
Fonctionnelles sur les listes

G. Dewaele

Lycée Louis-le-Grand

Objectif

On souhaite effectuer une opération sur tous les éléments d’une liste

En Python :

lst = [1, 2, 3, 4, 5]

for elem in lst :

foo(elem)

1

List.iter

En OCaml :

List.iter foo lst;;

Exécute « foo elem » sur tous les éléments elem de la liste lst

Les éléments sont traités de la gauche vers la droite

2

List.iter

Exemple : imprimer les éléments d’une liste d’entiers

let lst = [1; 2; 3; 4; 5];;

val lst : int list = [1; 2; 3; 4; 5]

List.iter print_int lst;;

12345- : unit = ()

3

List.iter

Pour une 'a list, la fonction doit être de type 'a -> unit

List.iter;;

- : ('a -> unit) -> 'a list -> unit = <fun>

Le résultat d’un appel à List.iter est toujours un unit

4

List.map

On peut vouloir la liste des résultats !

En Python, on utilise une compréhension :

[foo(elem) for elem in lst]

5

List.map

En OCaml :

List.map foo lst;;

Exécute « foo elem » sur tous les éléments elem de la liste lst

Construit une liste avec les résultats

[a1; a2; . . .; an] 7→ [foo a1; foo a2; . . .; foo an]

L’ordre des évaluations n’est pas spécifié !

6

List.map

Si la fonction est de type 'a -> 'b :

• on traite une 'a list

• on obtient une 'b list de même longueur

List.map;;

- : ('a -> 'b) -> 'a list -> 'b list = <fun>

7

List.map

Quelques exemples...

List.map int_of_float [1.0; 2.5; 3.14];;

- : int list = [1; 2; 3]

let f n = float_of_int n ** 2.0;;

val f : int -> float = <fun>

List.map f [1; 2; 3; 4; 5];;

- : float list = [1.; 4.; 9.; 16.; 25.]

8

List.map

Quelques exemples...

List.map int_of_float [1.0; 2.5; 3.14];;

- : int list = [1; 2; 3]

let f n = float_of_int n ** 2.0;;

val f : int -> float = <fun>

List.map f [1; 2; 3; 4; 5];;

- : float list = [1.; 4.; 9.; 16.; 25.]

8

List.map

Pour une fonction retournant des unit :

List.map print_int [1; 2; 3; 4; 5];;

12345- : unit list = [(); (); (); (); ()]

Ici, les éléments ont été traités de gauche à droite

Ce n’est pas garanti !

9

List.map

On peut programmer son propre List.map :

let rec map foo = function

| [] -> []

| t::q -> foo t :: (map foo q);;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

L’ordre des évaluations n’est toujours pas spécifié !

On ne sait pas si OCaml effectue « foo t » ou « map foo q »
d’abord

10

List.map

Pour garantir l’ordre de gauche à droite :

let rec map foo = function

| [] -> []

| t::q -> let nouv_t = foo t in

nouv_t :: map foo q;;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

11

Retour sur List.iter

Pour implémenter soi-même List.iter :

let rec iter foo = function

| [] -> ()

| t::q -> let _ = foo t in

iter foo q;;

val iter : ('a -> 'b) -> 'a list -> unit = <fun>

12

Et au-dela ?

Pour sommer les éléments d’une liste d’entiers

En Python

sum(lst)

ou bien

def somme(lst) :

acc = 0

for elem in lst :

acc = acc + elem

return acc

13

Et au-dela ?

Pour sommer les éléments d’une liste d’entiers

En OCaml

let rec somme = function

| [] -> 0

| t::q -> t + somme q;;

14

Et au-dela ?

Pour déterminer le plus grand élément d’une liste d’entiers

En Python

max(lst)

ou bien

def maximum(lst) :

plus_grand = lst[0]

for elem in lst :

if elem > plus_grand :

plus_grand = elem

return plus_grand

15

Et au-dela ?

Pour déterminer le plus grand élément d’une liste d’entiers

En OCaml

let rec maximum = function

| [] -> failwith "Liste vide"

| [elem] -> elem

| t::q -> max t (maximum q);;

16

Et au-dela ?

Écrire une fonction récursive est généralement suffisant

C’est une construction très fréquente

On peut vouloir une formulation plus succinte !

17

Arbres d’expressions

Considérons l’expression « Asin(ωt +φ) »

On peut l’interpréter sous forme arborescente :

×

A sin(ωt +φ)sin

ωt +φ+
φωt×

ω t

18

Arbres d’expressions

Considérons l’expression « Asin(ωt +φ) »

On peut l’interpréter sous forme arborescente :

×

A sin(ωt +φ)

sin

ωt +φ+
φωt×

ω t

18

Arbres d’expressions

Considérons l’expression « Asin(ωt +φ) »

On peut l’interpréter sous forme arborescente :

×

A

sin(ωt +φ)

sin

ωt +φ

+
φωt×

ω t

18

Arbres d’expressions

Considérons l’expression « Asin(ωt +φ) »

On peut l’interpréter sous forme arborescente :

×

A

sin(ωt +φ)

sin

ωt +φ

+
φωt

×
ω t

18

Arbres d’expressions

Considérons l’expression « Asin(ωt +φ) »

On peut l’interpréter sous forme arborescente :

×

A

sin(ωt +φ)

sin

ωt +φ

+
φ

ωt

×
ω t

18

Cas d’une liste

Pour une liste [1; 2; 3; 4]

On peut également l’interpréter sous forme arborescente :

::

1 [2; 3; 4]::

2 [3; 4]::

3 [4]::

4 []

19

Cas d’une liste

Pour une liste [1; 2; 3; 4]

On peut également l’interpréter sous forme arborescente :

::

1 [2; 3; 4]

::

2 [3; 4]::

3 [4]::

4 []

19

Cas d’une liste

Pour une liste [1; 2; 3; 4]

On peut également l’interpréter sous forme arborescente :

::

1

[2; 3; 4]

::

2 [3; 4]

::

3 [4]::

4 []

19

Cas d’une liste

Pour une liste [1; 2; 3; 4]

On peut également l’interpréter sous forme arborescente :

::

1

[2; 3; 4]

::

2

[3; 4]

::

3 [4]

::

4 []

19

Cas d’une liste

Pour une liste [1; 2; 3; 4]

On peut également l’interpréter sous forme arborescente :

::

1

[2; 3; 4]

::

2

[3; 4]

::

3

[4]

::

4 []

19

Que fait List.map ?

List.map foo « insère » pour chaque élément un appel à foo :

::

::

::

::

a1

a2

an−1

an []

List.map

::

::

::

::

foo

foo

foo

foo

a1

a2

an−1

an

[]

Si foo est de signature 'a -> 'b, une 'a list devient 'b list !

20

Que fait List.map ?

List.map foo « insère » pour chaque élément un appel à foo :

::

::

::

::

a1

a2

an−1

an []

List.map

::

::

::

::

foo

foo

foo

foo

a1

a2

an−1

an

[]

Si foo est de signature 'a -> 'b, une 'a list devient 'b list !

20

Que fait List.map ?

List.map foo « insère » pour chaque élément un appel à foo :

::

::

::

::

a1

a2

an−1

an []

List.map

::

::

::

::

foo

foo

foo

foo

a1

a2

an−1

an

[]

Si foo est de signature 'a -> 'b, une 'a list devient 'b list !

20

Somme des termes d’une liste

Pour effectuer la somme des éléments d’une liste :

::

1 ::

2 ::

3 ::

4 []

+

1 +

2 +

3 +

4 [][]0

On veut remplacer les :: par une fonction à deux arguments...

et [] par autre chose !

21

Somme des termes d’une liste

Pour effectuer la somme des éléments d’une liste :

::

1 ::

2 ::

3 ::

4 []

+

1 +

2 +

3 +

4 []

[]0

On veut remplacer les :: par une fonction à deux arguments...

et [] par autre chose !

21

Somme des termes d’une liste

Pour effectuer la somme des éléments d’une liste :

::

1 ::

2 ::

3 ::

4 []

+

1 +

2 +

3 +

4

[]

[]

0

On veut remplacer les :: par une fonction à deux arguments...

et [] par autre chose !

21

Somme des termes d’une liste

Pour effectuer la somme des éléments d’une liste :

::

1 ::

2 ::

3 ::

4 []

+

1 +

2 +

3 +

4

[][]

0

On veut remplacer les :: par une fonction à deux arguments...

et [] par autre chose !

21

Somme des termes d’une liste

Plus généralement :

foo

1 foo

2 foo

3 foo

4 b

Pour une 'a list, si on veut un résultat de type 'b :

• la fonction remplaçant :: doit être de type 'a -> 'b -> 'b

• ce qui remplace [] de type 'b

22

Somme des termes d’une liste

Pour la somme des éléments d’une liste :

+

1 +

2 +

3 +

4 0

Pour la somme des éléments, 'a et 'b sont des int

• la fonction est fun a b -> a+b

• ce qui remplace [] est 0

23

Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

List.fold_right;;

- : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

C’est une fonction qui prend trois arguments :

• ('a -> 'b -> 'b) est la fonction qui remplace ::

• 'a list est la liste que l’on traite

• le premier 'b désigne l’élément qui remplace []

Enfin, le second 'b indique le type du résultat

24

Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

List.fold_right;;

- : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

Le nom de la fonction décrit bien l’opération :

• « fold_ » car il s’agit de « replier » l’arbre

• « _right » car les repliements sont effectués à droite

10

+

1

9

+

2

7

+

3

4

+

4 0
25

Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

List.fold_right;;

- : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

Le nom de la fonction décrit bien l’opération :

• « fold_ » car il s’agit de « replier » l’arbre

• « _right » car les repliements sont effectués à droite

10

+

1

9

+

2

7

+

3 4

+

4 0

25

Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

List.fold_right;;

- : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

Le nom de la fonction décrit bien l’opération :

• « fold_ » car il s’agit de « replier » l’arbre

• « _right » car les repliements sont effectués à droite

10

+

1

9

+

2 7

+

3 4+

4 0

25

Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

List.fold_right;;

- : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

Le nom de la fonction décrit bien l’opération :

• « fold_ » car il s’agit de « replier » l’arbre

• « _right » car les repliements sont effectués à droite

10

+

1 9

+

2 7+

3 4+

4 0

25

Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

List.fold_right;;

- : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

Le nom de la fonction décrit bien l’opération :

• « fold_ » car il s’agit de « replier » l’arbre

• « _right » car les repliements sont effectués à droite

10

+

1 9+

2 7+

3 4+

4 0

25

Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

List.fold_right;;

- : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

Les arguments respectent l’image arborescente :

• les arguments de la fonction utilisée sont dans l’ordre

• la liste est à gauche, l’élément remplaçant [] à droite

+

1 +

2 +

3 +

4 0
26

Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

List.fold_right;;

- : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

Les arguments respectent l’image arborescente :

• les arguments de la fonction utilisée sont dans l’ordre

• la liste est à gauche, le point de départ du repliement à droite

fold_right

[1; 2; 3; 4] 0

[1; 2; 3] 4[1; 2] 7[1] 910

++++

27

Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

List.fold_right;;

- : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

Les arguments respectent l’image arborescente :

• les arguments de la fonction utilisée sont dans l’ordre

• la liste est à gauche, le point de départ du repliement à droite

fold_right

[1; 2; 3; 4] 0

[1; 2; 3] 4[1; 2] 7[1] 910

+

+++

27

Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

List.fold_right;;

- : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

Les arguments respectent l’image arborescente :

• les arguments de la fonction utilisée sont dans l’ordre

• la liste est à gauche, le point de départ du repliement à droite

fold_right

[1; 2; 3; 4] 0

[1; 2; 3] 4

[1; 2] 7[1] 910

++++

27

Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

List.fold_right;;

- : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

Les arguments respectent l’image arborescente :

• les arguments de la fonction utilisée sont dans l’ordre

• la liste est à gauche, le point de départ du repliement à droite

fold_right

[1; 2; 3; 4] 0

[1; 2; 3] 4

[1; 2] 7[1] 910

+

+

++

27

Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

List.fold_right;;

- : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

Les arguments respectent l’image arborescente :

• les arguments de la fonction utilisée sont dans l’ordre

• la liste est à gauche, le point de départ du repliement à droite

fold_right

[1; 2; 3; 4] 0[1; 2; 3] 4

[1; 2] 7

[1] 910

++

+

+

27

Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

List.fold_right;;

- : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

Les arguments respectent l’image arborescente :

• les arguments de la fonction utilisée sont dans l’ordre

• la liste est à gauche, le point de départ du repliement à droite

fold_right

[1; 2; 3; 4] 0[1; 2; 3] 4[1; 2] 7

[1] 9

10

+++

+

27

Somme des termes d’une liste

On utilise List.fold_right pour effectuer cette opération

List.fold_right;;

- : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

Les arguments respectent l’image arborescente :

• les arguments de la fonction utilisée sont dans l’ordre

• la liste est à gauche, le point de départ du repliement à droite

fold_right

[1; 2; 3; 4] 0[1; 2; 3] 4[1; 2] 7[1] 9

10

++++

27

Somme des termes d’une liste

L’instruction

List.fold_right foo [a1; a2; . . .; an−1; an] b

Correspond donc à

foo a1 (foo a2 (. . . (foo an−1 (foo an b)) . . .))

foo

foo

foo

foo

a1

a2

an−1

an b

28

Somme des termes d’une liste

On peut donc écrire :

let somme a b = a + b;;

val somme : int -> int -> int = <fun>

List.fold_right somme [1; 2; 3; 4] 0;;

- : int = 10

Ou plus directement :

List.fold_right (fun a b -> a+b) [1; 2; 3; 4] 0;;

- : int = 10

29

Somme des termes d’une liste

On peut donc écrire :

let somme a b = a + b;;

val somme : int -> int -> int = <fun>

List.fold_right somme [1; 2; 3; 4] 0;;

- : int = 10

Ou plus directement :

List.fold_right (fun a b -> a+b) [1; 2; 3; 4] 0;;

- : int = 10

29

Somme des termes d’une liste

Si l’on veut construire une fonction effectuant cette somme :

let somme_liste lst =

List.fold_right (fun a b -> a+b) lst 0;;

val somme_liste : int list -> int = <fun>

La fonction ainsi créée peut sommer une liste d’entiers :

somme_liste [1; 2; 3; 4];;

- : int = 10

30

Somme des termes d’une liste

Si l’on veut construire une fonction effectuant cette somme :

let somme_liste lst =

List.fold_right (fun a b -> a+b) lst 0;;

val somme_liste : int list -> int = <fun>

La fonction ainsi créée peut sommer une liste d’entiers :

somme_liste [1; 2; 3; 4];;

- : int = 10

30

Somme des termes d’une liste

Une dernière chose...

Pour un opérateur binaire tel que +

(+) est un raccourci pour la fonction (fun a b -> a+b)

De sorte qu’on peut simplement écrire

List.fold_right (+) [1; 2; 3; 4] 0;;

- : int = 10

31

Somme des termes d’une liste

Une dernière chose...

Pour un opérateur binaire tel que +

(+) est un raccourci pour la fonction (fun a b -> a+b)

De sorte qu’on peut simplement écrire

List.fold_right (+) [1; 2; 3; 4] 0;;

- : int = 10

31

Produit des éléments d’une liste d’entiers

Pour calculer le produit de tous les termes d’une liste :

• On part de la valeur 1

• On replie avec la fonction « produit »

[1; 2; 3; 4]

1

fold_right

[1; 2; 3] 4[1; 2] 12[1] 2424

32

Produit des éléments d’une liste d’entiers

Pour calculer le produit de tous les termes d’une liste :

• On part de la valeur 1

• On replie avec la fonction « produit »

[1; 2; 3; 4]

1

fold_right

[1; 2; 3] 4[1; 2] 12[1] 2424

32

Produit des éléments d’une liste d’entiers

Pour calculer le produit de tous les termes d’une liste :

• On part de la valeur 1

• On replie avec la fonction « produit »

[1; 2; 3; 4] 1

fold_right

[1; 2; 3] 4[1; 2] 12[1] 2424

32

Produit des éléments d’une liste d’entiers

Pour calculer le produit de tous les termes d’une liste :

• On part de la valeur 1

• On replie avec la fonction « produit »

[1; 2; 3; 4] 1

fold_right

[1; 2; 3] 4[1; 2] 12[1] 2424

32

Produit des éléments d’une liste d’entiers

Pour calculer le produit de tous les termes d’une liste :

• On part de la valeur 1

• On replie avec la fonction « produit »

[1; 2; 3; 4] 1

fold_right

[1; 2; 3] 4

[1; 2] 12[1] 2424

32

Produit des éléments d’une liste d’entiers

Pour calculer le produit de tous les termes d’une liste :

• On part de la valeur 1

• On replie avec la fonction « produit »

[1; 2; 3; 4] 1

fold_right

[1; 2; 3] 4

[1; 2] 12

[1] 2424

32

Produit des éléments d’une liste d’entiers

Pour calculer le produit de tous les termes d’une liste :

• On part de la valeur 1

• On replie avec la fonction « produit »

[1; 2; 3; 4] 1

fold_right

[1; 2; 3] 4[1; 2] 12

[1] 24

24

32

Produit des éléments d’une liste d’entiers

Pour calculer le produit de tous les termes d’une liste :

• On part de la valeur 1

• On replie avec la fonction « produit »

[1; 2; 3; 4] 1

fold_right

[1; 2; 3] 4[1; 2] 12[1] 24

24

32

Produit des éléments d’une liste d’entiers

Cela peut s’écrire :

let produit_liste lst =

List.fold_right (fun a b -> a * b) lst 1;;

val produit_liste : int list -> int = <fun>

Ou bien

let produit_liste lst =

List.fold_right (*) lst 1;;

produit_liste [1; 2; 3; 4];;

- : int = 24
33

Concaténer une liste de châınes de caractères

Pour concaténer des châınes de caractères dans une liste :

• On part d’une châıne vide ""

• On replie avec des concaténations

["Le"; " "; "ciel"; " est "; "bleu"]

""

fold_right

["Le"; " "; "ciel"; " est "] "bleu"["Le"; " "; "ciel"] " est bleu"["Le"; " "] "ciel est bleu"["Le"] " ciel est bleu""Le ciel est bleu"

34

Concaténer une liste de châınes de caractères

Pour concaténer des châınes de caractères dans une liste :

• On part d’une châıne vide ""

• On replie avec des concaténations

["Le"; " "; "ciel"; " est "; "bleu"]

""

fold_right

["Le"; " "; "ciel"; " est "] "bleu"["Le"; " "; "ciel"] " est bleu"["Le"; " "] "ciel est bleu"["Le"] " ciel est bleu""Le ciel est bleu"

34

Concaténer une liste de châınes de caractères

Pour concaténer des châınes de caractères dans une liste :

• On part d’une châıne vide ""

• On replie avec des concaténations

["Le"; " "; "ciel"; " est "; "bleu"] ""

fold_right

["Le"; " "; "ciel"; " est "] "bleu"["Le"; " "; "ciel"] " est bleu"["Le"; " "] "ciel est bleu"["Le"] " ciel est bleu""Le ciel est bleu"

34

Concaténer une liste de châınes de caractères

Pour concaténer des châınes de caractères dans une liste :

• On part d’une châıne vide ""

• On replie avec des concaténations

["Le"; " "; "ciel"; " est "; "bleu"] ""

fold_right

["Le"; " "; "ciel"; " est "] "bleu"

["Le"; " "; "ciel"] " est bleu"["Le"; " "] "ciel est bleu"["Le"] " ciel est bleu""Le ciel est bleu"

34

Concaténer une liste de châınes de caractères

Pour concaténer des châınes de caractères dans une liste :

• On part d’une châıne vide ""

• On replie avec des concaténations

["Le"; " "; "ciel"; " est "; "bleu"] ""

fold_right

["Le"; " "; "ciel"; " est "] "bleu"

["Le"; " "; "ciel"] " est bleu"

["Le"; " "] "ciel est bleu"["Le"] " ciel est bleu""Le ciel est bleu"

34

Concaténer une liste de châınes de caractères

Pour concaténer des châınes de caractères dans une liste :

• On part d’une châıne vide ""

• On replie avec des concaténations

["Le"; " "; "ciel"; " est "; "bleu"] ""

fold_right

["Le"; " "; "ciel"; " est "] "bleu"["Le"; " "; "ciel"] " est bleu"

["Le"; " "] "ciel est bleu"

["Le"] " ciel est bleu""Le ciel est bleu"

34

Concaténer une liste de châınes de caractères

Pour concaténer des châınes de caractères dans une liste :

• On part d’une châıne vide ""

• On replie avec des concaténations

["Le"; " "; "ciel"; " est "; "bleu"] ""

fold_right

["Le"; " "; "ciel"; " est "] "bleu"["Le"; " "; "ciel"] " est bleu"["Le"; " "] "ciel est bleu"

["Le"] " ciel est bleu"

"Le ciel est bleu"

34

Concaténer une liste de châınes de caractères

Pour concaténer des châınes de caractères dans une liste :

• On part d’une châıne vide ""

• On replie avec des concaténations

["Le"; " "; "ciel"; " est "; "bleu"] ""

fold_right

["Le"; " "; "ciel"; " est "] "bleu"["Le"; " "; "ciel"] " est bleu"["Le"; " "] "ciel est bleu"["Le"] " ciel est bleu"

"Le ciel est bleu"

34

Concaténer une liste de châınes de caractères

Cela peut s’écrire :

let concat lst =

List.fold_right (fun a b -> a ^ b) lst "";;

val concat : string list -> string = <fun>

Ou bien

let concat lst =

List.fold_right (^) lst "";;

concat ["Le"; " "; "ciel"; " est "; "bleu"];;

- : string = "Le ciel est bleu"
35

Concaténer une liste de châınes de caractères

Dans ce dernier cas, on effectue n −1 concaténations

C’est inutilement coûteux !

Il existe une fonction pour cela :

String.concat;;

- : string -> string list -> string = <fun>

Le premier argument est glissé entre chaque châıne de la liste :

String.concat " " ["Le"; "ciel"; "est"; "bleu"];;

- : string = "Le ciel est bleu"

36

Concaténer une liste de châınes de caractères

Dans ce dernier cas, on effectue n −1 concaténations

C’est inutilement coûteux !

Il existe une fonction pour cela :

String.concat;;

- : string -> string list -> string = <fun>

Le premier argument est glissé entre chaque châıne de la liste :

String.concat " " ["Le"; "ciel"; "est"; "bleu"];;

- : string = "Le ciel est bleu"

36

Aplatir une liste de listes

Pour aplatir une liste de liste :

• On part d’une liste vide []

• On replie avec des concaténations

[[1; 2; 3]; [4]; []; [5; 6]]

[]

fold_right

[[1; 2; 3]; [4]; []] [5; 6][[1; 2; 3]; [4]] [5; 6][[1; 2; 3]] [4; 5; 6][1; 2; 3; 4; 5; 6]

37

Aplatir une liste de listes

Pour aplatir une liste de liste :

• On part d’une liste vide []

• On replie avec des concaténations

[[1; 2; 3]; [4]; []; [5; 6]]

[]

fold_right

[[1; 2; 3]; [4]; []] [5; 6][[1; 2; 3]; [4]] [5; 6][[1; 2; 3]] [4; 5; 6][1; 2; 3; 4; 5; 6]

37

Aplatir une liste de listes

Pour aplatir une liste de liste :

• On part d’une liste vide []

• On replie avec des concaténations

[[1; 2; 3]; [4]; []; [5; 6]] []

fold_right

[[1; 2; 3]; [4]; []] [5; 6][[1; 2; 3]; [4]] [5; 6][[1; 2; 3]] [4; 5; 6][1; 2; 3; 4; 5; 6]

37

Aplatir une liste de listes

Pour aplatir une liste de liste :

• On part d’une liste vide []

• On replie avec des concaténations

[[1; 2; 3]; [4]; []; [5; 6]] []

fold_right

[[1; 2; 3]; [4]; []] [5; 6]

[[1; 2; 3]; [4]] [5; 6][[1; 2; 3]] [4; 5; 6][1; 2; 3; 4; 5; 6]

37

Aplatir une liste de listes

Pour aplatir une liste de liste :

• On part d’une liste vide []

• On replie avec des concaténations

[[1; 2; 3]; [4]; []; [5; 6]] []

fold_right

[[1; 2; 3]; [4]; []] [5; 6]

[[1; 2; 3]; [4]] [5; 6]

[[1; 2; 3]] [4; 5; 6][1; 2; 3; 4; 5; 6]

37

Aplatir une liste de listes

Pour aplatir une liste de liste :

• On part d’une liste vide []

• On replie avec des concaténations

[[1; 2; 3]; [4]; []; [5; 6]] []

fold_right

[[1; 2; 3]; [4]; []] [5; 6][[1; 2; 3]; [4]] [5; 6]

[[1; 2; 3]] [4; 5; 6]

[1; 2; 3; 4; 5; 6]

37

Aplatir une liste de listes

Pour aplatir une liste de liste :

• On part d’une liste vide []

• On replie avec des concaténations

[[1; 2; 3]; [4]; []; [5; 6]] []

fold_right

[[1; 2; 3]; [4]; []] [5; 6][[1; 2; 3]; [4]] [5; 6][[1; 2; 3]] [4; 5; 6]

[1; 2; 3; 4; 5; 6]

37

Aplatir une liste de listes

Cela peut s’écrire :

let aplatir lst =

List.fold_right (fun a b -> a @ b) lst [];;

val aplatir : 'a list list -> 'a list = <fun>

Ou bien

let aplatir lst =

List.fold_right (@) lst [];;

aplatir [[1; 2; 3]; [4]; []; [5; 6]];;

- : int list = [1; 2; 3; 4; 5; 6]
38

Supprimer les valeurs paires

Pour supprimer les éléments pairs dans une liste :

• On part d’une liste vide []

• On ajoute (avec ::) les éléments s’ils sont impairs

[3; 6; 5; 2; 7]

[]

fold_right

[3; 6; 5; 2] [7][3; 6; 5] [7][3; 6] [5; 7][3] [5; 7][3; 5; 7]

39

Supprimer les valeurs paires

Pour supprimer les éléments pairs dans une liste :

• On part d’une liste vide []

• On ajoute (avec ::) les éléments s’ils sont impairs

[3; 6; 5; 2; 7]

[]

fold_right

[3; 6; 5; 2] [7][3; 6; 5] [7][3; 6] [5; 7][3] [5; 7][3; 5; 7]

39

Supprimer les valeurs paires

Pour supprimer les éléments pairs dans une liste :

• On part d’une liste vide []

• On ajoute (avec ::) les éléments s’ils sont impairs

[3; 6; 5; 2; 7] []

fold_right

[3; 6; 5; 2] [7][3; 6; 5] [7][3; 6] [5; 7][3] [5; 7][3; 5; 7]

39

Supprimer les valeurs paires

Pour supprimer les éléments pairs dans une liste :

• On part d’une liste vide []

• On ajoute (avec ::) les éléments s’ils sont impairs

[3; 6; 5; 2; 7] []

fold_right

[3; 6; 5; 2] [7]

[3; 6; 5] [7][3; 6] [5; 7][3] [5; 7][3; 5; 7]

39

Supprimer les valeurs paires

Pour supprimer les éléments pairs dans une liste :

• On part d’une liste vide []

• On ajoute (avec ::) les éléments s’ils sont impairs

[3; 6; 5; 2; 7] []

fold_right

[3; 6; 5; 2] [7]

[3; 6; 5] [7]

[3; 6] [5; 7][3] [5; 7][3; 5; 7]

39

Supprimer les valeurs paires

Pour supprimer les éléments pairs dans une liste :

• On part d’une liste vide []

• On ajoute (avec ::) les éléments s’ils sont impairs

[3; 6; 5; 2; 7] []

fold_right

[3; 6; 5; 2] [7][3; 6; 5] [7]

[3; 6] [5; 7]

[3] [5; 7][3; 5; 7]

39

Supprimer les valeurs paires

Pour supprimer les éléments pairs dans une liste :

• On part d’une liste vide []

• On ajoute (avec ::) les éléments s’ils sont impairs

[3; 6; 5; 2; 7] []

fold_right

[3; 6; 5; 2] [7][3; 6; 5] [7][3; 6] [5; 7]

[3] [5; 7]

[3; 5; 7]

39

Supprimer les valeurs paires

Pour supprimer les éléments pairs dans une liste :

• On part d’une liste vide []

• On ajoute (avec ::) les éléments s’ils sont impairs

[3; 6; 5; 2; 7] []

fold_right

[3; 6; 5; 2] [7][3; 6; 5] [7][3; 6] [5; 7][3] [5; 7]

[3; 5; 7]

39

Supprimer les valeurs paires

Cette fois-ci, on a besoin d’une fonction spécifique !

let conse_si_impair elem lst =

match elem mod 2 with

| 0 -> lst

| _ -> elem::lst;;

val conse_si_impair : int -> int list

-> int list = <fun>

40

Supprimer les valeurs paires

Ensuite, on peut écrire notre fonction :

let supprime_pairs lst =

List.fold_right conse_si_impair lst [];;

val supprime_pairs : int list -> int list = <fun>

supprime_pairs [3; 6; 5; 2; 7];;

- : int list = [3; 5; 7]

41

Supprimer les doublons

Pour supprimer les éléments en double dans une liste :

• On part d’une liste vide []

• On ajoute (avec ::) les éléments s’ils sont absents

[5; 2; 7; 5; 7]

[]

fold_right

[5; 2; 7; 5] [7][5; 2; 7] [5; 7][5; 2] [5; 7][5] [2; 5; 7][2; 5; 7]

42

Supprimer les doublons

Pour supprimer les éléments en double dans une liste :

• On part d’une liste vide []

• On ajoute (avec ::) les éléments s’ils sont absents

[5; 2; 7; 5; 7]

[]

fold_right

[5; 2; 7; 5] [7][5; 2; 7] [5; 7][5; 2] [5; 7][5] [2; 5; 7][2; 5; 7]

42

Supprimer les doublons

Pour supprimer les éléments en double dans une liste :

• On part d’une liste vide []

• On ajoute (avec ::) les éléments s’ils sont absents

[5; 2; 7; 5; 7] []

fold_right

[5; 2; 7; 5] [7][5; 2; 7] [5; 7][5; 2] [5; 7][5] [2; 5; 7][2; 5; 7]

42

Supprimer les doublons

Pour supprimer les éléments en double dans une liste :

• On part d’une liste vide []

• On ajoute (avec ::) les éléments s’ils sont absents

[5; 2; 7; 5; 7] []

fold_right

[5; 2; 7; 5] [7]

[5; 2; 7] [5; 7][5; 2] [5; 7][5] [2; 5; 7][2; 5; 7]

42

Supprimer les doublons

Pour supprimer les éléments en double dans une liste :

• On part d’une liste vide []

• On ajoute (avec ::) les éléments s’ils sont absents

[5; 2; 7; 5; 7] []

fold_right

[5; 2; 7; 5] [7]

[5; 2; 7] [5; 7]

[5; 2] [5; 7][5] [2; 5; 7][2; 5; 7]

42

Supprimer les doublons

Pour supprimer les éléments en double dans une liste :

• On part d’une liste vide []

• On ajoute (avec ::) les éléments s’ils sont absents

[5; 2; 7; 5; 7] []

fold_right

[5; 2; 7; 5] [7][5; 2; 7] [5; 7]

[5; 2] [5; 7]

[5] [2; 5; 7][2; 5; 7]

42

Supprimer les doublons

Pour supprimer les éléments en double dans une liste :

• On part d’une liste vide []

• On ajoute (avec ::) les éléments s’ils sont absents

[5; 2; 7; 5; 7] []

fold_right

[5; 2; 7; 5] [7][5; 2; 7] [5; 7][5; 2] [5; 7]

[5] [2; 5; 7]

[2; 5; 7]

42

Supprimer les doublons

Pour supprimer les éléments en double dans une liste :

• On part d’une liste vide []

• On ajoute (avec ::) les éléments s’ils sont absents

[5; 2; 7; 5; 7] []

fold_right

[5; 2; 7; 5] [7][5; 2; 7] [5; 7][5; 2] [5; 7][5] [2; 5; 7]

[2; 5; 7]

42

Supprimer les doublons

Cette fois encore, on a besoin d’une fonction spécifique :

let conse_si_absent elem = function

| lst when List.mem elem lst -> lst

| lst -> elem::lst;;

val conse_si_absent : 'a -> 'a list -> 'a list = <fun>

43

Supprimer les doublons

Ensuite, on peut écrire notre fonction :

let supprime_doublons lst =

List.fold_right conse_si_absent lst [];;

val supprime_doublons : 'a list -> 'a list = <fun>

supprime_doublons [5; 2; 7; 5; 7];;

- : int list = [2; 5; 7]

44

Calculer la longueur d’une liste

Pour déterminer le nombre d’éléments dans une liste :

• On part de 0

• On incrémente, quel que soit l’élément extrait

[5; 2; 7; 5; 7]

0

fold_right

[5; 2; 7; 5] 1[5; 2; 7] 2[5; 2] 3[5] 45

45

Calculer la longueur d’une liste

Pour déterminer le nombre d’éléments dans une liste :

• On part de 0

• On incrémente, quel que soit l’élément extrait

[5; 2; 7; 5; 7]

0

fold_right

[5; 2; 7; 5] 1[5; 2; 7] 2[5; 2] 3[5] 45

45

Calculer la longueur d’une liste

Pour déterminer le nombre d’éléments dans une liste :

• On part de 0

• On incrémente, quel que soit l’élément extrait

[5; 2; 7; 5; 7] 0

fold_right

[5; 2; 7; 5] 1[5; 2; 7] 2[5; 2] 3[5] 45

45

Calculer la longueur d’une liste

Pour déterminer le nombre d’éléments dans une liste :

• On part de 0

• On incrémente, quel que soit l’élément extrait

[5; 2; 7; 5; 7] 0

fold_right

[5; 2; 7; 5] 1

[5; 2; 7] 2[5; 2] 3[5] 45

45

Calculer la longueur d’une liste

Pour déterminer le nombre d’éléments dans une liste :

• On part de 0

• On incrémente, quel que soit l’élément extrait

[5; 2; 7; 5; 7] 0

fold_right

[5; 2; 7; 5] 1

[5; 2; 7] 2

[5; 2] 3[5] 45

45

Calculer la longueur d’une liste

Pour déterminer le nombre d’éléments dans une liste :

• On part de 0

• On incrémente, quel que soit l’élément extrait

[5; 2; 7; 5; 7] 0

fold_right

[5; 2; 7; 5] 1[5; 2; 7] 2

[5; 2] 3

[5] 45

45

Calculer la longueur d’une liste

Pour déterminer le nombre d’éléments dans une liste :

• On part de 0

• On incrémente, quel que soit l’élément extrait

[5; 2; 7; 5; 7] 0

fold_right

[5; 2; 7; 5] 1[5; 2; 7] 2[5; 2] 3

[5] 4

5

45

Calculer la longueur d’une liste

Pour déterminer le nombre d’éléments dans une liste :

• On part de 0

• On incrémente, quel que soit l’élément extrait

[5; 2; 7; 5; 7] 0

fold_right

[5; 2; 7; 5] 1[5; 2; 7] 2[5; 2] 3[5] 4

5

45

Calculer la longueur d’une liste

Si l’on veut construire une fonction effectuant cette somme :

let longueur lst =

List.fold_right (fun a b -> b+1) lst 0;;

val longueur : 'a list -> int = <fun>

La fonction retourne bien la longueur de la liste :

longueur [5; 2; 7; 5; 7];;

- : int = 5

46

Calculer la longueur d’une liste

Si l’on veut construire une fonction effectuant cette somme :

let longueur lst =

List.fold_right (fun a b -> b+1) lst 0;;

val longueur : 'a list -> int = <fun>

La fonction retourne bien la longueur de la liste :

longueur [5; 2; 7; 5; 7];;

- : int = 5

46

Déterminer le plus grand élément d’une liste

Pour déterminer le plus grand élément d’une liste :

• On part d’un élément présent dans la liste

• On replie avec la fonction max

[5; 2; 7; 6; 4]

5

tête de la liste

fold_right

[5; 2; 7; 6] 5[5; 2; 7] 6[5; 2] 7[5] 77

47

Déterminer le plus grand élément d’une liste

Pour déterminer le plus grand élément d’une liste :

• On part d’un élément présent dans la liste

• On replie avec la fonction max

[5; 2; 7; 6; 4]

5

tête de la liste

fold_right

[5; 2; 7; 6] 5[5; 2; 7] 6[5; 2] 7[5] 77

47

Déterminer le plus grand élément d’une liste

Pour déterminer le plus grand élément d’une liste :

• On part d’un élément présent dans la liste

• On replie avec la fonction max

[5; 2; 7; 6; 4] 5

tête de la liste

fold_right

[5; 2; 7; 6] 5[5; 2; 7] 6[5; 2] 7[5] 77

47

Déterminer le plus grand élément d’une liste

Pour déterminer le plus grand élément d’une liste :

• On part d’un élément présent dans la liste

• On replie avec la fonction max

[5; 2; 7; 6; 4] 5

tête de la liste

fold_right

[5; 2; 7; 6] 5

[5; 2; 7] 6[5; 2] 7[5] 77

47

Déterminer le plus grand élément d’une liste

Pour déterminer le plus grand élément d’une liste :

• On part d’un élément présent dans la liste

• On replie avec la fonction max

[5; 2; 7; 6; 4] 5

tête de la liste

fold_right

[5; 2; 7; 6] 5

[5; 2; 7] 6

[5; 2] 7[5] 77

47

Déterminer le plus grand élément d’une liste

Pour déterminer le plus grand élément d’une liste :

• On part d’un élément présent dans la liste

• On replie avec la fonction max

[5; 2; 7; 6; 4] 5

tête de la liste

fold_right

[5; 2; 7; 6] 5[5; 2; 7] 6

[5; 2] 7

[5] 77

47

Déterminer le plus grand élément d’une liste

Pour déterminer le plus grand élément d’une liste :

• On part d’un élément présent dans la liste

• On replie avec la fonction max

[5; 2; 7; 6; 4] 5

tête de la liste

fold_right

[5; 2; 7; 6] 5[5; 2; 7] 6[5; 2] 7

[5] 7

7

47

Déterminer le plus grand élément d’une liste

Pour déterminer le plus grand élément d’une liste :

• On part d’un élément présent dans la liste

• On replie avec la fonction max

[5; 2; 7; 6; 4] 5

tête de la liste

fold_right

[5; 2; 7; 6] 5[5; 2; 7] 6[5; 2] 7[5] 7

7

47

Déterminer le plus grand élément d’une liste

Pour construire une fonction trouvant le plus grand élément :

let maximum lst =

List.fold_right max lst (List.hd lst);;

val maximum : 'a list -> 'a = <fun>

Ou, afin d’éviter une comparaison inutile avec la tête :

let maximum = function

| [] -> failwith "Liste vide"

| t::q -> List.fold_right max q t;;

val maximum : 'a list -> 'a = <fun>

48

Déterminer le plus grand élément d’une liste

Pour construire une fonction trouvant le plus grand élément :

let maximum lst =

List.fold_right max lst (List.hd lst);;

val maximum : 'a list -> 'a = <fun>

Ou, afin d’éviter une comparaison inutile avec la tête :

let maximum = function

| [] -> failwith "Liste vide"

| t::q -> List.fold_right max q t;;

val maximum : 'a list -> 'a = <fun>
48

Comment fonctionne List.fold_right ?

On cherche à calculer l’expression :

foo a1 (foo a2 (. . . (foo an−1 (foo an b)) . . .))

Cela peut s’écrire :

let rec fold_right foo lst b =

match lst with

| [] -> b

| t::q -> foo t (fold_right foo q b);;

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b

-> 'b = <fun>

49

Et dans le sens contraire ? List.fold_left

On peut vouloir effectuer la même chose dans le sens contraire !

Par exemple, pour la somme des éléments d’une liste :

[1; 2; 3; 4]0

fold_left

[2; 3; 4]1 [3; 4]3 [4]6 10

La fonction existe bien :

List.fold_left;;

- : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>

50

Et dans le sens contraire ? List.fold_left

On peut vouloir effectuer la même chose dans le sens contraire !

Par exemple, pour la somme des éléments d’une liste :

[1; 2; 3; 4]0

fold_left

[2; 3; 4]1 [3; 4]3 [4]6 10

La fonction existe bien :

List.fold_left;;

- : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>

50

Et dans le sens contraire ? List.fold_left

On peut vouloir effectuer la même chose dans le sens contraire !

Par exemple, pour la somme des éléments d’une liste :

[1; 2; 3; 4]0

fold_left

[2; 3; 4]1

[3; 4]3 [4]6 10

La fonction existe bien :

List.fold_left;;

- : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>

50

Et dans le sens contraire ? List.fold_left

On peut vouloir effectuer la même chose dans le sens contraire !

Par exemple, pour la somme des éléments d’une liste :

[1; 2; 3; 4]0

fold_left

[2; 3; 4]1

[3; 4]3

[4]6 10

La fonction existe bien :

List.fold_left;;

- : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>

50

Et dans le sens contraire ? List.fold_left

On peut vouloir effectuer la même chose dans le sens contraire !

Par exemple, pour la somme des éléments d’une liste :

[1; 2; 3; 4]0

fold_left

[2; 3; 4]1 [3; 4]3

[4]6

10

La fonction existe bien :

List.fold_left;;

- : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>

50

Et dans le sens contraire ? List.fold_left

On peut vouloir effectuer la même chose dans le sens contraire !

Par exemple, pour la somme des éléments d’une liste :

[1; 2; 3; 4]0

fold_left

[2; 3; 4]1 [3; 4]3 [4]6

10

La fonction existe bien :

List.fold_left;;

- : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>

50

Et dans le sens contraire ? List.fold_left

On peut vouloir effectuer la même chose dans le sens contraire !

Par exemple, pour la somme des éléments d’une liste :

[1; 2; 3; 4]0

fold_left

[2; 3; 4]1 [3; 4]3 [4]6

10

La fonction existe bien :

List.fold_left;;

- : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>

50

Et dans le sens contraire ? List.fold_left

On remarquera la différence dans les signatures :

List.fold_right;;

- : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

[1; 2; 3; 4] 0

fold_right

List.fold_left;;

- : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>

[1; 2; 3; 4]0

fold_left

51

Et dans le sens contraire ? List.fold_left

L’instruction

List.fold_left foo b [a1; a2; . . .; an−1; an]

Correspond donc à

foo (foo (. . . (foo (foo b a1) a2) . . .) an−1) an

::

::

::

::

a1

a2

an−1

an []

List.fold_left

foo

foo

foo

foo

an

an−1

a2

a1b

52

Et dans le sens contraire ? List.fold_left

On peut réécrire certaines des fonctions précédentes :

let somme_liste lst =

List.fold_left (fun b a -> b+a) 0 lst;;

val somme_liste : int list -> int = <fun>

let longueur lst =

List.fold_left (fun b a -> b+1) 0 lst;;

val longueur : 'a list -> int = <fun>

Attention à l’ordre des arguments !

53

Et dans le sens contraire ? List.fold_left

L’argument de somme_liste est le dernier argument de fold_left :

let somme_liste lst =

List.fold_left (+) 0 lst;;

val somme_liste : int list -> int = <fun>

On peut donc simplifier les choses avec une application partielle :

let somme_liste =

List.fold_left (+) 0;;

val somme_liste : int list -> int = <fun>

54

Et dans le sens contraire ? List.fold_left

L’application partielle peut parfois jouer de mauvais tours :

let longueur =

List.fold_left (fun b a -> b+1) 0;;

val longueur : '_weak1 list -> int = <fun>

La fonction précédente n’est pas réellement polymorphe

La première utilisation fixera le type des éléments de la liste !

55

Et dans le sens contraire ? List.fold_left

longueur;;

- : '_weak1 list -> int = <fun>

longueur [1; 2; 3; 4];;

- : int = 4

longueur;;

- : int list -> int = <fun>

longueur [4.9; 10.23; 22.11];;

Characters 21-24: longueur [4.9; 10.23; 22.11];;

^^^

Error: This expression has type float

but an expression was expected of type int
56

Et dans le sens contraire ? List.fold_left

Avoir deux fonctions est intéressant si foo n’est pas commutative

Si les deux sont possibles, List.fold_left est à préférer

(Aucune importance pour les concours)

57

Et dans le sens contraire ? List.fold_left

Un exemple intéressant : fun b a -> a::b

[1; 2; 3; 4][]

fold_left

[2; 3; 4][1] [3; 4][2; 1] [4][3; 2; 1][4; 3; 2; 1]

58

Et dans le sens contraire ? List.fold_left

Un exemple intéressant : fun b a -> a::b

[1; 2; 3; 4][]

fold_left

[2; 3; 4][1]

[3; 4][2; 1] [4][3; 2; 1][4; 3; 2; 1]

58

Et dans le sens contraire ? List.fold_left

Un exemple intéressant : fun b a -> a::b

[1; 2; 3; 4][]

fold_left

[2; 3; 4][1]

[3; 4][2; 1]

[4][3; 2; 1][4; 3; 2; 1]

58

Et dans le sens contraire ? List.fold_left

Un exemple intéressant : fun b a -> a::b

[1; 2; 3; 4][]

fold_left

[2; 3; 4][1] [3; 4][2; 1]

[4][3; 2; 1]

[4; 3; 2; 1]

58

Et dans le sens contraire ? List.fold_left

Un exemple intéressant : fun b a -> a::b

[1; 2; 3; 4][]

fold_left

[2; 3; 4][1] [3; 4][2; 1] [4][3; 2; 1]

[4; 3; 2; 1]

58

Retourner une liste

On peut donc écrire simplement une fonction retournant une liste :

let retourne lst =

List.fold_left (fun b a -> a::b) [] lst;;

val retourne : 'a list -> 'a list = <fun>

Il existe une fonction List.rev

59

Comment fonctionne List.fold_left ?

On cherche à calculer l’expression :

foo (foo (. . . (foo (foo b a1) a2) . . .) an−1) an

Cela peut s’écrire :

let rec fold_left foo b = function

| [] -> b

| t::q -> fold_left foo (foo b t) q;;

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list

-> 'a = <fun>

60

Avantages et inconvénients de List.fold_*

Parfois très utile pour traiter succintement des listes

Cependant :

• pas toujours la solution la plus simple

• peut être délicat à écrire correctement

• peut être très difficile à lire

Détaillez votre démarche (avec un dessin !)

Ne vous forcez jamais à trouver une solution de ce type

Il existe toujours d’autres solutions

61

Avantages et inconvénients de List.fold_*

Parfois très utile pour traiter succintement des listes

Cependant :

• pas toujours la solution la plus simple

• peut être délicat à écrire correctement

• peut être très difficile à lire

Détaillez votre démarche (avec un dessin !)

Ne vous forcez jamais à trouver une solution de ce type

Il existe toujours d’autres solutions

61

Avantages et inconvénients de List.fold_*

Parfois très utile pour traiter succintement des listes

Cependant :

• pas toujours la solution la plus simple

• peut être délicat à écrire correctement

• peut être très difficile à lire

Détaillez votre démarche (avec un dessin !)

Ne vous forcez jamais à trouver une solution de ce type

Il existe toujours d’autres solutions

61

Avantages et inconvénients de List.fold_*

Parfois très utile pour traiter succintement des listes

Cependant :

• pas toujours la solution la plus simple

• peut être délicat à écrire correctement

• peut être très difficile à lire

Détaillez votre démarche (avec un dessin !)

Ne vous forcez jamais à trouver une solution de ce type

Il existe toujours d’autres solutions

61

Un exemple défendable : le tri insertion

let tri_insertion lst =

let rec insertion lst elem = match lst with

| [] -> [nw]

| t::q when elem>t -> t::insertion q elem

| lst -> elem::lst

in List.fold_left insertion [] lst;;

val tri_insertion : 'a list -> 'a list = <fun>

62

Aplatir une liste

On peut écrire aplatir avec une fonction récursive :

let rec aplatir = function

| [] -> []

| lst::[] -> lst

| []::q -> aplatir q

| (t::q)::q2 -> t::aplatir (q::q2);;

val supprime_doublons : 'a list list -> 'a list = <fun>

63

Supprimer les doublons

On peut écrire supprime_doublons avec une fonction récursive :

let rec supprime_doublons = function

| [] -> []

| t::q when List.mem t q -> supprime_doublons q

| t::q -> t :: supprime_doublons q;;

val supprime_doublons : 'a list -> 'a list = <fun>

64

Retourner une liste

On peut également écrire retourne avec une fonction récursive :

let retourne lst =

let rec aux res = function

| [] -> res

| t::q -> aux (t::res) q

in aux [] lst;;

retourne [1; 2; 3]

aux [] [1; 2; 3]

aux [1] [2; 3]

aux [2; 1] [3]

aux [3; 2; 1] []

[3; 2; 1]

65

Retourner une liste

On peut également écrire retourne avec une fonction récursive :

let retourne lst =

let rec aux res = function

| [] -> res

| t::q -> aux (t::res) q

in aux [] lst;;

retourne [1; 2; 3] aux [] [1; 2; 3]

aux [1] [2; 3]

aux [2; 1] [3]

aux [3; 2; 1] []

[3; 2; 1]

65

Retourner une liste

On peut également écrire retourne avec une fonction récursive :

let retourne lst =

let rec aux res = function

| [] -> res

| t::q -> aux (t::res) q

in aux [] lst;;

retourne [1; 2; 3] aux [] [1; 2; 3]

aux [1] [2; 3]

aux [2; 1] [3]

aux [3; 2; 1] []

[3; 2; 1]

65

Retourner une liste

On peut également écrire retourne avec une fonction récursive :

let retourne lst =

let rec aux res = function

| [] -> res

| t::q -> aux (t::res) q

in aux [] lst;;

retourne [1; 2; 3] aux [] [1; 2; 3]

aux [1] [2; 3]

aux [2; 1] [3]

aux [3; 2; 1] []

[3; 2; 1]

65

Retourner une liste

On peut également écrire retourne avec une fonction récursive :

let retourne lst =

let rec aux res = function

| [] -> res

| t::q -> aux (t::res) q

in aux [] lst;;

retourne [1; 2; 3] aux [] [1; 2; 3]

aux [1] [2; 3]

aux [2; 1] [3]

aux [3; 2; 1] []

[3; 2; 1]

65

Retourner une liste

On peut également écrire retourne avec une fonction récursive :

let retourne lst =

let rec aux res = function

| [] -> res

| t::q -> aux (t::res) q

in aux [] lst;;

retourne [1; 2; 3] aux [] [1; 2; 3]

aux [1] [2; 3]

aux [2; 1] [3]

aux [3; 2; 1] []

[3; 2; 1] 65

