Fonctionnelles sur les listes

G. Dewaele

Lycée Louis-le-Grand

On souhaite effectuer une opération sur tous les éléments d'une liste

En Python :

Ist = [1, 2, 3, 4, 51

for elem in 1st :
foo(elem)

En OCaml :

List.iter foo Ist;;

Exécute « foo elem » sur tous les éléments elem de la liste 1st

Les éléments sont traités de la gauche vers la droite

Exemple : imprimer les éléments d'une liste d'entiers

let 1st = [1; 2; 3; 4; 5 1;;
val 1st : int list = [1; 2; 3; 4; 5]

List.iter print_int lst;;
12345- : unit = ()

Pour une 'a list, la fonction doit étre de type 'a -> unit

List.iter;;
- : ('a -> unit) -> 'a list -> unit = <fun>

Le résultat d'un appel a List.iter est toujours un unit

On peut vouloir la liste des résultats !

En Python, on utilise une compréhension :

[foo(elem) for elem in 1st]]

En OCaml :

List.map foo 1st;; ’

Exécute « foo elem » sur tous les éléments elem de la liste 1st

Construit une liste avec les résultats

Lay; ap; ...; a1 — [foo ay;; foo ay; ...; foo a; 1

L’ordre des évaluations n’est pas spécifié !

Si la fonction est de type 'a -> 'b:
e on traite une 'a list

e on obtient une 'b list de méme longueur

List.map;;
- : ('a->"b) -> 'a list -> 'b list = <fun>

II!HHHIHHHiIII

Quelques exemples...

List.map int_of_float [1.0; 2.5; 3.14 7J;;
- . int list = [1; 2; 3]

II!HHHIHHiiIII

Quelques exemples...

List.map int_of_float [1.0; 2.5; 3.14 7J;;
- . int list = [1; 2; 3]

let f n = float_of_int n *xx 2.0;;
val f : int -> float = <fun>

List.map £ [1; 2; 3; 4; 5 1;;
- : float list = [1.; 4.; 9.; 16.; 25.]

Pour une fonction retournant des unit :

12345- : unit list = [(); O; O; O; O]

List.map print_int [1; 2; 3; 4; 5 1;; |

Ici, les éléments ont été traités de gauche a droite

Ce n’est pas garanti!

On peut programmer son propre List.map :

let rec map foo = function
| [1->1[1
| t::q -> foo t :: (map foo q);;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

L’ordre des évaluations n’est toujours pas spécifié !

On ne sait pas si OCaml effectue « foo t » ou « map foo g »
d’abord

10

Pour garantir I'ordre de gauche a droite :

let rec map foo = function
| [1-> [
| t::q -> let nouv_t = foo t in
nouv_t :: map foo q;;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

11

Retour sur List.iter

Pour implémenter soi-méme List.iter :

let rec iter foo = function
[01 ->0
| t::q > let _ = foo t in
iter foo q;;

val iter : ('a -> 'b) -> 'a list -> unit = <fun>

12

Et au-dela?

Pour sommer les éléments d’une liste d’entiers

En Python

sum(lst)

ou bien

def somme(lst) :
acc =0
for elem in 1st :
acc = acc + elem
return acc

13

Et au-dela?

Pour sommer les éléments d'une liste d’entiers

En OCaml

let rec somme = function
| [1 >0

| t::q -> t + somme q;;

14

Et au-dela?

Pour déterminer le plus grand élément d’une liste d'entiers

En Python

max(1lst) J

ou bien

def maximum(lst) :
plus_grand = 1st[0]
for elem in 1lst :
if elem > plus_grand :
plus_grand = elem
return plus_grand

15

Et au-dela?

Pour déterminer le plus grand élément d'une liste d’entiers

En OCaml

let rec maximum = function
| [1 -> failwith "Liste vide”
| [elem] -> elem
| t::q -> max t (maximum q);;

16

Et au-dela?

Ecrire une fonction récursive est généralement suffisant

C'est une construction tres fréquente

On peut vouloir une formulation plus succinte !

17

Arbres d’expressions

Considérons |'expression « Asin(wf+ ¢) »

18

Arbres d’expressions

Considérons |'expression « Asin(wf+ ¢) »

On peut l'interpréter sous forme arborescente :

O
Q sin(wf +)

18

Arbres d’expressions

Considérons |'expression « Asin(wf+ ¢) »

On peut l'interpréter sous forme arborescente :

wr+d

18

Arbres d’expressions

Considérons |'expression « Asin(wf+ ¢) »

On peut l'interpréter sous forme arborescente :

Arbres d’expressions

Considérons |'expression « Asin(wf+ ¢) »

On peut l'interpréter sous forme arborescente :

Cas d’une liste

Pour une liste [1; 2; 3; 4]

19

Cas d’une liste

Pour une liste [1; 2; 3; 4]

On peut également I'interpréter sous forme arborescente :

19

Cas d’une liste

Pour une liste [1; 2; 3; 4]

On peut également I'interpréter sous forme arborescente :

D
OB
(2) r3 41

19

Cas d’une liste

Pour une liste [1; 2; 3; 4]

On peut également I'interpréter sous forme arborescente :

D
O
oo
[4]

19

Cas d’une liste

Pour une liste [1; 2; 3; 4]

On peut également I'interpréter sous forme arborescente :

Que fait List.map ?

List.map foo « insere » pour chaque élément un appel a foo :

N
\

20

Que fait List.map ?

List.map foo « insere » pour chaque élément un appel a foo :

List. ma

20

Que fait List.map ?

List.map foo « insere » pour chaque élément un appel a foo :

s

Si foo est de signature 'a => 'b, une 'a list devient 'b list!

20

Somme des termes d’une liste

Pour effectuer la somme des éléments d'une liste :

Somme des termes d’une liste

Pour effectuer la somme des éléments d'une liste :

On veut remplacer les :: par une fonction a deux arguments...

21

Somme des termes d’une liste

Pour effectuer la somme des éléments d'une liste :

On veut remplacer les :: par une fonction a deux arguments...

et [] par autre chose!

21

Somme des termes d’une liste

Pour effectuer la somme des éléments d'une liste :

On veut remplacer les :: par une fonction a deux arguments...

et [] par autre chose!

21

Somme des termes d’une liste

Plus généralement :

Pour une 'a list, si on veut un résultat de type 'b :
e la fonction remplacgant :: doit étre de type 'a => 'b > 'b

e ce qui remplace [] de type 'b

Somme des termes d’une liste

Pour la somme des éléments d'une liste :

Pour la somme des éléments, 'a et 'b sont des int
e |a fonction est fun a b -> a+b

e ce qui remplace [] est 0

Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

List.fold_right;;
-: ('a->"'b ->"b) -> 'a list -> 'b -> 'b = <fun>

C'est une fonction qui prend trois arguments :
e ('a -> 'b -> 'b) est |la fonction qui remplace ::
e 'a list est la liste que I'on traite

e le premier 'b désigne I'élément qui remplace []

Enfin, le second 'b indique le type du résultat

24

Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

List.fold_right;;
-: ('a->"'b > 'b) > 'a list -> 'b -> 'b = <fun>

Le nom de la fonction décrit bien I'opération :
e « fold_ » car il s'agit de « replier » I'arbre

e « _right » car les repliements sont effectués a droite

& © .

Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

List.fold_right;;
-: ('a->"'b > 'b) > 'a list -> 'b -> 'b = <fun>

Le nom de la fonction décrit bien I'opération :
e « fold_ » car il s'agit de « replier » I'arbre

e « _right » car les repliements sont effectués a droite

25

Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

List.fold_right;;
-: ('a->"'b > 'b) > 'a list -> 'b -> 'b = <fun>

Le nom de la fonction décrit bien I'opération :
e « fold_ » car il s'agit de « replier » I'arbre

e « _right » car les repliements sont effectués a droite

25

Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

List.fold_right;;
-: ('a->"'b > 'b) > 'a list -> 'b -> 'b = <fun>

Le nom de la fonction décrit bien I'opération :
e « fold_ » car il s'agit de « replier » I'arbre

e « _right » car les repliements sont effectués a droite

25

Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

List.fold_right;;
-: ('a->"'b > 'b) > 'a list -> 'b -> 'b = <fun>

Le nom de la fonction décrit bien I'opération :
e « fold_ » car il s'agit de « replier » I'arbre

e « _right » car les repliements sont effectués a droite

25

Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

List.fold_right;;

(‘a->"'b ->"b) -> 'a list -=> 'b -> 'b = <fun>

Les arguments respectent |I'image arborescente :
e les arguments de la fonction utilisée sont dans |'ordre

e la liste est a gauche, I'élément remplacant [] a droite

26

Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

List.fold_right;;

(‘a->"'b ->"'b) -> 'alist -> 'b -> 'b = <fun>

Les arguments respectent |I'image arborescente :
e les arguments de la fonction utilisée sont dans |'ordre

e la liste est a gauche, le point de départ du repliement a droite

fold_right

)
A)

L 1; 2; 3; 41)

27

Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

List.fold_right;;

(‘a->"'b ->"'b) -> 'alist -> 'b -> 'b = <fun>

Les arguments respectent |I'image arborescente :
e les arguments de la fonction utilisée sont dans |'ordre

e la liste est a gauche, le point de départ du repliement a droite

) fold_right
L1; 2; 3; 41 0

I — |

+

27

Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

List.fold_right;;

(‘a->"'b ->"'b) -> 'alist -> 'b -> 'b = <fun>

Les arguments respectent |I'image arborescente :
e les arguments de la fonction utilisée sont dans |'ordre

e la liste est a gauche, le point de départ du repliement a droite

fold_right

)
A)

[1; 2,31 4

27

Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

List.fold_right;;

(‘a->"'b ->"'b) -> 'alist -> 'b -> 'b = <fun>

Les arguments respectent |I'image arborescente :
e les arguments de la fonction utilisée sont dans |'ordre

e la liste est a gauche, le point de départ du repliement a droite

fold_right

)
A)

L 1; 2; 31 4

+

27

Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

List.fold_right;;

(‘a->"'b ->"'b) -> 'alist -> 'b -> 'b = <fun>

Les arguments respectent |I'image arborescente :
e les arguments de la fonction utilisée sont dans |'ordre

e la liste est a gauche, le point de départ du repliement a droite

fold_right

)
A)

1,21 7

+

27

Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

List.fold_right;;

(‘a->"'b ->"'b) -> 'alist -> 'b -> 'b = <fun>

Les arguments respectent |I'image arborescente :
e les arguments de la fonction utilisée sont dans |'ordre

e la liste est a gauche, le point de départ du repliement a droite

fold_right

)
A)

1] 9

I — |

+

27

Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

List.fold_right;;

(‘a->"'b ->"'b) -> 'alist -> 'b -> 'b = <fun>

Les arguments respectent |I'image arborescente :
e les arguments de la fonction utilisée sont dans |'ordre

e la liste est a gauche, le point de départ du repliement a droite

fold_right

A

10

27

Somme des termes d’une liste

L'instruction

List.fold_right foo [ay; az; ...; an—1; a, 1 b

Correspond donc a

foo a; (foo ap (... (foo a,—1 (foo a, b)) ...))

N
\

28

Somme des termes d’une liste

On peut donc écrire :

let somme a b = a + b;;
val somme : int -> int -> int = <fun>

List.fold_right somme [1; 2; 3; 4 1 0;;
- : int = 10

29

Somme des termes d’une liste

On peut donc écrire :

let somme a b = a + b;;
val somme : int -> int -> int = <fun>

List.fold_right somme [1; 2; 3; 4 1 0;;
- : int = 10

Ou plus directement :

List.fold_right (fun a b -> atb) [1; 2; 3; 4 1 0;}
- : int = 10

29

Somme des termes d’une liste

Si I'on veut construire une fonction effectuant cette somme :

let somme_liste 1lst =
List.fold_right (fun a b -> a+b) 1lst 0;;

val somme_liste : int list -> int = <fun>

30

Somme des termes d’une liste

Si I'on veut construire une fonction effectuant cette somme :

let somme_liste 1lst =
List.fold_right (fun a b -> a+b) 1lst 0;;

val somme_liste : int list -> int = <fun>

La fonction ainsi créée peut sommer une liste d’entiers :

somme_liste [1; 2; 3; 4 1;;
- : int = 10

30

Somme des termes d’une liste

Une derniére chose...

Pour un opérateur binaire tel que +

(+) est un raccourci pour la fonction (fun a b -> a+b)

31

Somme des termes d’une liste

Une derniére chose...

Pour un opérateur binaire tel que +

(+) est un raccourci pour la fonction (fun a b -> a+b)

De sorte qu'on peut simplement écrire

List.fold_right (+) [1; 2; 3; 4 1 0;;
- : int = 10

31

Produit des éléments d’une liste d’e

Pour calculer le produit de tous les termes d'une liste :

L 1;2; 3; 41

32

Produit des éléments d’une liste d’entiers

Pour calculer le produit de tous les termes d'une liste :

fold_right

A

L5025 35 4]

32

Produit des éléments d’une liste d’entiers

Pour calculer le produit de tous les termes d'une liste :

e On part de la valeur 1

fold_right

A

32

Produit des éléments d’une liste d’entiers

Pour calculer le produit de tous les termes d'une liste :
e On part de la valeur 1

e On replie avec la fonction « produit »

fold_right

<
h)

L 1;2; 3; 41 1

32

Produit des éléments d’une liste d’entiers

Pour calculer le produit de tous les termes d'une liste :
e On part de la valeur 1

e On replie avec la fonction « produit »

fold_right

<
h)

[1; 2; 31 4

32

Produit des éléments d’une liste d’entiers

Pour calculer le produit de tous les termes d'une liste :
e On part de la valeur 1

e On replie avec la fonction « produit »

fold_right

<
h)

L 1; 2] 12

32

Produit des éléments d’une liste d’entiers

Pour calculer le produit de tous les termes d'une liste :
e On part de la valeur 1

e On replie avec la fonction « produit »

fold_right

<
h)

1] 24

32

Produit des éléments d’une liste d’entiers

Pour calculer le produit de tous les termes d'une liste :
e On part de la valeur 1

e On replie avec la fonction « produit »

fold_right

A

24

32

Produit des éléments d’une liste d’entiers

Cela peut s'écrire :

let produit_liste 1lst =
List.fold_right (fun a b -> a * b) 1st 1;;

val produit_liste : int list -> int = <fun>

Ou bien

let produit_liste 1st =
List.fold_right (*) 1st 1;;

produit_liste [1; 2; 3; 4 1;;
- :int = 24

83

Concaténer une liste de chaines de caracteres

Pour concaténer des chatnes de caractéres dans une liste :

I: ”Le”; n ”; ”Ciel”; n eSt H; nbleuu]

34

Concaténer une liste de chaines de caracteres

Pour concaténer des chatnes de caractéres dans une liste :

fold_right

<
h)

I: ”Le”; n ”; ”Ciel”; n eSt H; nbleuu]

34

Concaténer une liste de chaines de caracteres

Pour concaténer des chatnes de caractéres dans une liste :

e On part d'une chaine vide ""

e On replie avec des concaténations

fold_right

<
h)

I: ”Le”; n ”; ”Ciel”; n eSt H; nbleuu] nn

34

Concaténer une liste de chaines de caracteres

Pour concaténer des chatnes de caractéres dans une liste :

e On part d'une chaine vide ""

e On replie avec des concaténations

fold_right

<
h)

I: ”Le”; n ”; ”Ciel”; n eSt n :l nbleun

34

Concaténer une liste de chaines de caracteres

Pour concaténer des chatnes de caractéres dans une liste :

e On part d'une chaine vide ""

e On replie avec des concaténations

fold_right

<
h)

I: ”Le”; n ”; ”Ciel” :l n eSt bleuu

34

Concaténer une liste de chaines de caracteres

Pour concaténer des chatnes de caractéres dans une liste :

e On part d'une chaine vide ""

e On replie avec des concaténations

fold_right

<
h)

["Le"; " " 1] "ciel est bleu”

34

Concaténer une liste de chaines de caracteres

Pour concaténer des chatnes de caractéres dans une liste :

e On part d'une chaine vide ""

e On replie avec des concaténations

fold_right

<
h)

["Le" 1] " ciel est bleu”

34

Concaténer une liste de chaines de caracteres

Pour concaténer des chatnes de caractéres dans une liste :
nn

e On part d'une chaine vide

e On replie avec des concaténations

fold_right

<
h)

"Le ciel est bleu”

34

Concaténer une liste de chaines de caracteres

Cela peut s'écrire :

let concat 1st =
List.fold_right (fun a b -> a * b) 1st "";;

val concat : string list -> string = <fun>

Ou bien

let concat 1st =
List.fold_right (*) 1st "";;

n

concat ["Le"; est "; "bleu” 1;;

non,
’

”Ciel”;

- : string = "Le ciel est bleu”

B35

Concaténer une liste de chaines de caracteres

Dans ce dernier cas, on effectue n—1 concaténations

C'est inutilement coliteux !

36

Concaténer une liste de chaines de caracteres

Dans ce dernier cas, on effectue n—1 concaténations

C'est inutilement coliteux !

Il existe une fonction pour cela :

String.concat;;

- : string -> string list -> string = <fun>

Le premier argument est glissé entre chaque chaine de la liste :

String.concat " " ["Le"; "ciel”; "est"; "bleu” 1;§
- : string = "Le ciel est bleu”

36

Aplatir une liste de listes

Pour aplatir une liste de liste :

CC1;2;,31;,L471;001;[C5 611

37

Aplatir une liste de listes

Pour aplatir une liste de liste :

fold_right

)
A)

CC1;2;,31;,L471;001;[C5 611

37

Aplatir une liste de listes

Pour aplatir une liste de liste :
e On part d'une liste vide []

e On replie avec des concaténations

fold_right

)
A)

CLC1;2;31;[L41;00[1;[C5 611 L]

37

Aplatir une liste de listes

Pour aplatir une liste de liste :
e On part d'une liste vide []

e On replie avec des concaténations

fold_right

)
A)

CC1;,2;31;[41; [1] [5; 61

37

Aplatir une liste de listes

Pour aplatir une liste de liste :
e On part d'une liste vide []

e On replie avec des concaténations

fold_right

)
A)

LL1;2;31;[471]1 [5,61

37

Aplatir une liste de listes

Pour aplatir une liste de liste :
e On part d'une liste vide []

e On replie avec des concaténations

fold_right

)
A)

LL1;2;, 31711 [4; 5; 6 1]

37

Aplatir une liste de listes

Pour aplatir une liste de liste :
e On part d'une liste vide []

e On replie avec des concaténations

fold_right

)
A)

L 1;2; 3; 4, 5; 61

37

Aplatir une liste de listes

Cela peut s'écrire :

let aplatir 1st =
List.fold_right (fun a b -> a @ b) 1st [];;

val aplatir : 'a list list -> 'a list = <fun>

Ou bien

let aplatir 1lst =
List.fold_right (@) 1st [1;;

aplatir [[1; 2; 3 1; [41; [1; L5 61 1;;
- : int list = [1; 2; 3; 4; 5; 6]

38

Supprimer les valeurs paires

Pour supprimer les éléments pairs dans une liste :

[3; 6; 5, 2; 71

39

Supprimer les valeurs paires

Pour supprimer les éléments pairs dans une liste :

fold_right

A

[3; 6; 5, 2; 71

39

Supprimer les valeurs paires

Pour supprimer les éléments pairs dans une liste :
e On part d'une liste vide []

e On ajoute (avec ::) les éléments s'ils sont impairs

fold_right

)
A)

[3; 6; 5, 2; 7]]

39

Supprimer les valeurs paires

Pour supprimer les éléments pairs dans une liste :
e On part d'une liste vide []

e On ajoute (avec ::) les éléments s'ils sont impairs

fold_right

)
A)

[3; 6; 5, 2] L 71

39

Supprimer les valeurs paires

Pour supprimer les éléments pairs dans une liste :
e On part d'une liste vide []

e On ajoute (avec ::) les éléments s'ils sont impairs

fold_right

)
A)

[3; 6; 51 L 71

39

Supprimer les valeurs paires

Pour supprimer les éléments pairs dans une liste :
e On part d'une liste vide []

e On ajoute (avec ::) les éléments s'ils sont impairs

fold_right

)
A)

[3; 61 L5 7]

39

Supprimer les valeurs paires

Pour supprimer les éléments pairs dans une liste :
e On part d'une liste vide []

e On ajoute (avec ::) les éléments s'ils sont impairs

fold_right

)
A)

31 L5 71

39

Supprimer les valeurs paires

Pour supprimer les éléments pairs dans une liste :
e On part d'une liste vide []

e On ajoute (avec ::) les éléments s'ils sont impairs

fold_right

)
A)

L35 71

39

Supprimer les valeurs paires

Cette fois-ci, on a besoin d'une fonction spécifique !

let conse_si_impair elem lst =
match elem mod 2 with
| © -> 1st
| _ -> elem::1st;;

val conse_si_impair : int -> int list
-> int list = <fun>

40

Supprimer les valeurs paires

Ensuite, on peut écrire notre fonction :

let supprime_pairs 1st =
List.fold_right conse_si_impair lst [];;

val supprime_pairs : int list -> int list = <fun>

supprime_pairs [3; 6; 5; 2; 7 1;;
- : int list = [3; 5; 7]

41

Supprimer les doublons

Pour supprimer les éléments en double dans une liste :

[5 2;7;5; 71

42

Supprimer les doublons

Pour supprimer les éléments en double dans une liste :

fold_right

)
A)

[5 2;7;5; 71

42

Supprimer les doublons

Pour supprimer les éléments en double dans une liste :
e On part d'une liste vide []

e On ajoute (avec ::) les éléments s'ils sont absents

fold_right

)
A)

[552;7;5 71]

42

Supprimer les doublons

Pour supprimer les éléments en double dans une liste :
e On part d'une liste vide []

e On ajoute (avec ::) les éléments s'ils sont absents

fold_right

)
A)

[5 2;7; 5] L 71

42

Supprimer les doublons

Pour supprimer les éléments en double dans une liste :
e On part d'une liste vide []

e On ajoute (avec ::) les éléments s'ils sont absents

fold_right

)
A)

[5;2;7]1] [5; 7]

42

Supprimer les doublons

Pour supprimer les éléments en double dans une liste :
e On part d'une liste vide []

e On ajoute (avec ::) les éléments s'ils sont absents

fold_right

)
A)

L5 2] L5 7]

42

Supprimer les doublons

Pour supprimer les éléments en double dans une liste :
e On part d'une liste vide []

e On ajoute (avec ::) les éléments s'ils sont absents

fold_right

)
A)

L5]1] [2;5 71

42

Supprimer les doublons

Pour supprimer les éléments en double dans une liste :
e On part d'une liste vide []

e On ajoute (avec ::) les éléments s'ils sont absents

fold_right

)
A)

L 25 71

42

Supprimer les doublons

Cette fois encore, on a besoin d'une fonction spécifique :

let conse_si_absent elem = function
| Ist when List.mem elem 1st -> 1lst
| 1st -> elem::1st;;

val conse_si_absent : 'a -> 'a list -> 'a list = <fun>

43

Supprimer les doublons

Ensuite, on peut écrire notre fonction :

let supprime_doublons 1lst =
List.fold_right conse_si_absent 1lst [];;

val supprime_doublons : 'a list -> 'a list = <fun>

supprime_doublons [5; 2; 7; 5; 7 1;;
- : int list = [2; 5; 7]

a4

Calculer la longueur d’une liste

Pour déterminer le nombre d’éléments dans une liste :

[5, 2;,7;5; 71

45

Calculer la longueur d’une liste

Pour déterminer le nombre d’éléments dans une liste :

fold_right

A

[5, 2;,7;5; 71

45

Calculer la longueur d’une liste

Pour déterminer le nombre d’éléments dans une liste :
e On part de 0

e On incrémente, quel que soit I'élément extrait

fold_right

<
h)

[55 2;7;5; 71 0

45

Calculer la longueur d’une liste

Pour déterminer le nombre d’éléments dans une liste :
e On part de 0

e On incrémente, quel que soit I'élément extrait

fold_right

<
h)

[5; 2; 7; 51 1

45

Calculer la longueur d’une liste

Pour déterminer le nombre d’éléments dans une liste :
e On part de 0

e On incrémente, quel que soit I'élément extrait

fold_right

<
h)

[5 271 2

45

Calculer la longueur d’une liste

Pour déterminer le nombre d’éléments dans une liste :
e On part de 0

e On incrémente, quel que soit I'élément extrait

fold_right

<
h)

[5 2] 3

45

Calculer la longueur d’une liste

Pour déterminer le nombre d’éléments dans une liste :
e On part de 0

e On incrémente, quel que soit I'élément extrait

fold_right

<
h)

[5] 4

45

Calculer la longueur d’une liste

Pour déterminer le nombre d’éléments dans une liste :
e On part de 0

e On incrémente, quel que soit I'élément extrait

fold_right

A

45

Calculer la longueur d’une liste

Si I'on veut construire une fonction effectuant cette somme :

let longueur 1lst =
List.fold_right (fun a b -> b+1) 1st 0;;

val longueur : 'a list -> int = <fun>

46

Calculer la longueur d’une liste

Si I'on veut construire une fonction effectuant cette somme :

let longueur 1lst =
List.fold_right (fun a b -> b+1) 1st 0;;

val longueur : 'a list -> int = <fun>

La fonction retourne bien la longueur de la liste :

longueur [5; 2; 7; 5; 7 1;;
- :int =5

46

Déterminer le plus grand élément d’une liste

Pour déterminer le plus grand élément d'une liste :

[5;2;7; 6; 4]

47

Déterminer le plus grand élément d’une liste

Pour déterminer le plus grand élément d'une liste :

fold_right

<
h)

[5;2;7; 6; 4]

47

Déterminer le plus grand élément d’une liste

Pour déterminer le plus grand élément d'une liste :
e On part d'un élément présent dans la liste

e On replie avec la fonction max

fold_right

[5 2;,7;6; 41 5

-

téte de la liste

47

Déterminer le plus grand élément d’une liste

Pour déterminer le plus grand élément d'une liste :
e On part d'un élément présent dans la liste

e On replie avec la fonction max

fold_right

<
h)

[5 2;,7; 61 5

47

Déterminer le plus grand élément d’une liste

Pour déterminer le plus grand élément d'une liste :
e On part d'un élément présent dans la liste

e On replie avec la fonction max

fold_right

<
h)

[5 2; 7] 6

47

Déterminer le plus grand élément d’une liste

Pour déterminer le plus grand élément d'une liste :
e On part d'un élément présent dans la liste

e On replie avec la fonction max

fold_right

<
h)

L5, 2] 7

47

Déterminer le plus grand élément d’une liste

Pour déterminer le plus grand élément d'une liste :
e On part d'un élément présent dans la liste

e On replie avec la fonction max

fold_right

<
h)

[5] 7

47

Déterminer le plus grand élément d’une liste

Pour déterminer le plus grand élément d'une liste :
e On part d'un élément présent dans la liste

e On replie avec la fonction max

fold_right

A

47

Déterminer le plus grand élément d’une liste

Pour construire une fonction trouvant le plus grand élément :

let maximum 1lst =
List.fold_right max 1lst (List.hd 1lst);;

val maximum : 'a list -> 'a = <fun>

48

Déterminer le plus grand élément d’une liste

Pour construire une fonction trouvant le plus grand élément :

let maximum 1lst =
List.fold_right max 1lst (List.hd 1lst);;

val maximum : 'a list -> 'a = <fun>

Ou, afin d'éviter une comparaison inutile avec la téte :

let maximum = function
| [1 -> failwith "Liste vide”
| t::q -> List.fold_right max q t;;

val maximum : 'a list -> 'a = <fun>

48

Comment fonctionne List.fold_right?

On cherche a calculer I'expression :

foo a; (foo ay (... (foo a,—1 (foo a, b)) ...))

Cela peut s'écrire :

let rec fold_right foo 1st b =
match 1st with
| [1>b
| t::q -> foo t (fold_right foo q b);;

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b
-> 'b = <fun>

49

Et dans le sens contraire? List.fold_left

On peut vouloir effectuer la méme chose dans le sens contraire !

Par exemple, pour la somme des éléments d'une liste :

0 L 1;2; 3; 41

50

Et dans le sens contraire? List.fold_left

On peut vouloir effectuer la méme chose dans le sens contraire !

Par exemple, pour la somme des éléments d'une liste :

fold_left

4

0 L 1;2; 3; 41

50

Et dans le sens contraire? List.fold_left

On peut vouloir effectuer la méme chose dans le sens contraire !

Par exemple, pour la somme des éléments d'une liste :

fold_left

4

1 [2; 341

50

Et dans le sens contraire? List.fold_left

On peut vouloir effectuer la méme chose dans le sens contraire !

Par exemple, pour la somme des éléments d'une liste :

fold_left

4

3 [3; 41

50

Et dans le sens contraire? List.fold_left

On peut vouloir effectuer la méme chose dans le sens contraire !

Par exemple, pour la somme des éléments d'une liste :

fold_left

4

6 L 4]

50

Et dans le sens contraire? List.fold_left

On peut vouloir effectuer la méme chose dans le sens contraire !

Par exemple, pour la somme des éléments d'une liste :

fold_left

v

10

50

Et dans le sens contraire? List.fold_left

On peut vouloir effectuer la méme chose dans le sens contraire !

Par exemple, pour la somme des éléments d'une liste :

fold_left

v

10

La fonction existe bien :

List.fold_left;;
-: ('a->"'b->"a) -> 'a->"'b list > 'a = <fun>

50

Et dans le sens contraire? List.fold_left

On remarquera la différence dans les signatures :

List.fold_right;;
-: (ta->"'b ->"b) -> 'alist -=> 'b -> 'b

<fun> |

fold_right

<
h)

L 1; 2; 3; 41 0

List.fold_left;;
-: ('a->"'b ->"a) -> 'a->"'blist -> 'a = <fun>

fold_left

(4

0 L 1;2; 3; 41
51

Et dans le sens contraire? List.fold_left

L'instruction

List.fold_left foo b [ay; az; ...; an—1; an 1

Correspond donc a

foo (foo (... (foo (foo b ay) az) ...) an—1) ay

®. (Foo)
(@) () foo) (o)
@ S List.fold_left 7
o @ @)
@) fo) (@)
@) @ @ @

52

Et dans le sens contraire? List.fold_left

On peut réécrire certaines des fonctions précédentes :

let somme_liste lst =
List.fold_left (fun b a -> b+a) 0 1st;;

val somme_liste : int list -> int = <fun>

let longueur 1st =
List.fold_left (fun b a -> b+1) 0 1st;;

val longueur : 'a list -> int = <fun>

Attention a 'ordre des arguments !

53

Et dans le sens contraire? List.fold_left

L'argument de somme_liste est le dernier argument de fold_left :

let somme_liste 1lst =
List.fold_left (+) 0 1st;;

val somme_liste : int list -> int = <fun>

On peut donc simplifier les choses avec une application partielle :

let somme_liste =
List.fold_left (+) 0;;

val somme_liste : int list -> int = <fun>

54

Et dans le sens contraire? List.fold_left

L'application partielle peut parfois jouer de mauvais tours :

let longueur =
List.fold_left (fun b a -> b+1) 0;;

val longueur : '_weakl list -> int = <fun>

La fonction précédente n'est pas réellement polymorphe

La premiere utilisation fixera le type des éléments de la liste !

55

Et dans le sens contraire? List.fold_left

longueur;;
- : '_weakl list -> int = <fun>

E

longueur [1; 2; 3; 4 1;;
- int = 4

+=+

longueurs;;
- : int list -> int = <fun>

longueur [4.9; 10.23; 22.11 1;;
Characters 21-24: longueur [4.9; 10.23; 22.11 1;;

AAA

Error: This expression has type float

but an expression was expected of type int 5

Et dans le sens contraire? List.fold_left

Avoir deux fonctions est intéressant si foo n'est pas commutative

Si les deux sont possibles, List.fold_left est a préférer

(Aucune importance pour les concours)

57

Et dans le sens contraire? List.fold_left

Un exemple intéressant : fun b a -> a::b

fold_left

(4

[] L 1; 2; 3; 41

58

Et dans le sens contraire? List.fold_left

Un exemple intéressant : fun b a -> a::b

fold_left

(4

L1111 [2; 3,41

58

Et dans le sens contraire? List.fold_left

Un exemple intéressant : fun b a -> a::b

fold_left

(4

L2; 11 [3; 41

58

Et dans le sens contraire? List.fold_left

Un exemple intéressant : fun b a -> a::b

fold_left

(4

[3;2;,1] [4]

58

Et dans le sens contraire? List.fold_left

Un exemple intéressant : fun b a -> a::b

fold_left

[4; 3; 2; 11

58

Retourner une liste

On peut donc écrire simplement une fonction retournant une liste :

let retourne 1lst =
List.fold_left (fun b a -> a::b) [] 1st;;

val retourne : 'a list -> 'a list = <fun>

Il existe une fonction List.rev

59

Comment fonctionne List.fold_left?

On cherche a calculer I'expression :

foo (foo (... (foo (foo b ay) ax) ...) ay—1) ay

Cela peut s'écrire :

let rec fold_left foo b = function
| [1->b
| t::q —> fold_left foo (foo b t) q;;

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list
-> 'a = <fun>

60

Avantages et inconvénients de List.fold_x

Parfois trés utile pour traiter succintement des listes

Cependant :
e pas toujours la solution la plus simple
e peut étre délicat a écrire correctement

e peut étre tres difficile a lire

61

Avantages et inconvénients de List.fold_x

Parfois trés utile pour traiter succintement des listes

Cependant :
e pas toujours la solution la plus simple
e peut étre délicat a écrire correctement

e peut étre tres difficile a lire

Détaillez votre démarche (avec un dessin !)

61

Avantages et inconvénients de List.fold_x

Parfois trés utile pour traiter succintement des listes

Cependant :
e pas toujours la solution la plus simple
e peut étre délicat a écrire correctement

e peut étre tres difficile a lire

Détaillez votre démarche (avec un dessin !)

Ne vous forcez jamais a trouver une solution de ce type

61

Avantages et inconvénients de List.fold_x

Parfois trés utile pour traiter succintement des listes

Cependant :
e pas toujours la solution la plus simple
e peut étre délicat a écrire correctement

e peut étre tres difficile a lire

Détaillez votre démarche (avec un dessin !)
Ne vous forcez jamais a trouver une solution de ce type

Il existe toujours d'autres solutions

61

Un exemple défendable : le tri insertion

let tri_insertion lst =
let rec insertion lst elem = match 1lst with
| [1 —> [nw]
| t::q when elem>t -> t::insertion q elem
| 1st -> elem::1st

in List.fold_left insertion [] 1st;;

val tri_insertion : 'a list -> 'a list = <fun>

62

Aplatir une liste

On peut écrire aplatir avec une fonction récursive :

let rec aplatir = function
| [1->1[]
| 1st::[]1 -> 1lst
| [J::q -> aplatir q
| (t::9)::92 -> t::aplatir (q::92);;

\4

val supprime_doublons : 'a list list -> 'a list = <fum

63

Supprimer les doublons

On peut écrire supprime_doublons avec une fonction récursive :

let rec supprime_doublons = function

| [1 > 1]
| t::q when List.mem t q -> supprime_doublons q
| t::q -> t :: supprime_doublons q;;

val supprime_doublons : 'a list -> 'a list = <fun>

64

Retourner une liste

On peut également écrire retourne avec une fonction récursive :

let retourne lst =
let rec aux res = function
| [1 -> res
| t::q -> aux (t::res) q
in aux [] 1st;;

retourne [1; 2; 3 1]

65

Retourner une liste

On peut également écrire retourne avec une fonction récursive :

let retourne lst =
let rec aux res = function
| [1 -> res
| t::q -> aux (t::res) q

in aux [] 1st;;

retourne [1; 2; 3 J—raux [1J [1; 2; 3 1]

65

Retourner une liste

On peut également écrire retourne avec une fonction récursive :

let retourne lst =
let rec aux res = function
| [1 -> res
| t::q -> aux (t::res) q

in aux [] 1st;;

retourne [1; 2; 3 J—raux [1J [1; 2; 3 1]

1
aux [11 LC2; 371

65

Retourner une liste

On peut également écrire retourne avec une fonction récursive :

let retourne lst =
let rec aux res = function
| [1 -> res
| t::q -> aux (t::res) q

in aux [] 1st;;

retourne [1; 2; 3 1J—raux [1 [1; 2; 3 1]
4

aux [11 LC2; 371
4

aux [2; 11 [31

65

Retourner une liste

On peut également écrire retourne avec une fonction récursive :

let retourne 1lst =
let rec aux res = function
| [1 -> res

| t::q -> aux (t::res) q

in aux [] 1st;;

retourne [1; 2; 3 1J—raux [1 [1; 2; 3 1]
{

aux [11 LC2; 371
1

aux [2; 11 [31
{

aux [3; 2; 11 (1]

65

Retourner une liste

On peut également écrire retourne avec une fonction récursive :

let retourne lst =
let rec aux res = function
| [1 -> res
| t::q -> aux (t::res) q
in aux [] 1st;;

retourne [1; 2; 3 J—raux [] [
aux [1 J[2; 31
aux [2; 11 [31
aux [3;

; 1] 65

