Algorithmes sur les listes

G. Dewaele

Lycée Louis-le-Grand

Idée générale

On utilise la récursion :

let rec foo = function
| [] -> ..
| h::t -> ... (foo t)
val foo : ... list -> ... = <fun>

Avec des variantes : cas particulier pour h::[1], condition sur h,
argument supplémentaire (accumulateur), etc.

Somme des éléments d’une liste

On cherche un lien entre sum(h::t) et sum(t)!

Somme des éléments d’une liste

On cherche un lien entre sum(h::t) et sum(t)!

sum(h :: t) = h + somme(q)

Somme des éléments d’une liste

On cherche un lien entre sum(h::t) et sum(t)!

sum(h :: t) = h + somme(q)

let rec somme = function
| L[] -> 0

| t::q -> t + somme q

val somme : int list -> int = <fun>

Somme des éléments d’une liste

On cherche un lien entre maximum(t :: q) et maximum(q)

Somme des éléments d’une liste

On cherche un lien entre maximum(t :: q) et maximum(q)

maximum(t ::) = max(t, maximum(q))

Somme des éléments d’une liste

On cherche un lien entre maximum(t :: q) et maximum(q)

maximum(t ::) = max(t, maximum(q))

let rec maximum = function
| [1] -> failwith "Liste vide”
| t::[1 >t
| t::g ->max t (maximum q);;

val maximum : 'a list -> 'a = <fun>

Index du maximum

La récursion immédiate n’'est pas possible

Index du maximum

La récursion immédiate n’'est pas possible

let rec index_et_maximum = function
[[] -> failwith "Liste vide”
| t::[] ->0, t
| t::qg -> let i, m = index_et_maximum q in
if m>t then (i+1, m) else (0, t)

val index_et_maximum : 'a list -> int * 'a = <fun>

Index du maximum

On encapsule ensuite la fonction

let index_maximum lst =
let rec index_et_maximum = function
| [] -> failwith "Liste vide”
| t::[] >0, t
| t::qg -> let i, m = index_et_maximum g in
if m>t then (i+1, m) else (0, t)
in fst (index_et_maximum 1st);;

val index_maximum : 'a list -> int = <fun>

Plus longue séquence croissante

Pour une liste t: :q, la plus longue séquence croissante :
e commence avec t

e ou est la plus longue séquence croissante de q

Plus longue séquence croissante

Pour une liste t: :q, la plus longue séquence croissante :

® commence avec t

e ou est la plus longue séquence croissante de q

Dans le premier cas, sa longueur est 1 plus la séquence croissante au
début de q

Plus longue séquence croissante

Cela donne donc :

let plsc 1lst =

let rec aux = function
| [1->0, 0
| t1::t2::q when t1<=t2

-> let actu, maxi = aux (t2::q)
in T+actu, max (l1+actu) maxi

| t::qg -> 1, max 1 (snd (aux q))

in snd (aux 1lst);;

val plsc : 'a list -> int = <fun>

Sommes cumulées

Probléme : construction récursive de la droite vers la gauche

Sommes cumulées

Probléme : construction récursive de la droite vers la gauche

Solution : un argument renseignant sur ce qu'il y a a gauche
(somme des termes)

let cumsum lst =
let rec cumsum_offset offset = function
| [1 > []
| t::q -> let nt = t+offset
in nt::cumsum_offset nt q
in cumsum_offset 0 1st;;

val cumsum : int list -> int list = <fun>

Sommes cumulées

On peut utiliser une application partielle ici!

let cumsum =
let rec cumsum_offset offset = function
| [1->1[1
| t::q -> let nt = t+offset
in nt::cumsum_offset nt g
in cumsum_offset 0;;

val cumsum : int list -> int list = <fun>

Tri bulle

C'est une variante de tri par sélection :
e on détermine le plus petit élément
e on le place en téte

e on trie le reste

10

Tri bulle

Pour extraire le plus petit élément :

let rec min_et_reste = function
| [] -> failwith "Liste vide”
| t::[1 ->t, []
| t::qg -> let m, r = min_et_reste g in
if m<t then m, t::r
else t, m::r;;

val min_et_reste : 'a list -> 'a * 'a list = <fun>

11

Tri bulle

Puis, pour trier :

let rec tri_bulle = function
| [1 ->[1
| Ist -> let m, r = min_et_reste 1lst
in m::tri_bulle r;;

val tri_bulle : 'a list -> 'a list = <fun>

12

Tri par insertion

let rec insertion elem = function
| [1 -> [elem]
| t::q when elem>t -> t::insertion elem q

| Ist -> elem::1st

val insertion : 'a -> 'a list -> 'a list = <fun>

let rec tri_insertion = function
| [1->1[1]

| t::q -> insertion t (tri_insertion q);;

val tri_insertion : 'a list -> 'a list = <fun>

Dans le sens opposé a notre fonction C!
13

On partitionne une liste pour un pivot donné :

let rec partition pivot = function
| [1->101, [1
| t::q -> let 1st1, 1st2 = partition pivot q
in if t<pivot then t::1stl1, 1lst2
else 1st1, t::1st2;;

val partition : 'a -> 'a list
-> 'a list x 'a list = <fun>

14

Puis on utilise la partition

let rec tri_rapide = function
| [1->1[]
| pivot::q -> let 1st1, 1st2 = partition pivot g
in tri_rapide 1lst1
@ pivot :: tri_rapide 1lst2;;

val tri_rapide : 'a list -> 'a list = <fun>

15

