Tableaux

24 septembre 2025

Lycée Louis-le-Grand

Comportement indéfini (UB, undefined behavior)

« Anything at all can happen; the Standard imposes no

requirements. The program may fail to compile, or it may execute
incorrectly (either crashing or silently generating incorrect results),
or it may fortuitously do exactly what the programmer intended. »

Exemple de raisons possibles

terminer un programme par une ligne non vide;
tenter d'obtenir la valeur d'une variable non-initialisée ;

tenter d’accéder, en lecture ou en écriture, a une case d'un
tableau avec un index négatif ou bien supérieur ou égal a la
taille du tableau;

parvenir au bout d'une fonction (autre que main) déclarée
comme renvoyant une valeur sans rencontrer de return et
utiliser son résultat ;

effectuer une opération arithmétique illégale (telle qu'une
division par 0);

effectuer un calcul (ou une conversion) dont le résultat n'est
pas représentable par le type manipulé (par exemple un calcul
sur des int excédant INT_MAX); 2

Un exemple

int cherry;

if (cherry == 42) { ... } // UB !

Un exemple

int cherry;

if (banana) { cherry == 42; }

if (cherry == 42) { ... } // UB si !banana

int cherry;

if (banana) {
cherry == 42;

Exemple d’optimisation

int foo(int i) {
if (i 1'=0)
printf("Hello World!");
3

return 100/1i;

Exemple d’optimisation

int foo(int i) {
/7 if (1 1= 0) {
printf("Hello World~!");
!/}
return 100/1i;

Exemple d’optimisation qui tourne mal

void create_sandbox(void) {

// [création d'un "bac a sable"]
// stuff

a = a<<32 + b;

// more stuff

void protected_execution(void) {
create_sandbox();

execute_dangerous_code();

Exemple d’optimisation qui tourne mal

void create_sandbox(void) {
// Nop !

void protected_execution(void) {
// create_sandbox();

execute_dangerous_code();

Exemple d’optimisation

mango x 2 / 2 — mango
cherry + 1 > cherry — true

Car si ¢a déborde, on fait ce que I'on veut !

Pas d’affectations pour un tableau

arr = ... // Illégal si arr est un tableau

10

Pas d’affectations pour un tableau

arr = ... // Illégal si arr est un tableau

for (int i=0; i<n; ++i) {
arr1[i] = arr2[i]; // arrl < arr2

10

Pas de test d’égalité pour un tableau

arrl == arr2 // Pas ce que 1'on souhaite

11

Pas de test d’égalité pour un tableau

arrl == arr2 // Pas ce que 1'on souhaite

arr1[0] == arr2[0] && arr1[1] == arr2[1] && ...

11

Pas de test d’égalité pour un tableau

arrl == arr2 // Pas ce que 1'on souhaite

bool content_equals = true;
for (int i=0; i<n; ++i) {
content_equals = content_equals
&& arr1[i] == arr2[i];
3

// content_equals contient true si et seulement si

// les contenus des cases sont égaux deux a deux

12

Pas de test d’égalité pour un tableau

arrl == arr2 // Pas ce que 1'on souhaite

bool content_equals = true;
for (int i=0; i<n && content_equals; ++i) {
content_equals = content_equals
&& arr1[i] == arr2[i];
3

// content_equals contient true si et seulement si

// les contenus des cases sont égaux deux a deux

13

Pas de test d’égalité pour un tableau

arrl == arr2 // Pas ce que 1'on souhaite ’

bool content_equals = true;

for (int i=0; i<n && content_equals; ++i) {
content_equals = arr1[i] == arr2[i];

}

// content_equals contient true si et seulement si

// les contenus des cases sont égaux deux a deux

14

Pas de tableau en argument

Une fonction ne peut pas prendre un tableau en argument !

15

Travailler sur un tableau

En général :

// Préparation

for (int i=0; i<n; ++i) {
// [bon endroit pour un invariant]

// Travail sur arr[i]

// Cléture

16

Travailler sur un tableau

Les exemples qui suivent sont des « briques de bases »
Il faut que le principe devienne une évidence!

e résoudre le probleme sur papier
e le traduire en C (immédiat)

e documenter le code

17

Somme des éléments

arr|1]3]s]rfr]3f3|s]r]2fa]2]6]5]7]5]5]

18

Somme des éléments

arr|1]3]s]rfr]3f3|s]r]2fa]2]6]5]7]5]5]

accum: 0 1 4 9 10 11 14 17 22 23 25 29 31 37 42 49 54 59
\A

itération i=0

18

Sommes cumulées

arr (3128 [31[30[31[30][31[31[30]31]30]31]

19

Sommes cumulées

arr[31]28[31[30[31[30]31[31[30]31]30]31 |::>

cumsum | 31 | 59 | 90 [120]151]181 212243273 [304334]365]

19

Valeur maximale

arr|1]-3]5]1]3]1]2]4]-2]6]5]7]5]5]

20

Valeur maximale

arr[1]-3[-5]-1[3]1]2]4]-2]-6]5]7]-5]5]

largest:mrvnl 1 1 1 3 3 3 4 4 4 5 7 7 7
A

itération i=0

20

Valeur maximale

arr [1]3[5[1[3]1]2[4]2[6[5[7]5[5]

largest: 1 1 1 1 3 3 3 4 4 4 5 7 7 7
A

itération i=1

21

Plus grande valeur paire

arr[1]-3]-5]-1[3]1]2[4]-2]6[5[7][5]5]

22

Plus grande valeur paire

arr[1]-3]-5]-1[3]1]2[4]-2]6[5[7][5]5]

foundeven: F F F F FFFTTTTTTTT
largest_even: ? 7?2 ? 72 7?2 ? 7?7 2 4 4 4 4 4 4 4

A

itération i=0

22

Plus grande valeur paire

arr[1]-3[-5]-1[3]1[2]4]-2]-6]5]7]-5]5]

largest_even: -1 -1 -1 -1 -1 -1 -1 2 4 4 4 4 4 4 4
A

itération i=0

23

Recherche d’un élément

On cherche un élément x pour lequel 1ooked_for(x) est true

Dans la pratique, peut-étre (x == 42), (x%/ == 0),
(x*(x=1) == 1)...

24

Recherche du plus grand élément

arr[1]-3]5]-1[3]1]2[4]-2]6[5[7][5]5]

25

Recherche du plus grand élément

arr[1]-3]5]-1[3]1]2[4]-2]6[5[7][5]5]

largest: 1 1 1 1 3 3 3 4 4 4 5 7 7 7

index_largest: 0 0 0O 0 4 4 4 7 7 7 10 11 11 11
)

itération i=1

25

Vérification de propriétés

Au moins un élément vérifie 2 (x)

dxe€E, 2(x)

26

Vérification de propriétés

Au moins un élément vérifie 2 (x)

dxe€E, 2(x)

Tous les éléments Vérifient 22 (x)

26

Vérification de propriétés

Au moins un élément vérifie 2 (x)

dxe€E, 2(x)

Tous les éléments vérifient 22 (x)

VxeE, P(x) = Axe€E | non?(x)

26

Tableaux ordonnés

On souhaite Vérifier

Vie[l..n-1], tab[i—-1] <tabli]

27

Plus longue séquence d’entiers pairs

arr[1]2]a]1f[-2]1]2[4]-8]6][5[6]4]0]

28

Plus longue séquence d’entiers pairs

arr[1]2]a]1f[-2]1]2[4]-8]6][5[6]4]0]

curr_count: 0 0 1 2 0 1 0 1 2 3 4 0 1 2 3
max_count: 0 O 1 2 2 2 2 2 2 3 4 4 4 4 4
A

itération i=0

28

Ou commence-t-elle ?

arr[1]2]4a]1[2[1]2[4]8]6]5[6[4]0]

29

Ou commence-t-elle ?

[2]4]-8]-6][5]6]-4]0]

curr_count: 0 0 1. 2 0 1 0 1 2 3 4 0 1 2 3
max_count: 0 O 1 2 2 2 2 2 2 3 4 4 4 4 4
index_end_max: ? ? 1 2 2 2 2 2 2 8 9 9 9 9 9

A

itération i=0

29

Plus longue séquence croissante

arr[1]2]4]-1]-2]1]2]4]-8]-6]5]6]-4]0]

30

Plus longue séquence croissante

[1][2]4]-8[6][5]6[-4[0]

curr_count: 1 2 3 1 1 2 3 4 1 2 3 4 1 2
max_count: 1 2 3 3 3 3 3 4 4 4 4 4 4 4
index_end_max: 0 1 2 2 2 2 2 7 7 7 7 7 7 17

A

itération i=1

30

