
Tableaux

24 septembre 2025

Lycée Louis-le-Grand



Comportement indéfini (UB, undefined behavior)

« Anything at all can happen; the Standard imposes no

requirements. The program may fail to compile, or it may execute

incorrectly (either crashing or silently generating incorrect results),

or it may fortuitously do exactly what the programmer intended. »

1



Exemple de raisons possibles

• terminer un programme par une ligne non vide ;

• tenter d’obtenir la valeur d’une variable non-initialisée ;

• tenter d’accéder, en lecture ou en écriture, à une case d’un

tableau avec un index négatif ou bien supérieur ou égal à la

taille du tableau ;

• parvenir au bout d’une fonction (autre que main) déclarée

comme renvoyant une valeur sans rencontrer de return et

utiliser son résultat ;

• effectuer une opération arithmétique illégale (telle qu’une

division par 0) ;

• effectuer un calcul (ou une conversion) dont le résultat n’est

pas représentable par le type manipulé (par exemple un calcul

sur des int excédant INT_MAX) ;

• utiliser des expressions dont le résultat de l’évaluation dépend

de l’ordre dans lequel les opérations sont effectuées...

2



Un exemple

int cherry;

if (cherry == 42) { ... } // UB !

3



Un exemple

int cherry;

if (banana) { cherry == 42; }

if (cherry == 42) { ... } // UB si !banana

int cherry;

if (banana) {

cherry == 42;

...

}

4



Exemple d’optimisation

int foo(int i) {

if (i != 0) {

printf("Hello World!");

}

return 100/i;

}

5



Exemple d’optimisation

int foo(int i) {

// if (i != 0) {

printf("Hello World~!");

// }

return 100/i;

}

6



Exemple d’optimisation qui tourne mal

void create_sandbox(void) {

// [création d'un "bac à sable"]

// stuff

a = a<<32 + b;

// more stuff

}

void protected_execution(void) {

create_sandbox();

execute_dangerous_code();

}

7



Exemple d’optimisation qui tourne mal

void create_sandbox(void) {

// Nop !

}

void protected_execution(void) {

// create_sandbox();

execute_dangerous_code();

}

8



Exemple d’optimisation

mango * 2 / 2 7→ mango

cherry + 1 > cherry 7→ true

Car si ça déborde, on fait ce que l’on veut !

9



Pas d’affectations pour un tableau

arr = ... // Illégal si arr est un tableau

for (int i=0; i<n; ++i) {

arr1[i] = arr2[i]; // arr1 ← arr2

}

10



Pas d’affectations pour un tableau

arr = ... // Illégal si arr est un tableau

for (int i=0; i<n; ++i) {

arr1[i] = arr2[i]; // arr1 ← arr2

}

10



Pas de test d’égalité pour un tableau

arr1 == arr2 // Pas ce que l'on souhaite

arr1[0] == arr2[0] && arr1[1] == arr2[1] && ...

11



Pas de test d’égalité pour un tableau

arr1 == arr2 // Pas ce que l'on souhaite

arr1[0] == arr2[0] && arr1[1] == arr2[1] && ...

11



Pas de test d’égalité pour un tableau

arr1 == arr2 // Pas ce que l'on souhaite

bool content_equals = true;

for (int i=0; i<n; ++i) {

content_equals = content_equals

&& arr1[i] == arr2[i];

}

// content_equals contient true si et seulement si

// les contenus des cases sont égaux deux à deux

12



Pas de test d’égalité pour un tableau

arr1 == arr2 // Pas ce que l'on souhaite

bool content_equals = true;

for (int i=0; i<n && content_equals; ++i) {

content_equals = content_equals

&& arr1[i] == arr2[i];

}

// content_equals contient true si et seulement si

// les contenus des cases sont égaux deux à deux

13



Pas de test d’égalité pour un tableau

arr1 == arr2 // Pas ce que l'on souhaite

bool content_equals = true;

for (int i=0; i<n && content_equals; ++i) {

content_equals = arr1[i] == arr2[i];

}

// content_equals contient true si et seulement si

// les contenus des cases sont égaux deux à deux

14



Pas de tableau en argument

Une fonction ne peut pas prendre un tableau en argument !

15



Travailler sur un tableau

En général :

// Préparation

for (int i=0; i<n; ++i) {

// [bon endroit pour un invariant]

// Travail sur arr[i]

}

// Clôture

16



Travailler sur un tableau

Les exemples qui suivent sont des « briques de bases »

Il faut que le principe devienne une évidence !

• résoudre le problème sur papier

• le traduire en C (immédiat)

• documenter le code

17



Somme des éléments

1 3 5 1 1 3 3 5 1 2 4 2 6 5 7 5 5arr

0 1 4 9 10 11 14 17 22 23 25 29 31 37 42 49 54 59accum :

itération i=0

18



Somme des éléments

1 3 5 1 1 3 3 5 1 2 4 2 6 5 7 5 5arr

0 1 4 9 10 11 14 17 22 23 25 29 31 37 42 49 54 59accum :

itération i=0

18



Sommes cumulées

31 28 31 30 31 30 31 31 30 31 30 31arr

31 59 90 120 151 181 212 243 273 304 334 365cumsum

19



Sommes cumulées

31 28 31 30 31 30 31 31 30 31 30 31arr

31 59 90 120 151 181 212 243 273 304 334 365cumsum

19



Valeur maximale

1 -3 -5 -1 3 1 2 4 -2 -6 5 7 -5 5arr

INT_MIN1 1 1 1 3 3 3 4 4 4 5 7 7 7largest :

itération i=0

20



Valeur maximale

1 -3 -5 -1 3 1 2 4 -2 -6 5 7 -5 5arr

INT_MIN1 1 1 1 3 3 3 4 4 4 5 7 7 7largest :

itération i=0

20



Valeur maximale

1 -3 -5 -1 3 1 2 4 -2 -6 5 7 -5 5arr

1 1 1 1 3 3 3 4 4 4 5 7 7 7largest :

itération i=1

21



Plus grande valeur paire

1 -3 -5 -1 3 1 2 4 -2 -6 5 7 -5 5arr

F F F F F F F T T T T T T T Tfound_even :

? ? ? ? ? ? ? 2 4 4 4 4 4 4 4largest_even :

itération i=0

22



Plus grande valeur paire

1 -3 -5 -1 3 1 2 4 -2 -6 5 7 -5 5arr

F F F F F F F T T T T T T T Tfound_even :

? ? ? ? ? ? ? 2 4 4 4 4 4 4 4largest_even :

itération i=0

22



Plus grande valeur paire

1 -3 -5 -1 3 1 2 4 -2 -6 5 7 -5 5arr

-1 -1 -1 -1 -1 -1 -1 2 4 4 4 4 4 4 4largest_even :

itération i=0

23



Recherche d’un élément

On cherche un élément x pour lequel looked_for(x) est true

Dans la pratique, peut-être (x == 42), (x%7 == 0),

(x*(x-1) == 1)...

24



Recherche du plus grand élément

1 -3 -5 -1 3 1 2 4 -2 -6 5 7 -5 5arr

1 1 1 1 3 3 3 4 4 4 5 7 7 7largest :

0 0 0 0 4 4 4 7 7 7 10 11 11 11index_largest :

itération i=1

25



Recherche du plus grand élément

1 -3 -5 -1 3 1 2 4 -2 -6 5 7 -5 5arr

1 1 1 1 3 3 3 4 4 4 5 7 7 7largest :

0 0 0 0 4 4 4 7 7 7 10 11 11 11index_largest :

itération i=1

25



Vérification de propriétés

Au moins un élément vérifie P (x)

∃x ∈ E, P (x)

Tous les éléments vérifient P (x)

∀x ∈ E, P (x) ≡ Øx ∈ E | nonP (x)

26



Vérification de propriétés

Au moins un élément vérifie P (x)

∃x ∈ E, P (x)

Tous les éléments vérifient P (x)

∀x ∈ E, P (x) ≡ Øx ∈ E | nonP (x)

26



Vérification de propriétés

Au moins un élément vérifie P (x)

∃x ∈ E, P (x)

Tous les éléments vérifient P (x)

∀x ∈ E, P (x) ≡ Øx ∈ E | nonP (x)

26



Tableaux ordonnés

On souhaite vérifier

∀i ∈ �1 . . n −1�, tab[i−1] É tab[i]

27



Plus longue séquence d’entiers pairs

1 2 4 -1 -2 1 2 4 -8 -6 5 6 -4 0arr

0 0 1 2 0 1 0 1 2 3 4 0 1 2 3curr_count :

0 0 1 2 2 2 2 2 2 3 4 4 4 4 4max_count :

itération i=0

28



Plus longue séquence d’entiers pairs

1 2 4 -1 -2 1 2 4 -8 -6 5 6 -4 0arr

0 0 1 2 0 1 0 1 2 3 4 0 1 2 3curr_count :

0 0 1 2 2 2 2 2 2 3 4 4 4 4 4max_count :

itération i=0

28



Où commence-t-elle ?

1 2 4 -1 -2 1 2 4 -8 -6 5 6 -4 0arr

0 0 1 2 0 1 0 1 2 3 4 0 1 2 3curr_count :

0 0 1 2 2 2 2 2 2 3 4 4 4 4 4max_count :

? ? 1 2 2 2 2 2 2 8 9 9 9 9 9index_end_max :

itération i=0

29



Où commence-t-elle ?

1 2 4 -1 -2 1 2 4 -8 -6 5 6 -4 0arr

0 0 1 2 0 1 0 1 2 3 4 0 1 2 3curr_count :

0 0 1 2 2 2 2 2 2 3 4 4 4 4 4max_count :

? ? 1 2 2 2 2 2 2 8 9 9 9 9 9index_end_max :

itération i=0

29



Plus longue séquence croissante

1 2 4 -1 -2 1 2 4 -8 -6 5 6 -4 0arr

1 2 3 1 1 2 3 4 1 2 3 4 1 2curr_count :

1 2 3 3 3 3 3 4 4 4 4 4 4 4max_count :

0 1 2 2 2 2 2 7 7 7 7 7 7 7index_end_max :

itération i=1

30



Plus longue séquence croissante

1 2 4 -1 -2 1 2 4 -8 -6 5 6 -4 0arr

1 2 3 1 1 2 3 4 1 2 3 4 1 2curr_count :

1 2 3 3 3 3 3 4 4 4 4 4 4 4max_count :

0 1 2 2 2 2 2 7 7 7 7 7 7 7index_end_max :

itération i=1

30


