Structures et listes chainées en C

Lycée Louis-le-Grand

Alias de types en C

typedef int age;

bool can_vote(age a) {
return a >= 18;

But cosmétique (documentation) et modularité

Cas des booléens

Dans stdbool.h :

typedef _Bool bool;

Remarque : depuis C23, bool est un type officiel !

struct displacement {
double n_s;

double e_w;

it

struct displacement d;
d.n_s = 10.2;
4.5;

d.e_w

Initialisation immédiate, copie

struct displacement d = { .n_s = 10.2, .e_w = 4.5 };

Mais seulement pour I'initialisation :

d={ .n_s =10.2, .e_.w = 4.5 };

// ILLEGAL

Totalement hors programme :

d = (struct displacement){ .n_s

=10.2, .e_w = 4.5 }é

struct displacement d = { .n_s = 10.2, .e_w = 4.5 };

struct displacement d2 = d; // <- données *copiéesx*

d2.n_s = 3.7; // <- n'affecte pas dep
0x00402018 | = d : struct displacement
c 3 0x00402018
- 10.2 =
-] d2 : struct displacement
c 3 0x00402028
= 45 3
0x00402028 £ .
= 3.7 3
= 45 e
Mémoire

Test d’égalité

comparaison illégale avec ==

bool displ_equals(struct displacement d1,
struct displacement d2) {
return d1.n_s == d2.n_s && dl.e_w == d2.e_w;

Structures et alias

struct displacement {

double n_s;
double e_w;

B

typedef struct displacement displacement;

typedef struct displacement {
double n_s;
double e_w;

} displacement;

Structures anonymes

typedef struct {
double n_s;

double e_w;

} displacement;

Complétement anonyme :

struct { double n_s; double e_w; } d;

Enumérations (HP)

enum direction { north, south, east, west };

enum direction dir;
dir = south;

Variantes d’écriture

enum direction { north, south, east, west };

typedef enum direction direction;

typedef enum direction { north, south, east, west }
direction;

typedef enum { north, south, east, west } direction;

enum { north, south, east, west } dir;

10

Types complexes

type mytype = I of int | F of float ’

Peut se traduire en

typedef struct {
enum { integer, floatingpoint } type;
int i;
double f;

3 mytype;

11

Types complexes

Ou plus économe en mémoire :

typedef struct {
enum { integer, flotingpoint } type;
union {
int i;
double f;
} data;
} mytype;

12

Listes chainées

struct int_list {
int value;

struct int_list* next;

B

Déclaration avec :

struct int_list mylist;

13

Listes chainées

struct int_list {
int value;

struct int_listx next;

it

typedef struct int_list int_list;

Déclaration avec :

int_list mylist;

14

Identifier I’extrémité

Plusieurs solutions !

15

Identifier la téte

Encore plus de solutions!

16

Dans la suite

struct cell {
int value;

struct cell* next;

B

typedef struct cell int_list;

17

Ajout a gauche

int_listx add_left(int elem, int_list* p_list) {
int_listx p_res = malloc(sizeof(int_list));
(*p_res).value = elem;
(*p_res).next = p_list;
return p_res;

18

Obtenir la téte

int head(int_listx p_list) {
return (*p_list).value;

int head(int_listx p_list) {
assert(p_list != NULL);

return (*p_list).value;

19

Obtenir la queue

int_list* tail(int_listx p_list, bool free_head) {
assert (p_list != NULL);

int_list*x p_res = (*p_list).next;
if (free_head) {

free(p_list);
}

return p_res;

20

Calculer la longueur

int length(int_listx p_list) {
if (p_list == NULL) {
return 0;

}
return 1 + length((*p_list).next);

21

Calculer la longueur

int length(int_list* p_list) {
int count = 0;

int_list* ptr = p_list;
while (ptr != NULL) {
count = count + 1;
ptr = (*ptr).next;
3

return count;

22

Calculer la longueur

int length(int_listx p_list) {
int count = 0;
for (int_listx ptr = p_list; ptr != NULL;
ptr = (xptr).next) {
count = count + 1;

3

return count;

23

Présence d’un élément

bool member(int_list* p_list, int elem) {
for (int_listx ptr = p_list; ptr != NULL;
ptr = (*ptr).next) {
if ((*ptr).value == elem) {
return true;

3

return false;

24

Index d’un élément

int index(int_list* p_list, int elem) {

int count = 0;
for (int_listx ptr = p_list; ptr != NULL;
ptr = (*ptr).next) {
if ((*ptr).value == elem) {
return count;

}

count = count + 1;
3
return -1;

25

Retournement

int_listx reverse(int_list* p_list) {
int_listx p_res = NULL;
for (int_listx ptr = p_list; ptr != NULL;
ptr = (xptr).next) {
int_listx tmp = malloc(sizeof(int_list));

(*tmp) .value = (xptr).value;
(*tmp) .next = p_res;
p_res = tmp;

}

return p_res;

26

IIiiH%%HI!!HHiHiII

void delete(int_list* p_list) {
while (p_list != NULL) {
int_listx tmp = p_list;
p_list = (*p_list).next;
free(tmp);

void delete(int_list* p_list) {
if (p_list != NULL) {
delete((*p_list).next);
free(p_list);

27

Les listes sont mutables!

void increment(int_listx p_list) {
for (int_listx ptr = p_list; ptr != NULL;
ptr = (*ptr).next) {
(*ptr).value = (xptr).value + 1;

let rec increment = function
| [1->1[1]

| h::t -> h+1::increment t;;

val increment : int list -> int list = <fun>

28

Ajout... a droite!

void add_right(int elem, int_listx p_list) {
assert(p_list != NULL)

while ((xp_list).next != NULL) {
p_list = (*p_list).next
}
int_listx tmp = malloc(sizeof(int_list));
(*tmp).value = elem
(*tmp) .next = NULL
(*p_list).next = tmp;

1/
//

//
//
//
1/

On recherche 1le
derniere cellule

On crée une

nouvelle cellule
et on 1'accroche
en bout de liste

29

Copie de liste

void copy(int_list* p_list) {
int_listx p_copy = NULL;
int_listx p_last = NULL;

int_list* tmp = malloc(sizeof(int_list));

(xtmp).value = (xptr).value;

(*xtmp) .next = NULL;

if (p_copy == NULL) { // Si c'est la premiére cellule
p_copy = tmp;

} else {
(*p_last).next = tmp;

3

p_last = tmp;

}

return p_copy;

for (int_list* ptr = p_list; ptr != NULL; ptr = (*ptr).next) {

30

