
Algorithmes sur les listes

G. Dewaele

Lycée Louis-le-Grand

Idée générale

On utilise la récursion :

let rec foo = function

| [] -> ...

| h::t -> ... (foo t) ...

val foo : ... list -> ... = <fun>

Avec des variantes : cas particulier pour h::[], condition sur h,

argument supplémentaire (accumulateur), etc.

1

Somme des éléments d’une liste

On cherche un lien entre sum(h :: t) et sum(t) !

sum(h :: t) = h+ somme
(
q
)

let rec somme = function

| [] -> 0

| t::q -> t + somme q

val somme : int list -> int = <fun>

2

Somme des éléments d’une liste

On cherche un lien entre sum(h :: t) et sum(t) !

sum(h :: t) = h+ somme
(
q
)

let rec somme = function

| [] -> 0

| t::q -> t + somme q

val somme : int list -> int = <fun>

2

Somme des éléments d’une liste

On cherche un lien entre sum(h :: t) et sum(t) !

sum(h :: t) = h+ somme
(
q
)

let rec somme = function

| [] -> 0

| t::q -> t + somme q

val somme : int list -> int = <fun>

2

Somme des éléments d’une liste

On cherche un lien entre maximum
(
t :: q

)
et maximum

(
q
)

maximum
(
t :: q

)= max
(
t,maximum

(
q
))

let rec maximum = function

| [] -> failwith "Liste vide"

| t::[] -> t

| t::q -> max t (maximum q);;

val maximum : 'a list -> 'a = <fun>

3

Somme des éléments d’une liste

On cherche un lien entre maximum
(
t :: q

)
et maximum

(
q
)

maximum
(
t :: q

)= max
(
t,maximum

(
q
))

let rec maximum = function

| [] -> failwith "Liste vide"

| t::[] -> t

| t::q -> max t (maximum q);;

val maximum : 'a list -> 'a = <fun>

3

Somme des éléments d’une liste

On cherche un lien entre maximum
(
t :: q

)
et maximum

(
q
)

maximum
(
t :: q

)= max
(
t,maximum

(
q
))

let rec maximum = function

| [] -> failwith "Liste vide"

| t::[] -> t

| t::q -> max t (maximum q);;

val maximum : 'a list -> 'a = <fun>

3

Index du maximum

La récursion immédiate n’est pas possible

let rec index_et_maximum = function

| [] -> failwith "Liste vide"

| t::[] -> 0, t

| t::q -> let i, m = index_et_maximum q in

if m>t then (i+1, m) else (0, t)

val index_et_maximum : 'a list -> int * 'a = <fun>

4

Index du maximum

La récursion immédiate n’est pas possible

let rec index_et_maximum = function

| [] -> failwith "Liste vide"

| t::[] -> 0, t

| t::q -> let i, m = index_et_maximum q in

if m>t then (i+1, m) else (0, t)

val index_et_maximum : 'a list -> int * 'a = <fun>

4

Index du maximum

On encapsule ensuite la fonction

let index_maximum lst =

let rec index_et_maximum = function

| [] -> failwith "Liste vide"

| t::[] -> 0, t

| t::q -> let i, m = index_et_maximum q in

if m>t then (i+1, m) else (0, t)

in fst (index_et_maximum lst);;

val index_maximum : 'a list -> int = <fun>

5

Plus longue séquence croissante

Pour une liste t::q, la plus longue séquence croissante :

• commence avec t

• ou est la plus longue séquence croissante de q

Dans le premier cas, sa longueur est 1 plus la séquence croissante au

début de q

6

Plus longue séquence croissante

Pour une liste t::q, la plus longue séquence croissante :

• commence avec t

• ou est la plus longue séquence croissante de q

Dans le premier cas, sa longueur est 1 plus la séquence croissante au

début de q

6

Plus longue séquence croissante

Cela donne donc :

let plsc lst =

let rec aux = function

| [] -> 0, 0

| t1::t2::q when t1<=t2

-> let actu, maxi = aux (t2::q)

in 1+actu, max (1+actu) maxi

| t::q -> 1, max 1 (snd (aux q))

in snd (aux lst);;

val plsc : 'a list -> int = <fun>

7

Sommes cumulées

Problème : construction récursive de la droite vers la gauche

Solution : un argument renseignant sur ce qu’il y a à gauche

(somme des termes)

let cumsum lst =

let rec cumsum_offset offset = function

| [] -> []

| t::q -> let nt = t+offset

in nt::cumsum_offset nt q

in cumsum_offset 0 lst;;

val cumsum : int list -> int list = <fun>

8

Sommes cumulées

Problème : construction récursive de la droite vers la gauche

Solution : un argument renseignant sur ce qu’il y a à gauche

(somme des termes)

let cumsum lst =

let rec cumsum_offset offset = function

| [] -> []

| t::q -> let nt = t+offset

in nt::cumsum_offset nt q

in cumsum_offset 0 lst;;

val cumsum : int list -> int list = <fun>

8

Sommes cumulées

On peut utiliser une application partielle ici !

let cumsum =

let rec cumsum_offset offset = function

| [] -> []

| t::q -> let nt = t+offset

in nt::cumsum_offset nt q

in cumsum_offset 0;;

val cumsum : int list -> int list = <fun>

9

Tri bulle

C’est une variante de tri par sélection :

• on détermine le plus petit élément

• on le place en tête

• on trie le reste

10

Tri bulle

Pour extraire le plus petit élément :

let rec min_et_reste = function

| [] -> failwith "Liste vide"

| t::[] -> t, []

| t::q -> let m, r = min_et_reste q in

if m<t then m, t::r

else t, m::r;;

val min_et_reste : 'a list -> 'a * 'a list = <fun>

11

Tri bulle

Puis, pour trier :

let rec tri_bulle = function

| [] -> []

| lst -> let m, r = min_et_reste lst

in m::tri_bulle r;;

val tri_bulle : 'a list -> 'a list = <fun>

12

Tri par insertion

let rec insertion elem = function

| [] -> [elem]

| t::q when elem>t -> t::insertion elem q

| lst -> elem::lst

val insertion : 'a -> 'a list -> 'a list = <fun>

let rec tri_insertion = function

| [] -> []

| t::q -> insertion t (tri_insertion q);;

val tri_insertion : 'a list -> 'a list = <fun>

Dans le sens opposé à notre fonction C !

13

Tri rapide

On partitionne une liste pour un pivot donné :

let rec partition pivot = function

| [] -> [], []

| t::q -> let lst1, lst2 = partition pivot q

in if t<pivot then t::lst1, lst2

else lst1, t::lst2;;

val partition : 'a -> 'a list

-> 'a list * 'a list = <fun>

14

Tri rapide

Puis on utilise la partition

let rec tri_rapide = function

| [] -> []

| pivot::q -> let lst1, lst2 = partition pivot q

in tri_rapide lst1

@ pivot :: tri_rapide lst2;;

val tri_rapide : 'a list -> 'a list = <fun>

15

