
Structures et listes châınées en C

Lycée Louis-le-Grand

Alias de types en C

typedef int age;

bool can_vote(age a) {

return a >= 18;

}

But cosmétique (documentation) et modularité

1

Cas des booléens

Dans stdbool.h :

typedef _Bool bool;

Remarque : depuis C23, bool est un type officiel !

2

Structures

struct displacement {

double n_s;

double e_w;

};

struct displacement d;

d.n_s = 10.2;

d.e_w = 4.5;

3

Initialisation immédiate, copie

struct displacement d = { .n_s = 10.2, .e_w = 4.5 };

Mais seulement pour l’initialisation :

d = { .n_s = 10.2, .e_w = 4.5 }; // ILLEGAL

Totalement hors programme :

d = (struct displacement){ .n_s = 10.2, .e_w = 4.5 };

4

Copie

struct displacement d = { .n_s = 10.2, .e_w = 4.5 };

struct displacement d2 = d; // <- données *copiées*

d2.n_s = 3.7; // <- n'affecte pas dep !

d : struct displacement
0x00402018

d2 : struct displacement
0x00402028

10.2

0x00402018

4.5

3.7

0x00402028

4.5

Mémoire
5

Test d’égalité

comparaison illégale avec ==

bool displ_equals(struct displacement d1,

struct displacement d2) {

return d1.n_s == d2.n_s && d1.e_w == d2.e_w;

}

6

Structures et alias

struct displacement {

double n_s;

double e_w;

};

typedef struct displacement displacement;

typedef struct displacement {

double n_s;

double e_w;

} displacement;

7

Structures anonymes

typedef struct {

double n_s;

double e_w;

} displacement;

Complètement anonyme :

struct { double n_s; double e_w; } d;

8

Énumérations (HP)

enum direction { north, south, east, west };

enum direction dir;

dir = south;

9

Variantes d’écriture

enum direction { north, south, east, west };

typedef enum direction direction;

typedef enum direction { north, south, east, west }

direction;

typedef enum { north, south, east, west } direction;

enum { north, south, east, west } dir;

10

Types complexes

type mytype = I of int | F of float

Peut se traduire en

typedef struct {

enum { integer, floatingpoint } type;

int i;

double f;

} mytype;

11

Types complexes

Ou plus économe en mémoire :

typedef struct {

enum { integer, flotingpoint } type;

union {

int i;

double f;

} data;

} mytype;

12

Listes châınées

struct int_list {

int value;

struct int_list* next;

};

Déclaration avec :

struct int_list mylist;

13

Listes châınées

struct int_list {

int value;

struct int_list* next;

};

typedef struct int_list int_list;

Déclaration avec :

int_list mylist;

14

Identifier l’extrémité

Plusieurs solutions !

15

Identifier la tête

Encore plus de solutions !

16

Dans la suite

struct cell {

int value;

struct cell* next;

};

typedef struct cell int_list;

17

Ajout à gauche

int_list* add_left(int elem, int_list* p_list) {

int_list* p_res = malloc(sizeof(int_list));

(*p_res).value = elem;

(*p_res).next = p_list;

return p_res;

}

18

Obtenir la tête

int head(int_list* p_list) {

return (*p_list).value;

}

int head(int_list* p_list) {

assert(p_list != NULL);

return (*p_list).value;

}

19

Obtenir la queue

int_list* tail(int_list* p_list, bool free_head) {

assert (p_list != NULL);

int_list* p_res = (*p_list).next;

if (free_head) {

free(p_list);

}

return p_res;

}

20

Calculer la longueur

int length(int_list* p_list) {

if (p_list == NULL) {

return 0;

}

return 1 + length((*p_list).next);

}

21

Calculer la longueur

int length(int_list* p_list) {

int count = 0;

int_list* ptr = p_list;

while (ptr != NULL) {

count = count + 1;

ptr = (*ptr).next;

}

return count;

}

22

Calculer la longueur

int length(int_list* p_list) {

int count = 0;

for (int_list* ptr = p_list; ptr != NULL;

ptr = (*ptr).next) {

count = count + 1;

}

return count;

}

23

Présence d’un élément

bool member(int_list* p_list, int elem) {

for (int_list* ptr = p_list; ptr != NULL;

ptr = (*ptr).next) {

if ((*ptr).value == elem) {

return true;

}

}

return false;

}

24

Index d’un élément

int index(int_list* p_list, int elem) {

int count = 0;

for (int_list* ptr = p_list; ptr != NULL;

ptr = (*ptr).next) {

if ((*ptr).value == elem) {

return count;

}

count = count + 1;

}

return -1;

}

25

Retournement

int_list* reverse(int_list* p_list) {

int_list* p_res = NULL;

for (int_list* ptr = p_list; ptr != NULL;

ptr = (*ptr).next) {

int_list* tmp = malloc(sizeof(int_list));

(*tmp).value = (*ptr).value;

(*tmp).next = p_res;

p_res = tmp;

}

return p_res;

}

26

Destruction

void delete(int_list* p_list) {

while (p_list != NULL) {

int_list* tmp = p_list;

p_list = (*p_list).next;

free(tmp);

}

}

void delete(int_list* p_list) {

if (p_list != NULL) {

delete((*p_list).next);

free(p_list);

}

}

27

Les listes sont mutables !

void increment(int_list* p_list) {

for (int_list* ptr = p_list; ptr != NULL;

ptr = (*ptr).next) {

(*ptr).value = (*ptr).value + 1;

}

}

let rec increment = function

| [] -> []

| h::t -> h+1::increment t;;

val increment : int list -> int list = <fun>

28

Ajout... à droite !

void add_right(int elem, int_list* p_list) {

assert(p_list != NULL)

while ((*p_list).next != NULL) { // On recherche le

p_list = (*p_list).next // dernière cellule

}

int_list* tmp = malloc(sizeof(int_list)); // On crée une

(*tmp).value = elem // nouvelle cellule

(*tmp).next = NULL // et on l'accroche

(*p_list).next = tmp; // en bout de liste

}

29

Copie de liste

void copy(int_list* p_list) {

int_list* p_copy = NULL;

int_list* p_last = NULL;

for (int_list* ptr = p_list; ptr != NULL; ptr = (*ptr).next) {

int_list* tmp = malloc(sizeof(int_list));

(*tmp).value = (*ptr).value;

(*tmp).next = NULL;

if (p_copy == NULL) { // Si c'est la première cellule

p_copy = tmp;

} else {

(*p_last).next = tmp;

}

p_last = tmp;

}

return p_copy;

}

30

