
Structures mutables

G. Dewaele

7 janvier 2026

Lycée Louis-le-Grand

Programmation fonctionnelle

Pour l’instant, on a utilisé un style fonctionnel

En programmation fonctionnelle :

• on applique des fonctions à des constantes

• on utilise la récursion

• on ne contrôle généralement pas l’ordre d’exécution

• on ne gère pas la mémoire

1

Programmation impérative

En programmation impérative :

• on travaille avec des données variables

• les instructions altèrent leur valeur

• on utilise des boucles

• on contrôle l’ordre d’exécution

• on peut avoir à gérer la mémoire

2

Programmation fonctionnelle

let rec pgcd a = function

| 0 -> a

| b -> pgcd b (a mod b);;

pgcd 24 42

= pgcd 42 24

= pgcd 24 18

= pgcd 18 6

= pgcd 6 0

= 6

3

Programmation fonctionnelle

let rec pgcd a = function

| 0 -> a

| b -> pgcd b (a mod b);;

pgcd 24 42

= pgcd 42 24

= pgcd 24 18

= pgcd 18 6

= pgcd 6 0

= 6

3

Programmation fonctionnelle

let rec pgcd a = function

| 0 -> a

| b -> pgcd b (a mod b);;

pgcd 24 42

= pgcd 42 24

= pgcd 24 18

= pgcd 18 6

= pgcd 6 0

= 6

3

Programmation fonctionnelle

let rec pgcd a = function

| 0 -> a

| b -> pgcd b (a mod b);;

pgcd 24 42

= pgcd 42 24

= pgcd 24 18

= pgcd 18 6

= pgcd 6 0

= 6

3

Programmation fonctionnelle

let rec pgcd a = function

| 0 -> a

| b -> pgcd b (a mod b);;

pgcd 24 42

= pgcd 42 24

= pgcd 24 18

= pgcd 18 6

= pgcd 6 0

= 6

3

Programmation fonctionnelle

let rec pgcd a = function

| 0 -> a

| b -> pgcd b (a mod b);;

pgcd 24 42

= pgcd 42 24

= pgcd 24 18

= pgcd 18 6

= pgcd 6 0

= 6

3

Programmation impérative

def pgcd(a, b) :

while b != 0 :

a, b = b, a % b

return a

pgcd(24, 42)

a = 24

b = 42

a = 42

b = 24

a = 24

b = 18

a = 18

b = 6

a = 6

b = 0

return 6

4

Programmation impérative

def pgcd(a, b) :

while b != 0 :

a, b = b, a % b

return a

pgcd(24, 42)

a = 24

b = 42

a = 42

b = 24

a = 24

b = 18

a = 18

b = 6

a = 6

b = 0

return 6

4

Programmation impérative

def pgcd(a, b) :

while b != 0 :

a, b = b, a % b

return a

pgcd(24, 42)

a = 24

b = 42

a = 42

b = 24

a = 24

b = 18

a = 18

b = 6

a = 6

b = 0

return 6

4

Programmation impérative

def pgcd(a, b) :

while b != 0 :

a, b = b, a % b

return a

pgcd(24, 42)

a = 24

b = 42

a = 42

b = 24

a = 24

b = 18

a = 18

b = 6

a = 6

b = 0

return 6

4

Programmation impérative

def pgcd(a, b) :

while b != 0 :

a, b = b, a % b

return a

pgcd(24, 42)

a = 24

b = 42

a = 42

b = 24

a = 24

b = 18

a = 18

b = 6

a = 6

b = 0

return 6

4

Programmation impérative

def pgcd(a, b) :

while b != 0 :

a, b = b, a % b

return a

pgcd(24, 42)

a = 24

b = 42

a = 42

b = 24

a = 24

b = 18

a = 18

b = 6

a = 6

b = 0

return 6

4

Programmation multi-paradigmes

Tout algorithme peut être écrit dans les deux styles

(parfois avec une complexité différente)

En général, on mélange les styles !

On choisira ce qui est le plus simple/lisible

Sinon, chacun ses préférences...

5

Séquences d’instructions

Les instructions en séquences sont séparées par ;

let foo x =

print_string "Le carré de "; print_int x;

print_string " est "; print_int (x * x);

print_string ".";

print_newline ();;

val foo : int -> unit = <fun>

6

Séquences d’instructions

C’est un simple raccourci pour

let foo x =

let _ = print_string "Le carré de " in

let _ = print_int x in

let _ = print_string " est " in

let _ = print_int (x * x) in

let _ = print_string "." in

print_newline ();;

val foo : int -> unit = <fun>

7

Séquences d’instructions

La résultat de la séquence est le résultat de la dernière instruction

let foo x =

print_string "Calcul du carré de ";

print_int x; print_newline ();

x * x;;

val foo : int -> int = <fun>

foo 2;;

Calcul du carré de 2

- : int = 4

8

Séquences d’instructions

La résultat de la séquence est le résultat de la dernière instruction

let foo x =

print_string "Calcul du carré de ";

print_int x; print_newline ();

x * x;;

val foo : int -> int = <fun>

foo 2;;

Calcul du carré de 2

- : int = 4

8

Séquences d’instructions

On peut mettre des séquences n’importe où :

min (print_string "Hello "; 42)

(print_string "World!"; let x=29 in x+8);;

World!Hello - : int = 37

La première séquence « vaut » 42

La seconde séquence « vaut » 37

Les instructions des séquences sont exécutées dans l’ordre

Mais on ne sait quelle séquence est évaluée en premier !

9

Séquences d’instructions

On peut mettre des séquences n’importe où :

min (print_string "Hello "; 42)

(print_string "World!"; let x=29 in x+8);;

World!Hello - : int = 37

La première séquence « vaut » 42

La seconde séquence « vaut » 37

Les instructions des séquences sont exécutées dans l’ordre

Mais on ne sait quelle séquence est évaluée en premier !

9

Séquences d’instructions

On peut mettre des séquences n’importe où :

min (print_string "Hello "; 42)

(print_string "World!"; let x=29 in x+8);;

World!Hello - : int = 37

La première séquence « vaut » 42

La seconde séquence « vaut » 37

Les instructions des séquences sont exécutées dans l’ordre

Mais on ne sait quelle séquence est évaluée en premier !

9

Séquences d’instructions

On peut mettre des séquences n’importe où :

min (print_string "Hello "; 42)

(print_string "World!"; let x=29 in x+8);;

World!Hello - : int = 37

La première séquence « vaut » 42

La seconde séquence « vaut » 37

Les instructions des séquences sont exécutées dans l’ordre

Mais on ne sait quelle séquence est évaluée en premier !

9

Séquences d’instructions

Seule la valeur de la dernière instruction est utile

Toutes les autres devraient retourner ()

let foo x =

x * x * x;

x * x;;

Characters 18-27:

x * x * x;

^^^^^^^^^

Warning 10: this expression should have type unit.

val foo : int -> int = <fun>

10

Séquences d’instructions

Attntion aux erreurs !

let foo x =

x = x + 1; (* ce n'est PAS une incrémentation *)

x * x;;

Characters 18-27:

x = x + 1;

^^^^^^^^^

Warning 10: this expression should have type unit.

val foo : int -> int = <fun>

11

Séquences d’instructions

Il faudrait écrire, pour obtenir (x +1)2 :

let foo x =

let x = x + 1 in

x * x;;

val foo : int -> int = <fun>

12

Conditions

Rappelons que l’on dispose d’un if ... then ... else ...

if condition then expression_1 else expression_2

let rec fact n =

if n <= 1

then 1

else n * fact (n-1);;

val fact : int -> int = <fun>

13

Conditions

En programmation impérative, cela sert à contrôler l’exécution :

let foo n =

print_int n;

print_string " est ";

if n mod 2 = 1 then

print_string "impair"

else

print_string "pair";

print_newline();;

val foo : int -> unit = <fun>

14

Conditions

Une seule expression doit suivre then et else :

let foo n =

print_int n;

print_string " est ";

if n mod 2 = 1 then

print_string "impair"; print_newline ()

else

print_string "pair"; print_newline ();;

Characters 95-99:

else

^^^^

Error: Syntax error

15

Blocs d’instructions

Il faut donc ici construire un « bloc » d’instructions :

let foo n =

print_int n;

print_string " est ";

if n mod 2 = 1 then

(print_string "impair"; print_newline ())

else

(print_string "pair"; print_newline ());;

val foo : int -> unit = <fun>

16

Blocs d’instructions

Les parenthèses peuvent être remplacées par begin ... end

let foo n =

print_int n;

print_string " est ";

if n mod 2 = 1 then

begin

print_string "impair";

print_newline ()

end

else

begin

print_string "pair";

print_newline ()

end;;

val foo : int -> unit = <fun>

17

Blocs d’instructions

begin ... end et (...) sont pratiquement interchangeables

2 * begin 3 + 4 end;; (* A proscrire ! *)

- : int = 14

On respectera l’usage :

• des parenthèses s’il s’agit de priorités dans une expression

• begin ... end s’il s’agit d’un bloc d’exécution

La « valeur » associée à un bloc est celle de la dernière instruction

18

Blocs d’instructions et filtrage

Dans le cas suivant, où m1, m2, m3 et m4 sont des motifs :

match expr1 with

| m1 -> match expr2 with

| m2 -> ...

| m3 -> ...

| m4 -> ...

m4 est un motif pour match expr2 !

En effet, l’indentation ne joue aucun rôle...

19

Blocs d’instructions et filtrage

On utilisera donc un bloc :

match expr1 with

| m1 -> begin

match expr2 with

| m2 -> ...

| m3 -> ...

end

| m4 -> ...

Cette fois, m4 est un motif pour match expr1

20

Boucles inconditionnelles

Une boucle inconditionnelle est obtenue avec un for :

for nom = expression_1 to expression_2 do

sequence d'instructions

done

expression_1 et expression_2 doivent donner des entiers

La boucle est effectuée de expression_1 à expression_2 inclus !

Si expression_1 > expression_2, l’ensemble est ignoré

Pas besoin de begin ... end avec le do ... done

21

Boucles inconditionnelles

Une boucle inconditionnelle est obtenue avec un for :

for nom = expression_1 to expression_2 do

sequence d'instructions

done

expression_1 et expression_2 doivent donner des entiers

La boucle est effectuée de expression_1 à expression_2 inclus !

Si expression_1 > expression_2, l’ensemble est ignoré

Pas besoin de begin ... end avec le do ... done

21

Boucles inconditionnelles

Une boucle inconditionnelle est obtenue avec un for :

for nom = expression_1 to expression_2 do

sequence d'instructions

done

expression_1 et expression_2 doivent donner des entiers

La boucle est effectuée de expression_1 à expression_2 inclus !

Si expression_1 > expression_2, l’ensemble est ignoré

Pas besoin de begin ... end avec le do ... done

21

Boucles inconditionnelles

La boucle définie par

for i = 1 to 4 do sequence done

correspond très exactement à

let i = 1 in sequence;

let i = 2 in sequence;

let i = 3 in sequence;

let i = 4 in sequence;

i n’est pas une variable et ne peut être changé !

22

Boucles inconditionnelles

Un exemple affichant une table de multiplication :

let table n =

for i = 1 to 10 do

print_int n;

print_string " fois ";

print_int i;

print_string " égale ";

print_int (n*i);

print_newline ();

done;;

val table : int -> unit = <fun>

23

Boucles inconditionnelles

La séquence dans do ... done devrait retourner ()

let foo n =

for i = 1 to 10 do

i * n

done;;

Characters 30-35:

i * n

^^^^^

Warning 10: this expression should have type unit.

val foo : int -> unit = <fun>

Globalement, un for ... done a toujours pour valeur ()
24

Boucles inconditionnelles

Il n’existe aucune manière de choisir un pas

Seule exception, les itérations décroissantes :

for nom = expression_1 downto expression_2 do

sequence d'instructions

done

25

Boucles conditionnelles

Une boucle conditionnelle est obtenue avec un while :

while expression_booleenne do

sequence d'instructions

done

expression_booleenne doit être évaluée à ... true ou false

Si c’est true, la séquence est exécutée intégralement,

puis on évalue à nouveau expression_booleenne

26

Boucles conditionnelles

Une boucle conditionnelle est obtenue avec un while :

while expression_booleenne do

sequence d'instructions

done

expression_booleenne doit être évaluée à ... true ou false

Si c’est true, la séquence est exécutée intégralement,

puis on évalue à nouveau expression_booleenne

26

Boucles conditionnelles

Un exemple :

while read_line () <> "Au revoir" do

print_string "Dites m'en plus !";

print_newline ();

done;;

Cette boucle affiche le même message en réponse à toute entrée

Jusqu’à ce que l’utilisateur entre « Au revoir »

27

Boucles conditionnelles

Et là... on tombe sur un os !

Pour l’instant, on ne manipule que des constantes !

Entrées mises à part, expression_booleenne ne peut pas changer

Une définition locale let ... in ... dans la boucle :

est autorisée, mais ne survit pas à l’itération suivante

Une définition let ... dans la boucle :

est interdite, comme elle l’était dans une fonction

28

Boucles conditionnelles

Et là... on tombe sur un os !

Pour l’instant, on ne manipule que des constantes !

Entrées mises à part, expression_booleenne ne peut pas changer

Une définition locale let ... in ... dans la boucle :

est autorisée, mais ne survit pas à l’itération suivante

Une définition let ... dans la boucle :

est interdite, comme elle l’était dans une fonction

28

Boucles conditionnelles

Et là... on tombe sur un os !

Pour l’instant, on ne manipule que des constantes !

Entrées mises à part, expression_booleenne ne peut pas changer

Une définition locale let ... in ... dans la boucle :

est autorisée, mais ne survit pas à l’itération suivante

Une définition let ... dans la boucle :

est interdite, comme elle l’était dans une fonction

28

Boucles conditionnelles

Et là... on tombe sur un os !

Pour l’instant, on ne manipule que des constantes !

Entrées mises à part, expression_booleenne ne peut pas changer

Une définition locale let ... in ... dans la boucle :

est autorisée, mais ne survit pas à l’itération suivante

Une définition let ... dans la boucle :

est interdite, comme elle l’était dans une fonction

28

Boucles conditionnelles

while n’a de sens qu’en programmation impérative

On a absolument besoin de pouvoir modifier l’état de la mémoire

Il nous faut des « variables »

29

De l’usage du point-virgule

; sert à séparer des expressions/instructions

Il est inutile juste avant un end, un done, un else

On peut en avoir besoin après un end ou un done

En effet, begin ... end, for ... done et while ... done se

comportent, globalement, comme une (grosse) expression

30

Les références

Considérons :

let a = 2.2 and b = 3.7 and c = 2.2;;

let d = c;;

2.2

3.7

2.2

a

b

c

d

31

Les références

Pour permettre le changement, on associe le nom à une « bôıte » :

let a = ref 2.2;;

val a : float ref = {contents = 2.2}

a 2.2

On parle en OCaml de référence

L’association entre le nom et la bôıte est définitif

Mais son contenu peut changer !

32

Les références

Un nom associé à une référence ne peut servir directement :

a;;

- : float ref = {contents = 2.2}

a *. 2.0;;

Characters 2-3:

a *. 2.0;;

^

Error: This expression has type float ref

but an expression was expected of type float

33

Les références

Pour obtenir l’élément dans la boite a, on utilise !

a;;

- : float ref = {contents = 2.2}

!a;;

- : float = 2.2

!a *. 2.0;;

- : float = 4.4

34

Les références

Pour placer un élément dans la bôıte, on utilise :=

a;;

- : float ref = {contents = 2.2}

a := 3.7;;

- : unit = ()

a;;

- : float ref = {contents = 3.7}

S’il n’y avait pas de nom associé à l’élément initialement dans la

bôıte, celui-ci est perdu !

35

Les références

Les « bôıtes » sont associées à un type précis (ex. : float ref)

Celui-ci ne peut pas changer

Une « bôıte » n’est jamais vide

36

Les références

On peut avoir des références avec tous les types

Par exemple des fonctions :

let funct = ref abs;;

val funct : (int -> int) ref = {contents = <fun>}

!funct (-37);;

- : int = 37

funct := fun x -> x*x*x;;

- : unit = ()

funct := min 0;;

- : unit = ()
37

Les références

Des références de listes :

let r = ref [1; 2];;

val r : int list ref = {contents = [1; 2]}

Le type des objets dans la liste ne pourra pas changer !

Si on crée la référence avec une liste vide :

let r = ref [];;

val r : '_weak1 list ref = {contents = []}

Le type sera fixé lorsque introduira la première liste non-vide

38

Les références

Inversement, on peut créer des listes de références :

let lst = [ref 1; ref 2];;

val lst : int ref list = [{contents = 1};

{contents = 2}]

Ou bien même une référence vers une liste de références :

let r = ref [ref 1; ref 2];;

val r : int ref list ref = {contents =

[{contents = 1};

{contents = 2}]}

39

Les références

On peut même créer des références de références :

let a = ref (ref 42);;

val a : int ref ref = {contents = {contents = 42}}

!a;;

- : int ref = {contents = 42}

a := ref 22

- : unit = ()

! !a;; (* OCaml ne comprendrait pas !!a *)

- : int = 42

!a := 37;;

- : unit = ()

40

Exemples

Pour calculer une factorielle dans un style impératif :

let fact n =

let accum = ref 1 in

for i = 2 to n do

accum := !accum * i

done;

!accum;;

val fact : int -> int = <fun>

41

Exemples

Pour calculer un pgcd dans un style impératif :

let pgcd u v =

let a = ref u and b = ref v in

while !b <> 0 do

let tmp = !a in (* *)

a := !b; (* a, b <- b, a mod b *)

b := tmp mod !b (* *)

done;

!a;;

val pgcd : int -> int -> int = <fun>

42

Incrémentation, décrémentation

incr et decr sont des fonctions de signature int ref -> unit

incr i est équivalent à i := !i + 1

decr i est équivalent à i := !i - 1

let i = ref 17;;

val i : int ref = {contents = 17}

incr i;;

- : unit = ()

i;;

- : int ref = {contents = 18}

43

Exemples

Pour compter les zéros dans une liste d’entiers :

let compte_zeros lst =

let nombre = ref 0 and reste = ref lst in

while !reste <> [] do

if List.hd !reste = 0 then incr nombre;

reste := List.tl !reste

done;

!nombre;;

val compte_zeros : int list -> int = <fun>

44

Égalité, identité

Considérons :

let a = ref 2.2 and b = ref 2.2;;

let c = b;;

2.2

2.2

a

b

c

45

Égalité, identité

Considérons :

let a = ref 2.2 and b = ref 2.2;;

let c = b;;

Les opérateurs = et <> testent l’égalité des contenus

a = b;;

- : bool = true (* car !a = !b *)

a <> b;;

- : bool = false

46

Égalité, identité

Considérons :

let a = ref 2.2 and b = ref 2.2;;

let c = b;;

Les opérateurs == et != testent l’identité des références

a == b;;

- : bool = false (* références distinctes ! *)

b == c;;

- : bool = true (* deux noms, même référence *)

47

Égalité, identité

Si l’on veut être précis, l’image de la bôıte a des limites

Un même objet peut être simultanément dans plusieurs bôıtes

Dans l’exemple suivant :

let a = ref 2.2 and b = ref 2.2

let c = ref !b

On a trois bôıtes distinctes

Mais celles désignées par b et c contiennent le même 2.2

48

Égalité, identité

Dans l’exemple suivant :

let a = ref 2.2 and b = ref 2.2

let c = ref !b

a

b

c

2.2

2.2

49

Structures mutables

Les références sont des objets mutables

Il existe d’autre objets mutables en OCaml

Ils visent à simplifier la programmation impérative

50

Un cas concret

On souhaite réaliser un annuaire

nom numéro

Dupont 1234

Durand 2211

Martin 6789

type coord = { name: string ; number: string }

51

Un cas concret

On souhaite réaliser un annuaire

nom numéro

Dupont 1234

Durand 2211

Martin 6789

type coord = { name: string ; number: string }

51

Un cas concret

On souhaite réaliser un annuaire

nom numéro

Dupont 1234

Durand 2211

Martin 6789

type coord = { name: string ; number: string }

51

Solution fonctionnelle

On peut représenter l’annuaire comme un coord list :

let phonebook = [

{ name = "Dupont" ; number = "0123456789" } ;

{ name = "Durand" ; number = "0246813579" } ;

{ name = "Martin" ; number = "0918273645" }

]

Nous étudierons plus tard une représentation plus efficace

52

Solution fonctionnelle

Pour modifier un numéro :

let rec update name new_number = function

| h::t when h.name = name

-> { name = name ; number = new_number }

:: update name new_number t

| h::t -> h :: update name new_number t

| [] -> [];;

val update : string -> string -> coord list

-> coord list = <fun>

53

Solution fonctionnelle

On construit un nouvel annuaire

let new_phonebook =

update "Durand" "0000012345" phonebook;;

val new phonebook : coord list =

[{name = "Dupont"; number = "0123456789"};

{name = "Durand"; number = "0000012345"};

{name = "Martin"; number = "0918273645"}]

54

Limites

Problème : certains noms peuvent désigner l’ancien annuaire

Ils sont associés à des données qui ne sont plus à jour !

On peut vouloir modifier l’annuaire existant

55

Une solution à base de références

On peut utiliser des références :

type coord = { name: string ; number: string ref }

let phonebook = [

{ name = "Dupont" ; number = ref "0123456789" } ;

{ name = "Durand" ; number = ref "0246813579" } ;

{ name = "Martin" ; number = ref "0918273645" }

]

56

Une solution à base de références

La modification de l’annuaire devient :

let rec update name new_number = function

| h::t when h.name = name

-> h.number := new_number;

update name new_number t

| h::t -> update name new_number t

| [] -> ();;

val update : string -> string -> coord list

-> unit = <fun>

57

Une solution à base de références

On remarque que le résultat est cette fois un unit :

modifie "Durand" "0000056789" annuaire;;

- : unit = ()

annuaire;;

- : coord list =

[{nom = "Dupont"; numéro = {contents = "0123456789"}};

{nom = "Durand"; numéro = {contents = "0000056789"}};

{nom = "Martin"; numéro = {contents = "0918273645"}}]

58

Une solution à base de références

Dans un style plus impératif :

let update name new_number phonebook =

let rest = ref phonebook in

while !rest <> [] do

let coord = List.hd !rest in

if coord.name = name

then coord.number := new_number;

rest := List.tl !rest

done;;

val update : string -> string -> coord list

-> unit = <fun>

59

Une solution à base de références

On remarque que le résultat est cette fois un unit :

...

val modifie : string -> string -> coord list

-> unit = <fun>

modifie "Durand" "4237" annuaire;;

- : unit = ()

annuaire;;

- : coord list =

[{nom = "Dupont"; numero = {contents = "1234"}};

{nom = "Durand"; numero = {contents = "4237"}};

{nom = "Martin"; numero = {contents = "6789"}}]

60

Une solution à base de références

Avec cette approche, on substitue aux châınes des références

Il faut donc ajouter des ! partout où le numéro est utilisé

C’est potentiellement assez lourd

C’est du travail si on ajoute la fonctionnalité tardivement

61

Une solution à base de références

Avec cette approche, on substitue aux châınes des références

Il faut donc ajouter des ! partout où le numéro est utilisé

C’est potentiellement assez lourd

C’est du travail si on ajoute la fonctionnalité tardivement

61

Une solution à base de références

Avec cette approche, on substitue aux châınes des références

Il faut donc ajouter des ! partout où le numéro est utilisé

C’est potentiellement assez lourd

C’est du travail si on ajoute la fonctionnalité tardivement

61

Une autre solution

Il existe une autre solution, déclarer le champ mutable :

type coord = { name: string ; mutable number: string }

let phonebook = [

{ name = "Dupont" ; number = "0123456789" } ;

{ name = "Durand" ; number = "0246813579" } ;

{ name = "Martin" ; number = "0918273645" }

];;

La définition de l’annuaire est inchangée !

62

Une autre solution

L’utilisation est la même qu’auparavant :

let c = List.hd phonebook;;

c : coord = {name = "Dupont"; number = "0123456789"}

c.number;;

- : string = "0123456789"

63

Une autre solution

On peut muter le champ number avec <-

(List.hd phonebook).number <- "9876543210";;

- : unit = ()

List.hd phonebook;;

- : coord = {name = "Dupont"; number = "9876543210"}

64

Une autre solution

C’est le même objet, qui a muté !

La modification apparâıt notamment dans phonebook :

List.hd annuaire;;

- : coord list =

[{nom = "Dupont"; numero = "9876543210"};

{nom = "Durand"; numero = "0246813579"};

{nom = "Martin"; numero = "0918273645"}]

65

Une autre solution

Pour modifier notre annuaire, on écrit donc :

let rec update name new_number = function

| h::t when h.name = name

-> t.number <- new_number;

update name new_number t

| h::t -> update name new_number t

| [] -> ();;

val update : string -> string -> coord list

-> unit = <fun>

66

Une remarque pour clore

Pourquoi avoir à la fois := et <- ?

Dans le cas

type foo = { mutable elem = int ref };;

Si x est de type foo, x.elem <- ... et x.elem := ... existent !

67

Retour sur les références

Pour l’œil averti, quand on définit une référence :

let mango = ref 42;;

val mango : int ref = {contents = 42}

Cela ressemble à un enregistrement

Ce n’est pas un hasard !

68

Retour sur les références

Les références ne sont que du sucre syntaxique !

type 'a ref = { mutable contents: 'a };;

let ref x = { contents = x };;

val ref : 'a -> 'a ref = <fun>

let (!) = function { contents=x } -> x;;

val (!) : 'a ref -> 'a = <fun>

let (:=) r v = r.contents <- v;;

val (:=) : 'a ref -> 'a -> unit = <fun>

69

Les tableaux

Il est malcommode de travailler avec des 'a list en impératif

On préfère travailler avec des 'a array

Il s’agit de « tableaux »

70

Les tableaux

Les tableaux

• sont des objets mutables

• contiennent des éléments de même type

• permettent l’accès direct à un élément (en O (1))

• ont une taille fixe

71

Les tableaux

Pour créer explicitement un tableau, on utilise [| ... |] :

let arr = [| 11; 22; 37; 42; 54 |];;

val arr : int array = [|11; 22; 37; 42; 54|]

Array.length permet d’obtenir la longueur :

Array.length arr;;

- : int = 5

72

Les tableaux

On accède à un élément donné de la façon suivante :

arr.(3);;

- : int = 42

On le fait muter avec <- :

arr.(3) <- 17;;

- : unit = ()

arr;;

- : int array = [|11; 22; 37; 17; 54|]

73

Les tableaux

On peut également créer un tableau avec

• sa taille

• l’élément à mettre dans toutes les cases

Cela est réalisé avec la commande Array.make :

Array.make 5 0.0;;

- : float array = [|0.; 0.; 0.; 0.; 0.|]

Comme avec « [elem] * n » en Python,

on a le même élément dans toutes les cases !

74

Les tableaux à deux dimensions

Pour créer un tableau à deux dimensions, on crée un

'a array array :

let matr = [| [| 11; 22; 37 |];

[| 17; 42; 54 |] |];;

val matr : int array array = [|[|11; 22; 37|];

[|17; 42; 54|]|]

On accède à un élément de la sorte :

matr.(0).(2);;

- : int = 37

75

Les tableaux à deux dimensions

Attention, on ne peut créer un tableau 2×3 de la sorte :

let matr = Array.make 2 (Array.make 3 0.0)

val matr : float array array = [|[|0.; 0.; 0.|];

[|0.; 0.; 0.|]|]

En effet, on a deux fois la même ligne !

matr.(0) == matr.(1);; (* Test d'identité ! *)

- : bool = true

76

Les tableaux à deux dimensions

Les problèmes sont évidents :

matr.(0).(1) <- 42.0;;

- : unit = ()

matr;;

- : float array array = [|[|0.; 42.; 0.|];

[|0.; 42.; 0.|]|]

77

Les tableaux à deux dimensions

Une solution peut être :

let matr = Array.make 2 [| |];;

val matr : '_a array array = [|[||]; [||]|]

for i=0 to 1 do matr.(i) <- Array.make 3 0.0 done;;

- : unit = ()

matr;;

- : float array array = [|[|0.; 0.; 0.|];

[|0.; 0.; 0.|]|]

matr.(0) == matr.(1);;

- : bool = false
78

Les tableaux à deux dimensions

On dispose de solutions plus simple :

let matr = Array.make_matrix 2 3 0.0;;

val matr : float array array = [|[|0.; 0.; 0.|];

[|0.; 0.; 0.|]|]

let matr = Array.init 2 (fun i -> Array.make 3 0.0);;

val matr : float array array = [|[|0.; 0.; 0.|];

[|0.; 0.; 0.|]|]

79

Les tableaux à deux dimensions

Il existe de nombreuses autres fonctions sur les array

• Array.copy,

• Array.sub,

• Array.iter,

• Array.map,

• Array.mem,

• Array.to_list,

• Array.of_list,

• Array.sort...

80

