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Objectif

On souhaite effectuer une opération sur tous les éléments d’une liste

En Python :

lst = [ 1, 2, 3, 4, 5 ]

for elem in lst :

foo(elem)
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List.iter

En OCaml :

List.iter foo lst;;

Exécute « foo elem » sur tous les éléments elem de la liste lst

Les éléments sont traités de la gauche vers la droite
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List.iter

Exemple : imprimer les éléments d’une liste d’entiers

# let lst = [ 1; 2; 3; 4; 5 ];;

val lst : int list = [1; 2; 3; 4; 5]

# List.iter print_int lst;;

12345- : unit = ()
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List.iter

Pour une 'a list, la fonction doit être de type 'a -> unit

# List.iter;;

- : ('a -> unit) -> 'a list -> unit = <fun>

Le résultat d’un appel à List.iter est toujours un unit
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List.map

On peut vouloir la liste des résultats !

En Python, on utilise une compréhension :

[ foo(elem) for elem in lst ]

5



List.map

En OCaml :

List.map foo lst;;

Exécute « foo elem » sur tous les éléments elem de la liste lst

Construit une liste avec les résultats

[ a1; a2; . . .; an ] 7→ [ foo a1; foo a2; . . .; foo an ]

L’ordre des évaluations n’est pas spécifié !
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List.map

Si la fonction est de type 'a -> 'b :

• on traite une 'a list

• on obtient une 'b list de même longueur

# List.map;;

- : ('a -> 'b) -> 'a list -> 'b list = <fun>
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List.map

Quelques exemples...

# List.map int_of_float [ 1.0; 2.5; 3.14 ];;

- : int list = [1; 2; 3]

# let f n = float_of_int n ** 2.0;;

val f : int -> float = <fun>

# List.map f [ 1; 2; 3; 4; 5 ];;

- : float list = [1.; 4.; 9.; 16.; 25.]
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List.map

Pour une fonction retournant des unit :

# List.map print_int [ 1; 2; 3; 4; 5 ];;

12345- : unit list = [(); (); (); (); ()]

Ici, les éléments ont été traités de gauche à droite

Ce n’est pas garanti !
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List.map

On peut programmer son propre List.map :

# let rec map foo = function

| [] -> []

| t::q -> foo t :: (map foo q);;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

L’ordre des évaluations n’est toujours pas spécifié !

On ne sait pas si OCaml effectue « foo t » ou « map foo q »
d’abord
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List.map

Pour garantir l’ordre de gauche à droite :

# let rec map foo = function

| [] -> []

| t::q -> let nouv_t = foo t in

nouv_t :: map foo q;;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
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Retour sur List.iter

Pour implémenter soi-même List.iter :

# let rec iter foo = function

| [] -> ()

| t::q -> let _ = foo t in

iter foo q;;

val iter : ('a -> 'b) -> 'a list -> unit = <fun>
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Et au-dela ?

Pour sommer les éléments d’une liste d’entiers

En Python

sum(lst)

ou bien

def somme(lst) :

acc = 0

for elem in lst :

acc = acc + elem

return acc
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Et au-dela ?

Pour sommer les éléments d’une liste d’entiers

En OCaml

let rec somme = function

| [] -> 0

| t::q -> t + somme q;;
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Et au-dela ?

Pour déterminer le plus grand élément d’une liste d’entiers

En Python

max(lst)

ou bien

def maximum(lst) :

plus_grand = lst[0]

for elem in lst :

if elem > plus_grand :

plus_grand = elem

return plus_grand

15



Et au-dela ?

Pour déterminer le plus grand élément d’une liste d’entiers

En OCaml

let rec maximum = function

| [] -> failwith "Liste vide"

| [ elem ] -> elem

| t::q -> max t (maximum q);;
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Et au-dela ?

Écrire une fonction récursive est généralement suffisant

C’est une construction très fréquente

On peut vouloir une formulation plus succinte !
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Arbres d’expressions

Considérons l’expression « Asin(ωt +φ) »

On peut l’interpréter sous forme arborescente :

×

A sin(ωt +φ)sin

ωt +φ+
φωt×

ω t
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Cas d’une liste

Pour une liste [ 1; 2; 3; 4 ]

On peut également l’interpréter sous forme arborescente :

::

1 [ 2; 3; 4 ]::

2 [ 3; 4 ]::

3 [ 4 ]::

4 []
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Que fait List.map ?

List.map foo « insère » pour chaque élément un appel à foo :

::

::

::

::

a1

a2

an−1

an []

List.map

::

::

::

::

foo

foo

foo

foo

a1

a2

an−1

an

[]

Si foo est de signature 'a -> 'b, une 'a list devient 'b list !
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Somme des termes d’une liste

Pour effectuer la somme des éléments d’une liste :

::

1 ::

2 ::

3 ::

4 []

+

1 +

2 +

3 +

4 [][]0

On veut remplacer les :: par une fonction à deux arguments...

et [] par autre chose !
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Somme des termes d’une liste

Plus généralement :

foo

1 foo

2 foo

3 foo

4 b

Pour une 'a list, si on veut un résultat de type 'b :

• la fonction remplaçant :: doit être de type 'a -> 'b -> 'b

• ce qui remplace [] de type 'b
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Somme des termes d’une liste

Pour la somme des éléments d’une liste :

+

1 +

2 +

3 +

4 0

Pour la somme des éléments, 'a et 'b sont des int

• la fonction est fun a b -> a+b

• ce qui remplace [] est 0
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Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

# List.fold_right;;

- : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

C’est une fonction qui prend trois arguments :

• ('a -> 'b -> 'b) est la fonction qui remplace ::

• 'a list est la liste que l’on traite

• le premier 'b désigne l’élément qui remplace []

Enfin, le second 'b indique le type du résultat
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Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

# List.fold_right;;

- : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

Le nom de la fonction décrit bien l’opération :

• « fold_ » car il s’agit de « replier » l’arbre

• « _right » car les repliements sont effectués à droite

10

+

1

9

+

2

7

+

3

4

+

4 0
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Le nom de la fonction décrit bien l’opération :

• « fold_ » car il s’agit de « replier » l’arbre

• « _right » car les repliements sont effectués à droite
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Somme des termes d’une liste
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Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

# List.fold_right;;

- : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

Les arguments respectent l’image arborescente :

• les arguments de la fonction utilisée sont dans l’ordre

• la liste est à gauche, l’élément remplaçant [] à droite

+

1 +

2 +

3 +

4 0
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Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

# List.fold_right;;

- : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

Les arguments respectent l’image arborescente :

• les arguments de la fonction utilisée sont dans l’ordre

• la liste est à gauche, le point de départ du repliement à droite

fold_right

[ 1; 2; 3; 4 ] 0

[ 1; 2; 3 ] 4[ 1; 2 ] 7[ 1 ] 910

++++
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Somme des termes d’une liste

L’instruction

List.fold_right foo [ a1; a2; . . .; an−1; an ] b

Correspond donc à

foo a1 (foo a2 ( . . . (foo an−1 (foo an b)) . . . ))

foo

foo

foo

foo

a1

a2

an−1

an b
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Somme des termes d’une liste

On peut donc écrire :

# let somme a b = a + b;;

val somme : int -> int -> int = <fun>

# List.fold_right somme [ 1; 2; 3; 4 ] 0;;

- : int = 10

Ou plus directement :

# List.fold_right (fun a b -> a+b) [ 1; 2; 3; 4 ] 0;;

- : int = 10
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Somme des termes d’une liste

Si l’on veut construire une fonction effectuant cette somme :

# let somme_liste lst =

List.fold_right (fun a b -> a+b) lst 0;;

val somme_liste : int list -> int = <fun>

La fonction ainsi créée peut sommer une liste d’entiers :

# somme_liste [ 1; 2; 3; 4 ];;

- : int = 10
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Somme des termes d’une liste

Une dernière chose...

Pour un opérateur binaire tel que +

(+) est un raccourci pour la fonction (fun a b -> a+b)

De sorte qu’on peut simplement écrire

# List.fold_right (+) [ 1; 2; 3; 4 ] 0;;

- : int = 10
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Produit des éléments d’une liste d’entiers

Pour calculer le produit de tous les termes d’une liste :

• On part de la valeur 1

• On replie avec la fonction « produit »

[ 1; 2; 3; 4 ]

1

fold_right

[ 1; 2; 3 ] 4[ 1; 2 ] 12[ 1 ] 2424
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Produit des éléments d’une liste d’entiers

Cela peut s’écrire :

# let produit_liste lst =

List.fold_right (fun a b -> a * b) lst 1;;

val produit_liste : int list -> int = <fun>

Ou bien

# let produit_liste lst =

List.fold_right ( * ) lst 1;;

# produit_liste [ 1; 2; 3; 4 ];;

- : int = 24
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Concaténer une liste de châınes de caractères

Pour concaténer des châınes de caractères dans une liste :

• On part d’une châıne vide ""

• On replie avec des concaténations

[ "Le"; " "; "ciel"; " est "; "bleu" ]

""

fold_right

[ "Le"; " "; "ciel"; " est " ] "bleu"[ "Le"; " "; "ciel" ] " est bleu"[ "Le"; " " ] "ciel est bleu"[ "Le" ] " ciel est bleu""Le ciel est bleu"
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Concaténer une liste de châınes de caractères

Cela peut s’écrire :

# let concat lst =

List.fold_right (fun a b -> a ^ b) lst "";;

val concat : string list -> string = <fun>

Ou bien

# let concat lst =

List.fold_right (^) lst "";;

# concat [ "Le"; " "; "ciel"; " est "; "bleu" ];;

- : string = "Le ciel est bleu"
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Concaténer une liste de châınes de caractères

Dans ce dernier cas, on effectue n −1 concaténations

C’est inutilement coûteux !

Il existe une fonction pour cela :

# String.concat;;

- : string -> string list -> string = <fun>

Le premier argument est glissé entre chaque châıne de la liste :

# String.concat " " [ "Le"; "ciel"; "est"; "bleu" ];;

- : string = "Le ciel est bleu"
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Il existe une fonction pour cela :

# String.concat;;

- : string -> string list -> string = <fun>
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Aplatir une liste de listes

Pour aplatir une liste de liste :

• On part d’une liste vide []

• On replie avec des concaténations

[ [ 1; 2; 3 ]; [ 4 ]; []; [ 5; 6 ] ]

[]

fold_right

[ [ 1; 2; 3 ]; [ 4 ]; [] ] [ 5; 6 ][ [ 1; 2; 3 ]; [ 4 ] ] [ 5; 6 ][ [ 1; 2; 3 ] ] [ 4; 5; 6 ][ 1; 2; 3; 4; 5; 6 ]
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Aplatir une liste de listes

Cela peut s’écrire :

# let aplatir lst =

List.fold_right (fun a b -> a @ b) lst [];;

val aplatir : 'a list list -> 'a list = <fun>

Ou bien

# let aplatir lst =

List.fold_right (@) lst [];;

# aplatir [ [ 1; 2; 3 ]; [ 4 ]; []; [ 5; 6 ] ];;

- : int list = [1; 2; 3; 4; 5; 6]
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Supprimer les valeurs paires

Pour supprimer les éléments pairs dans une liste :

• On part d’une liste vide []

• On ajoute (avec ::) les éléments s’ils sont impairs

[ 3; 6; 5; 2; 7 ]

[]

fold_right

[ 3; 6; 5; 2 ] [ 7 ][ 3; 6; 5 ] [ 7 ][ 3; 6 ] [ 5; 7 ][ 3 ] [ 5; 7 ][ 3; 5; 7 ]
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Pour supprimer les éléments pairs dans une liste :

• On part d’une liste vide []

• On ajoute (avec ::) les éléments s’ils sont impairs
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Supprimer les valeurs paires

Cette fois-ci, on a besoin d’une fonction spécifique !

# let conse_si_impair elem lst =

match elem mod 2 with

| 0 -> lst

| _ -> elem::lst;;

val conse_si_impair : int -> int list

-> int list = <fun>
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Supprimer les valeurs paires

Ensuite, on peut écrire notre fonction :

# let supprime_pairs lst =

List.fold_right conse_si_impair lst [];;

val supprime_pairs : int list -> int list = <fun>

# supprime_pairs [ 3; 6; 5; 2; 7 ];;

- : int list = [3; 5; 7]
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Supprimer les doublons

Pour supprimer les éléments en double dans une liste :

• On part d’une liste vide []

• On ajoute (avec ::) les éléments s’ils sont absents

[ 5; 2; 7; 5; 7 ]

[]

fold_right

[ 5; 2; 7; 5 ] [ 7 ][ 5; 2; 7 ] [ 5; 7 ][ 5; 2 ] [ 5; 7 ][ 5 ] [ 2; 5; 7 ][ 2; 5; 7 ]
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Supprimer les doublons

Cette fois encore, on a besoin d’une fonction spécifique :

# let conse_si_absent elem = function

| lst when List.mem elem lst -> lst

| lst -> elem::lst;;

val conse_si_absent : 'a -> 'a list -> 'a list = <fun>
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Supprimer les doublons

Ensuite, on peut écrire notre fonction :

# let supprime_doublons lst =

List.fold_right conse_si_absent lst [];;

val supprime_doublons : 'a list -> 'a list = <fun>

# supprime_doublons [ 5; 2; 7; 5; 7 ];;

- : int list = [2; 5; 7]
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Calculer la longueur d’une liste

Pour déterminer le nombre d’éléments dans une liste :

• On part de 0

• On incrémente, quel que soit l’élément extrait

[ 5; 2; 7; 5; 7 ]

0

fold_right

[ 5; 2; 7; 5 ] 1[ 5; 2; 7 ] 2[ 5; 2 ] 3[ 5 ] 45
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• On incrémente, quel que soit l’élément extrait

[ 5; 2; 7; 5; 7 ] 0

fold_right

[ 5; 2; 7; 5 ] 1[ 5; 2; 7 ] 2[ 5; 2 ] 3[ 5 ] 45

45



Calculer la longueur d’une liste
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Calculer la longueur d’une liste
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Calculer la longueur d’une liste

Si l’on veut construire une fonction effectuant cette somme :

# let longueur lst =

List.fold_right (fun a b -> b+1) lst 0;;

val longueur : 'a list -> int = <fun>

La fonction retourne bien la longueur de la liste :

# longueur [ 5; 2; 7; 5; 7 ];;

- : int = 5
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Déterminer le plus grand élément d’une liste

Pour déterminer le plus grand élément d’une liste :

• On part d’un élément présent dans la liste

• On replie avec la fonction max

[ 5; 2; 7; 6; 4 ]

5

tête de la liste

fold_right

[ 5; 2; 7; 6 ] 5[ 5; 2; 7 ] 6[ 5; 2 ] 7[ 5 ] 77
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Déterminer le plus grand élément d’une liste
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Déterminer le plus grand élément d’une liste
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Déterminer le plus grand élément d’une liste

Pour construire une fonction trouvant le plus grand élément :

# let maximum lst =

List.fold_right max lst (List.hd lst);;

val maximum : 'a list -> 'a = <fun>

Ou, afin d’éviter une comparaison inutile avec la tête :

# let maximum = function

| [] -> failwith "Liste vide"

| t::q -> List.fold_right max q t;;

val maximum : 'a list -> 'a = <fun>
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Comment fonctionne List.fold_right ?

On cherche à calculer l’expression :

foo a1 (foo a2 ( . . . (foo an−1 (foo an b)) . . . ))

Cela peut s’écrire :

# let rec fold_right foo lst b =

match lst with

| [] -> b

| t::q -> foo t (fold_right foo q b);;

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b

-> 'b = <fun>
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Et dans le sens contraire ? List.fold_left

On peut vouloir effectuer la même chose dans le sens contraire !

Par exemple, pour la somme des éléments d’une liste :

[ 1; 2; 3; 4 ]0

fold_left

[ 2; 3; 4 ]1 [ 3; 4 ]3 [ 4 ]6 10

La fonction existe bien :

# List.fold_left;;

- : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>
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Et dans le sens contraire ? List.fold_left

On remarquera la différence dans les signatures :

# List.fold_right;;

- : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

[ 1; 2; 3; 4 ] 0

fold_right

# List.fold_left;;

- : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>

[ 1; 2; 3; 4 ]0

fold_left
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Et dans le sens contraire ? List.fold_left

L’instruction

List.fold_left foo b [ a1; a2; . . .; an−1; an ]

Correspond donc à

foo (foo ( . . . (foo (foo b a1) a2) . . . ) an−1) an

::

::

::

::

a1

a2

an−1

an []

List.fold_left

foo

foo

foo

foo

an

an−1

a2

a1b
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Et dans le sens contraire ? List.fold_left

On peut réécrire certaines des fonctions précédentes :

# let somme_liste lst =

List.fold_left (fun b a -> b+a) 0 lst;;

val somme_liste : int list -> int = <fun>

# let longueur lst =

List.fold_left (fun b a -> b+1) 0 lst;;

val longueur : 'a list -> int = <fun>

Attention à l’ordre des arguments !
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Et dans le sens contraire ? List.fold_left

L’argument de somme_liste est le dernier argument de fold_left :

# let somme_liste lst =

List.fold_left (+) 0 lst;;

val somme_liste : int list -> int = <fun>

On peut donc simplifier les choses avec une application partielle :

# let somme_liste =

List.fold_left (+) 0;;

val somme_liste : int list -> int = <fun>
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Et dans le sens contraire ? List.fold_left

L’application partielle peut parfois jouer de mauvais tours :

# let longueur =

List.fold_left (fun b a -> b+1) 0;;

val longueur : '_weak1 list -> int = <fun>

La fonction précédente n’est pas réellement polymorphe

La première utilisation fixera le type des éléments de la liste !
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Et dans le sens contraire ? List.fold_left

# longueur;;

- : '_weak1 list -> int = <fun>

# longueur [ 1; 2; 3; 4 ];;

- : int = 4

# longueur;;

- : int list -> int = <fun>

# longueur [ 4.9; 10.23; 22.11 ];;

Characters 21-24: longueur [ 4.9; 10.23; 22.11 ];;

^^^

Error: This expression has type float

but an expression was expected of type int
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Et dans le sens contraire ? List.fold_left

Avoir deux fonctions est intéressant si foo n’est pas commutative

Si les deux sont possibles, List.fold_left est à préférer

(Aucune importance pour les concours)
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Et dans le sens contraire ? List.fold_left

Un exemple intéressant : fun b a -> a::b

[ 1; 2; 3; 4 ][]

fold_left

[ 2; 3; 4 ][ 1 ] [ 3; 4 ][ 2; 1 ] [ 4 ][ 3; 2; 1 ][ 4; 3; 2; 1 ]
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Et dans le sens contraire ? List.fold_left
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Un exemple intéressant : fun b a -> a::b

[ 1; 2; 3; 4 ][]

fold_left

[ 2; 3; 4 ][ 1 ] [ 3; 4 ][ 2; 1 ]

[ 4 ][ 3; 2; 1 ]

[ 4; 3; 2; 1 ]

58



Et dans le sens contraire ? List.fold_left

Un exemple intéressant : fun b a -> a::b

[ 1; 2; 3; 4 ][]

fold_left

[ 2; 3; 4 ][ 1 ] [ 3; 4 ][ 2; 1 ] [ 4 ][ 3; 2; 1 ]

[ 4; 3; 2; 1 ]
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Retourner une liste

On peut donc écrire simplement une fonction retournant une liste :

# let retourne lst =

List.fold_left (fun b a -> a::b) [] lst;;

val retourne : 'a list -> 'a list = <fun>

Il existe une fonction List.rev
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Comment fonctionne List.fold_left ?

On cherche à calculer l’expression :

foo (foo ( . . . (foo (foo b a1) a2) . . . ) an−1) an

Cela peut s’écrire :

# let rec fold_left foo b = function

| [] -> b

| t::q -> fold_left foo (foo b t) q;;

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list

-> 'a = <fun>
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Avantages et inconvénients de List.fold_*

Parfois très utile pour traiter succintement des listes

Cependant :

• pas toujours la solution la plus simple

• peut être délicat à écrire correctement

• peut être très difficile à lire

Détaillez votre démarche (avec un dessin !)

Ne vous forcez jamais à trouver une solution de ce type

Il existe toujours d’autres solutions
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Ne vous forcez jamais à trouver une solution de ce type

Il existe toujours d’autres solutions

61



Avantages et inconvénients de List.fold_*

Parfois très utile pour traiter succintement des listes

Cependant :

• pas toujours la solution la plus simple
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Un exemple défendable : le tri insertion

# let tri_insertion lst =

let rec insertion lst elem = match lst with

| [] -> [nw]

| t::q when elem>t -> t::insertion q elem

| lst -> elem::lst

in List.fold_left insertion [] lst;;

val tri_insertion : 'a list -> 'a list = <fun>
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Aplatir une liste

On peut écrire aplatir avec une fonction récursive :

# let rec aplatir = function

| [] -> []

| lst::[] -> lst

| []::q -> aplatir q

| (t::q)::q2 -> t::aplatir (q::q2);;

val supprime_doublons : 'a list list -> 'a list = <fun>
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Supprimer les doublons

On peut écrire supprime_doublons avec une fonction récursive :

# let rec supprime_doublons = function

| [] -> []

| t::q when List.mem t q -> supprime_doublons q

| t::q -> t :: supprime_doublons q;;

val supprime_doublons : 'a list -> 'a list = <fun>
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Retourner une liste

On peut également écrire retourne avec une fonction récursive :

let retourne lst =

let rec aux res = function

| [] -> res

| t::q -> aux (t::res) q

in aux [] lst;;

retourne [ 1; 2; 3 ]

aux [] [ 1; 2; 3 ]

aux [ 1 ] [ 2; 3 ]

aux [ 2; 1 ] [ 3 ]

aux [ 3; 2; 1 ] []

[ 3; 2; 1 ]
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