.. Trois cas sont a considérer :
o sik>i,alors (S+Ii); < (S'+Ii); et pour tout 0 < j < i, (S+Iz); = (S’+Ik)j, donc
S+ 7Tk <p S,+Ik;

« sik=i,alors (S+di) < (S'+dx) etpour tout 0< j <k, (S +1¢); = (S’ +1x) ;, donc
S+ 7 <gS,+Ik;

o sik<i, alors (S+1I); < (S'+1x), et pour tout 0 < j < k, (s+1k)j=(s’+1k)j,donc
S+Zr < S +TIt.

20. G(p) — i est bien un représentant de p — dj.

Supposons par 'absurde qu'il ne s’agit pas de G(p — dy). On a alors, par définition du
représentant glouton, G(p) - Zy <¢ G(p — di).

Mais on a alors G(p) — Iy + Iy <¢ G(p — di) + .-

Soit G(p) <¢ G(p — di) + Zi, ce qui contrevient a la définition du glouton (G(p) maximal
parmi les représentants de p).

21. Supposons que M(p — di) #M(p) e Zy.

On alors par, définition de M, M(p) © Z;. < M(p — di). Deux cas sont possibles d’apres la
définition de < :
o |M(p)eZy| > [M(p-dk)|, mais alors |[M(p)| > |M(p—di)®Zi|, donc M(p) <
M(p - di) ® I, ce qui est absurde;
o M(p)eZy <¢M(p - dyi), mais alors M(p) < M(p — di)®Zy, donc M(p) < M(p — di) @
Tk, ce qui est absurde également.

Donc si M(p) contient une dénomination dy, on a M(p — di) = M(p) o Zi.

22. Raisonnons par I'absurde en supposant qu’il existe un indice k tel que m; > 0 et
gk >0, et considérons la somme w — d.

On aM(w - dy) = G(w — dj) par minimalité de w.

Mais si my(w) # 0, M(w — dy) = M(w) — Z. (question 21).

De méme, si gx(w) #0, G(w — di) = G(w) — I}, (Question 20).

Par conséquent, M(w) —Zy = M(w — dy) = G(w — di) = G(w) — L.
Et donc M(w) = G(w), ce qui contrevient a la définition de w.

23. D’apres la question précédente, si mg # 0, on a go =0, et donc G(w) <¢ M(w), ce qui
est incompatible avec G(w) maximum pour l'ordre <.

24. On a M(w) <p G(w) (par définition de w et du glouton).

Puisque m; # 0 et g; =0, on a donc nécessairement k < i tel que gi # 0. G(w) contient
donc au moins une espece de dénomination dy, avec dy = d;—; (puisque k<i—1). On a
doncd;_ 1 <w.

Il n’est pas possible d’avoir w = d;_; car sinon G(w) ne contiendrait qu'une seule espece,
et on aurait nécessairement G(w) = M(w). Donc d;—; < w.

25. OnaM(w —d;) =M(w)—1; d’apres la question 21.

Mais puisque w est minimal, M(w —d;) = G(w - d;), donc w —d; < d;—1 (puisque la
méthode gloutonne n’a pas pu sélectionner d’espéce de dénomination d;_1), ce qui permet
d’écrire w < d; 1 + d;.

26. On déduit de ’encadrement fourni

G(di_l -1)<p M(w) <y G(di_l -1)+ Ij

On adonc
Mi(w) =Gy(di-1—1) si k<]

Mj(lU)ZGj(di,l—l)+1
Mip(w)=0 si k>j

27. Pour un i donné entre 1 et n—1 (n étant le nombre de dénominations du systeme),
on va déterminer G(d;_; — 1), noté g ci-dessous. Et, pour tout j = i, on va construire le
potentiel contre-exemple M (w) (appelé m dans la fonction qui suit) correspondant a ces
valeurs de i et j grace a la question précédente. Une fois M(w) déterminé, on en déduit
aisément w avec t_valeur, et on détermine G(w) (noté g_w ci-apres). Il ne reste alors qu’a
vérifier si G(w) a une longueur strictement plus grande que M(w), ce qui signifierait que le
systéme n’est pas canonique. Cela donne par exemple :

let est_canonique_i systeme i =
let g = t_glouton (systeme.(i-1)-1) systeme
and n = Array.length systeme in
let rec aux j =
if j = i-1 then true else
(* On construit M(w) a partir de G x)
let m = Array.make n 0 in

for k = 0 to j-1 do
m. (k) <- g.(k)
done;

m.(3) <= g.(3)+1;
(* On en déduit le w correspondant %)
let w = t_valeur systeme m in
(* Et on regarde si le glouton est optimal %)
let g_w = t_glouton w systeme in
t_taille g_w <= t_taille m
&& aux (j-1)
in aux (n-1);;

On termine en écrivant la fonction demandée, qui prend en argument un systéme
monétaire et appelle la fonction précédente pour toutes les valeurs de i de n—1 a 1 inclus,
et retourne true si tous les appels retournent true, et false sinon:

let est_canonique systeme =
let rec aux = function

| -> true
| i -> est_canonique_i systeme i && aux (i-1)
in aux (Array.length systeme - 1);;

28. Les boucles sur i et j vont effectuer, dans le pire des cas, © (1) constructions d'une
solution gloutonne, © (n?) constructions de M(w), © (n*) déterminations de w, et © (n?)
calculs d’une solution gloutonne. L'algorithme a une complexité cubique O(n3).

Notons au passage que 7 est petit (moins d'une dizaine de dénominations en général),
donc limiter a © [nz) le nombre de possible contre-exemples a tester rend les choses
extrémement efficaces.

	Introduction
	Payer le compte exact
	Payer le compte exact et optimal
	Systèmes monétaires canoniques

