Structures mutables

G. Dewaele
7 janvier 2026

Lycée Louis-le-Grand

Programmation fonctionnelle

Pour I'instant, on a utilisé un style fonctionnel

En programmation fonctionnelle :
e on applique des fonctions a des constantes
e on utilise la récursion
e on ne contrble généralement pas I'ordre d'exécution

e on ne gere pas la mémoire

Programmation impérative

En programmation impérative :
e on travaille avec des données variables

les instructions altérent leur valeur

[]
e on utilise des boucles
e on contrdle |'ordre d’exécution

e on peut avoir a gérer la mémoire

Programmation fonctionnelle

let rec pgcd a = function
| © -> a
| b => pged b (a mod b);;

pgcd 24 42

Programmation fonctionnelle

let rec pgcd a = function
| © -> a
| b => pged b (a mod b);;

pgcd 24 42
= pgcd 42 24

Programmation fonctionnelle

let rec pgcd a = function
| © -> a
| b => pged b (a mod b);;

pgcd 24 42

pgcd 42 24

pged 24 18

Programmation fonctionnelle

let rec pgcd a = function
| © -> a
| b => pged b (a mod b);;

pgcd 24 42

pgcd 42 24

pged 24 18

pged 18 6

Programmation fonctionnelle

let rec pgcd a = function
| © -> a
| b => pged b (a mod b);;

pgcd 24 42

pgcd 42 24

pged 24 18

pged 18 6

pged 6 0

Programmation fonctionnelle

let rec pgcd a = function
| © -> a
| b => pged b (a mod b);;

pgcd 24 42

pgcd 42 24

pged 24 18

pged 18 6

pged 6 0
6

Programmation impérative

def pgcd(a, b) :

while b != 0 :
a, b=Db, a%b
return a

pgcd(24, 42)

a =24
b =42

Programmation impérative

def pgcd(a, b) :

while b != 0 :
a, b=Db, a%b
return a

pgcd(24, 42)

a = 42
b =24

Programmation impérative

def pgcd(a, b) :

while b != 0 :
a, b=Db, a%b
return a

pgcd(24, 42)

a =24
b =18

Programmation impérative

def pgcd(a, b) :

while b != 0 :
a, b=Db, a%b
return a

pgcd(24, 42)

Programmation impérative

def pgcd(a, b) :

while b != 0 :
a, b=Db, a%b
return a

pgcd(24, 42)

Programmation impérative

def pgcd(a, b) :

while b != 0 :
a, b=Db, a%b
return a

pgcd(24, 42)

a==o6
b =20
return 6

Programmation multi-paradigmes

Tout algorithme peut étre écrit dans les deux styles

(parfois avec une complexité différente)

En général, on mélange les styles !
On choisira ce qui est le plus simple/lisible

Sinon, chacun ses préférences...

Séquences d’instructions

Les instructions en séquences sont séparées par ;

let foo x =
print_string "Le carré de

n

; print_int x;

n

print_string " est "; print_int (x * x);

non

print_string ".";
print_newline ();;

val foo : int -> unit = <fun>

Séquences d’instructions

C’est un simple raccourci pour

let foo x =
let _ = print_string "Le carré de " in
let _ = print_int x in
let _ = print_string " est " in
let _ = print_int (x * x) in
let _ = print_string ".” in
print_newline ();;

val foo : int -> unit = <fun>

Séquences d’instructions

La résultat de la séquence est le résultat de la derniére instruction

let foo x =
print_string "Calcul du carré de ";

print_int x; print_newline ();
X * X;;

val foo : int -> int = <fun>

Séquences d’instructions

La résultat de la séquence est le résultat de la derniére instruction

let foo x =
print_string "Calcul du carré de ";
print_int x; print_newline ();

X * X;;

val foo : int -> int = <fun>

foo 2;;
Calcul du carré de 2
- : int = 4

Séquences d’instructions

On peut mettre des séquences n'importe ou :

min (print_string "Hello "; 42)
(print_string "World!"”; let x=29 in x+8);;

World!Hello - : int = 37

Séquences d’instructions

On peut mettre des séquences n'importe ou :

min (print_string "Hello "; 42)
(print_string "World!"”; let x=29 in x+8);;

World!Hello - : int = 37

La premiére séquence « vaut » 42

Séquences d’instructions

On peut mettre des séquences n'importe ou :

min (print_string "Hello "; 42)
(print_string "World!"”; let x=29 in x+8);;

World!Hello - : int = 37

La premiére séquence « vaut » 42

La seconde séquence « vaut » 37

Séquences d’instructions

On peut mettre des séquences n'importe ou :

min (print_string "Hello "; 42)
(print_string "World!"”; let x=29 in x+8);;

World!Hello - : int = 37

La premiére séquence « vaut » 42

La seconde séquence « vaut » 37

Les instructions des séquences sont exécutées dans |'ordre

Mais on ne sait quelle séquence est évaluée en premier!

Séquences d’instructions

Seule la valeur de la derniére instruction est utile

Toutes les autres devraient retourner ()

let foo x =
X * X * X;

X * X;;

Characters 18-27:

X * X * X;
Warning 10: this expression should have type unit.
val foo : int -> int = <fun>

10

Séquences d’instructions

Attntion aux erreurs!

let foo x =
X =x + 1; (* ce n'est PAS une incrémentation *)

X * X;;

Characters 18-27:

X =X+ 1;
Warning 10: this expression should have type unit.
val foo : int -> int = <fun>

11

Séquences d’instructions

Il faudrait écrire, pour obtenir (x+1)? :

let foo x =
let x = x + 1 in

X * X;;

val foo : int -> int = <fun>

12

Rappelons que I'on dispose d'un if ... then ... else ...

if condition then expression_1 else expression_2

let rec fact n =
if n <=1
then 1
else n * fact (n-1);;

val fact : int -> int = <fun>

13

Conditions

En programmation impérative, cela sert a controler I'exécution :

let foo n =
print_int n;
print_string " est ”;

if nmod 2 = 1 then
print_string "impair”
else
print_string "pair”

print_newline();;

val foo : int -> unit = <fun>

14

Conditions

Une seule expression doit suivre then et else :

let foo n =
print_int n;
print_string " est ”;

if nmod 2 = 1 then

print_string "impair”; print_newline ()
else

print_string "pair”; print_newline ();;

Characters 95-99:
else

AAAA

Error: Syntax error

15

Blocs d’instructions

Il faut donc ici construire un « bloc » d'instructions :

let foo n =
print_int n;
print_string

" est "
if nmod 2 = 1 then

(print_string "impair”; print_newline ())
else

(print_string "pair”; print_newline ());;

val foo : int -> unit = <fun>

16

Blocs d’instructions

Les parenthéses peuvent étre remplacées par begin ... end

let foo n =
print_int n;
print_string

"

est ";

if nmod 2 = 1 then
begin
print_string "impair”
print_newline ()
end
else
begin
print_string "pair";
print_newline ()
end;;

val foo : int -> unit = <fun>

17

Blocs d’instructions

begin ... end et (...) sont pratiquement interchangeables

2 x begin 3 + 4 end;; (x A proscrire ! %)
- :int = 14

On respectera |'usage :
e des parentheses s'il s'agit de priorités dans une expression

e begin ... end s'il s'agit d'un bloc d'exécution

La « valeur » associée a un bloc est celle de la derniére instruction

18

Blocs d’instructions et filtrage

Dans le cas suivant, ou m1, m2, m3 et m4 sont des motifs :

match expr1l with
| m1 -> match expr2 with
| m2 > ...
| m3 => ...
| m4 -=> ...

m4 est un motif pour match expr2!

En effet, I'indentation ne joue aucun rdle...

19

Blocs d’instructions et filtrage

On utilisera donc un bloc :

match expr1 with
| m1 -> begin
match expr2 with
| m2 -> ...
| m3 > ...
end
| md > ...

Cette fois, m4 est un motif pour match expr1

20

Boucles inconditionnelles

Une boucle inconditionnelle est obtenue avec un for :

for nom = expression_1 to expression_2 do
sequence d'instructions

done

expression_1 et expression_2 doivent donner des entiers

21

Boucles inconditionnelles

Une boucle inconditionnelle est obtenue avec un for :

for nom = expression_1 to expression_2 do
sequence d'instructions
done

expression_1 et expression_2 doivent donner des entiers

La boucle est effectuée de expression_1 a expression_2 inclus!

Si expression_1 > expression_2, I'ensemble est ignoré

21

Boucles inconditionnelles

Une boucle inconditionnelle est obtenue avec un for :

for nom = expression_1 to expression_2 do
sequence d'instructions
done

expression_1 et expression_2 doivent donner des entiers

La boucle est effectuée de expression_1 a expression_2 inclus!

Si expression_1 > expression_2, I'ensemble est ignoré
Pas besoin de begin ... end avec le do ... done

21

Boucles inconditionnelles

La boucle définie par

for i = 1 to 4 do sequence done

correspond tres exactement a

let i = 1 in sequence;
let i = 2 in sequence;
let i = 3 in sequence;
let i = 4 in sequence;

i n'est pas une variable et ne peut étre changé!

22

Boucles inconditionnelles

Un exemple affichant une table de multiplication :

let table n =
for i =1 to 10 do
print_int n;

print_string " fois ";
print_int 1i;

n n

print_string " égale ";
print_int (n*xi);
print_newline ();

done; ;

val table : int -> unit = <fun>

23

Boucles inconditionnelles

La séquence dans do ... done devrait retourner ()
let foo n =
for i = 1 to 10 do
i*n
done; ;

Characters 30-35:
i*n

AAAAA

Warning 10: this expression should have type unit.

val foo : int -> unit = <fun>

Globalement, un for ... done a toujours pour valeur ()
24

Boucles inconditionnelles

Il n'existe aucune maniéere de choisir un pas

Seule exception, les itérations décroissantes :

for nom = expression_1 downto expression_2 do
sequence d'instructions

done

25

Boucles conditionnelles

Une boucle conditionnelle est obtenue avec un while :

while expression_booleenne do
sequence d'instructions

done

26

Boucles conditionnelles

Une boucle conditionnelle est obtenue avec un while :

while expression_booleenne do
sequence d'instructions
done

expression_booleenne doit étre évaluée a ... true ou false

Si c'est true, la séquence est exécutée intégralement,

puis on évalue a nouveau expression_booleenne

26

Boucles conditionnelles

Un exemple :

while read_line () <> "Au revoir” do
n

print_string "Dites m'en plus !”;
print_newline ();

done;;

Cette boucle affiche le méme message en réponse a toute entrée

Jusqu'a ce que l'utilisateur entre « Au revoir »

27

Boucles conditionnelles

Et 1a... on tombe sur un os!

28

Boucles conditionnelles

Et 1a... on tombe sur un os!

Pour I'instant, on ne manipule que des constantes!

Entrées mises a part, expression_booleenne ne peut pas changer

28

Boucles conditionnelles

Et 1a... on tombe sur un os!

Pour I'instant, on ne manipule que des constantes!

Entrées mises a part, expression_booleenne ne peut pas changer

Une définition locale 1let ... in ... dans la boucle :

est autorisée, mais ne survit pas a l'itération suivante

28

Boucles conditionnelles

Et 1a... on tombe sur un os!

Pour I'instant, on ne manipule que des constantes!

Entrées mises a part, expression_booleenne ne peut pas changer

Une définition locale 1let ... in ... dans la boucle :

est autorisée, mais ne survit pas a l'itération suivante

Une définition let ... dans la boucle :

est interdite, comme elle |'était dans une fonction

28

Boucles conditionnelles

while n'a de sens qu'en programmation impérative

On a absolument besoin de pouvoir modifier I'état de la mémoire

Il nous faut des « variables »

29

De I'usage du point-virgule

; sert a séparer des expressions/instructions
Il est inutile juste avant un end, un done, un else

On peut en avoir besoin aprés un end ou un done

En effet, begin ... end, for ... done et while ... done se

comportent, globalement, comme une (grosse) expression

30

Les références

Considérons :

let a
let d

2.2andb=23.7and c = 2.2;; |

S

2.2
(> |
> |

31

Les références

Pour permettre le changement, on associe le nom a une « boite » :

let a = ref 2.2;;
val a : float ref = {contents = 2.2}

R e 2

On parle en OCaml de référence

L’'association entre le nom et la boite est définitif
Mais son contenu peut changer!

32

Les références

Un nom associé a une référence ne peut servir directement :

a;;
- : float ref = {contents = 2.2}

#a*x. 2.0;;

Characters 2-3:
a x. 2.0;;
Error: This expression has type float ref
but an expression was expected of type float

83

Les références

Pour obtenir I'élément dans la boite a, on utilise !

a!’

- : float ref = {contents = 2.2}
la;;

- : float = 2.2

lax. 2.0;;

- : float = 4.4

34

Les références

Pour placer un élément dans la boite, on utilise :=

a;;

- : float ref = {contents = 2.2}
#a:=3.7;;

- :unit = O

a;;

- : float ref = {contents = 3.7}

S'il n'y avait pas de nom associé a |'élément initialement dans la
boite, celui-ci est perdu!

B35

Les références

Les « boites » sont associées a un type précis (ex. : float ref)

Celui-ci ne peut pas changer

Une « boite » n'est jamais vide
36

Les références

On peut avoir des références avec tous les types

Par exemple des fonctions :

let funct = ref abs;;
val funct : (int -> int) ref = {contents = <fun>}

!funct (-37);;

- : int = 37

funct := fun x -> x*xxx;;
- :unit =

funct := min 0;;

- unit = ()

37

Les références

Des références de listes :

#letr =ref [1; 2 1;;
val r : int list ref = {contents = [1; 2]}

Le type des objets dans la liste ne pourra pas changer!

Si on crée la référence avec une liste vide :

let r = ref [1;;
val r : '_weakl list ref = {contents = []}

Le type sera fixé lorsque introduira la premiére liste non-vide

38

Les références

Inversement, on peut créer des listes de références :

let Ist = [ref 1; ref 2 1;;
val 1st : int ref list = [{contents = 1};
{contents = 2}]

Ou bien méme une référence vers une liste de références :

let r = ref [ref 1; ref 2 1;;
val r : int ref list ref = {contents =

[{contents

13;
2313

{contents

39

Les références

On peut méme créer des références de références :

let a = ref (ref 42);;
val a : int ref ref = {contents = {contents = 42}}

la;;
- : int ref = {contents = 42}

a := ref 22

- :unit = ()

! la;; (x OCaml ne comprendrait pas !!a %)
- : int = 42

la := 37;;

- :unit = ()

40

Pour calculer une factorielle dans un style impératif :

let fact n =
let accum = ref 1 in
for i = 2 to n do
accum := laccum * i
done;
laccum;;

val fact : int -> int = <fun>

41

Pour calculer un pgcd dans un style impératif :

let pgcd u v =
let a = ref uand b = ref v in
while !b <> 0 do

let tmp = !a in (* %)

a := !b; (x a, b <-b, amod b %)

b := tmp mod !b (* *)
done;
la;;

val pged : int -> int -> int = <fun>

42

Incrémentation, décrémentation

incr et decr sont des fonctions de signature int ref -> unit
incr i est équivalenta i := !'i + 1

decr i est équivalent a i i -1

let i = ref 17;;
val i : int ref = {contents = 17}

incr i;;
- :unit = O

#1i;;

int ref = {contents = 18}

43

Pour compter les zéros dans une liste d'entiers :

let compte_zeros lst =
let nombre = ref 0 and reste = ref lst in
while !reste <> [] do
if List.hd !reste = @ then incr nombre;
reste := List.tl !reste
done;
'nombre; ;

val compte_zeros : int list -> int = <fun>

a4

Egalité, identité

Considérons :

let a
let c

ref 2.2 and b = ref 2.2;; |

—
—

URVAV

45

Egalité, identité

Considérons :

let a
let c

ref 2.2 and b = ref 2.2;;
95 5

Les opérateurs = et <> testent /'égalité des contenus

#a=b;;

- : bool = true (x car 'a = !b %)
#a <> b;;

- : bool = false

46

Egalité, identité

Considérons :

ref 2.2 and b = ref 2.2;;
955

let a
let c

Les opérateurs == et != testent /'identité des références

a == b;;
- : bool = false (* références distinctes ! %)

b ==c;;
- : bool = true (* deux noms, méme référence *)

47

Egalité, identité

Si I'on veut &étre précis, I'image de la boite a des limites

Un méme objet peut étre simultanément dans plusieurs boites

Dans I'exemple suivant :

let a ref 2.2 and b = ref 2.2
let ¢ = ref !b

On a trois boites distinctes

Mais celles désignées par b et ¢ contiennent le méme 2.2

48

Egalité, identité

Dans I'exemple suivant :

let a =ref 2.2 and b = ref 2.2
let ¢ = ref !b

‘Q” -
‘Q” —

URVAY

49

Structures mutables

Les références sont des objets mutables

Il existe d'autre objets mutables en OCaml

lls visent a simplifier la programmation impérative

50

Un cas concret

On souhaite réaliser un annuaire

Bl

Un cas concret

On souhaite réaliser un annuaire

nom numéro

Dupont 1234
Durand 2211
Martin 6789

Bl

Un cas concret

On souhaite réaliser un annuaire

nom numéro

Dupont 1234
Durand 2211
Martin 6789

type coord = { name: string ; number: string }

Bl

Solution fonctionnelle

On peut représenter I'annuaire comme un coord list :

let phonebook = [
{ name = "Dupont” ; number = "0123456789" } ;
{ name = "Durand” ; number = "0246813579" } ;
"0918273645" }

{ name = "Martin” ; number

Nous étudierons plus tard une représentation plus efficace

52

Solution fonctionnelle

Pour modifier un numéro :

let rec update name new_number = function
| h::t when h.name = name
-> { name = name ; number = new_number }
update name new_number t
| h::t -> h :: update name new_number t

| 01 -> [1;;

val update : string -> string -> coord list
-> coord list = <fun>

53

Solution fonctionnelle

On construit un nouvel annuaire

let new_phonebook =
update "Durand” "0000012345" phonebook; ;

val new phonebook : coord list =

"0123456789"};
{name = "Durand”; number "0000012345"};
{name = "Martin”; number = "0918273645"}]

[{name = "Dupont”; number

54

Limites

Probléme : certains noms peuvent désigner I'ancien annuaire

lls sont associés a des données qui ne sont plus a jour!

On peut vouloir modifier I'annuaire existant

55

Une solution a base de références

On peut utiliser des références :

type coord = { name: string ; number: string ref }

let phonebook = [
{ name = "Dupont” ; number = ref "0123456789" } ;
{ name = "Durand” ; number = ref "0246813579" } ;
ref "0918273645" }

{ name = "Martin” ; number

56

Une solution a base de références

La modification de I'annuaire devient :

let rec update name new_number = function
| h::t when h.name = name
-> h.number := new_number;
update name new_number t
| h::t -> update name new_number t

| [1->0;;

val update : string -> string -> coord list

-> unit = <fun>

57

Une solution a base de références

On remarque que le résultat est cette fois un unit :

modifie "Durand” "0000056789" annuaire;;
:unit = O

annuaire;;

: coord list =

[{nom = "Dupont”; numéro = {contents = "0123456789"}};
"0000056789"}};
"0918273645"}}]

{nom = "Durand”; numéro = {contents

{nom = "Martin”; numéro = {contents

58

Une solution a base de références

Dans un style plus impératif :

let update name new_number phonebook =
let rest = ref phonebook in
while !rest <> [] do
let coord = List.hd !rest in
if coord.name = name
then coord.number := new_number;
rest := List.tl !rest
done;;

val update : string -> string -> coord list
-> unit = <fun>

59

Une solution a base de références

On remarque que le résultat est cette fois un unit :

val modifie : string -> string -> coord list
-> unit = <fun>

modifie "Durand” "4237" annuaire;;
:unit = O

annuaire;;

- : coord list =

[{nom = "Dupont”; numero = {contents = "1234"}};
{nom = "Durand”; numero = {contents = "4237"}};
{nom = "Martin”; numero = {contents = "6789"}}]

60

Une solution a base de références

Avec cette approche, on substitue aux chaines des références

Il faut donc ajouter des ! partout ou le numéro est utilisé

61

Une solution a base de références

Avec cette approche, on substitue aux chaines des références

Il faut donc ajouter des ! partout ou le numéro est utilisé

C’est potentiellement assez lourd

61

Une solution a base de références

Avec cette approche, on substitue aux chaines des références

Il faut donc ajouter des ! partout ou le numéro est utilisé

C’est potentiellement assez lourd

C'est du travail si on ajoute la fonctionnalité tardivement

61

Une autre solution

Il existe une autre solution, déclarer le champ mutable :

type coord = { name: string ; mutable number: string }

let phonebook = [

{ name = "Dupont” ; number = "0123456789" } ;
{ name = "Durand” ; number = "0246813579" } ;
{ name = "Martin” ; number = "0918273645" }

15

La définition de I'annuaire est inchangée !

62

Une autre solution

L'utilisation est la méme qu’auparavant :

let ¢ = List.hd phonebook;;
c : coord = {name = "Dupont”; number = "0123456789"}

c.number;;
- : string = "0123456789"

63

Une autre solution

On peut muter le champ number avec <-

(List.hd phonebook).number <- "9876543210";;
:unit = ()

E=3

List.hd phonebook; ;
: coord = {name = "Dupont”; number = "9876543210"}

64

Une autre solution

C'est le méme objet, qui a muté!

La modification apparait notamment dans phonebook :

List.hd annuaire;;

- : coord list =

[{nom = "Dupont”; numero = "9876543210"}%;
{nom = "Durand”; numero = "0246813579"};
{nom = "Martin"”; numero = "0918273645"}]

65

Une autre solution

Pour modifier notre annuaire, on écrit donc :

let rec update name new_number = function
| h::t when h.name = name
-> t.number <- new_number;
update name new_number t
| h::t -> update name new_number t

[[1 > QO;3;

val update : string -> string -> coord list
-> unit = <fun>

66

Une remarque pour clore

Pourquoi avoir a la fois := et <=7

Dans le cas

type foo = { mutable elem = int ref };;

Si x est de type foo, x.elem <- ... et x.elem := ... existent!

67

Retour sur les références

Pour I'ceil averti, quand on définit une référence :

let mango = ref 42;;
val mango : int ref = {contents = 42}

Cela ressemble a un enregistrement

Ce n’est pas un hasard!

68

Retour sur les références

Les références ne sont que du sucre syntaxique !

type 'a ref = { mutable contents: 'a };;

let ref x = { contents = x };;
val ref : 'a -> 'a ref = <fun>

let (!) = function { contents=x } -> x;;
val (!) : 'a ref -> 'a = <fun>

let (:=) r v = r.contents <- v;;
val (:=) : 'aref -> 'a -> unit = <fun>

69

Les tableaux

Il est malcommode de travailler avec des 'a list en impératif

On préfere travailler avec des 'a array

Il s’agit de « tableaux »

70

Les tableaux

Les tableaux
e sont des objets mutables
e contiennent des éléments de méme type
e permettent I'acces direct a un élément (en O(1))

e ont une taille fixe

71

Les tableaux

Pour créer explicitement un tableau, on utilise [| ... |]:

val arr : int array = [|11; 22; 37; 42; 54|]

let arr = [| 11; 22; 37; 42; 54 |1;; |

Array.length permet d'obtenir la longueur :

- :int =5

Array.length arr;; |

72

Les tableaux

On accéde a un élément donné de la fagon suivante :

arr.(3);;
- : int = 42

On le fait muter avec <- :

arr.(3) <- 17;;
- :unit = O

arr;;
- : int array = [|11; 22; 37; 17; 54]]

73

Les tableaux

On peut également créer un tableau avec
e sa taille

e |'élément a mettre dans toutes les cases

Cela est réalisé avec la commande Array.make :

Array.make 5 0.0;;
- : float array = [|0.; 0.; 0.; 0.; 0.]]

Comme avec « [elem] * n» en Python,

on a le méme élément dans toutes les cases !

74

Les tableaux a deux dimensions

Pour créer un tableau a deux dimensions, on crée un
'a array array :

let matr = [| [| 11; 22; 37 |1;
C] 17; 42; 54 |1 |1;;

val matr : int array array = [|[|11; 22; 37|1;
C117; 42; 54]11|]

On accede a un élément de la sorte :

matr.(0).(2);;
- :int = 37

75

Les tableaux a deux dimensions

Attention, on ne peut créer un tableau 2 x 3 de la sorte :

let matr = Array.make 2 (Array.make 3 0.0)
val matr : float array array = [|[]|0.; 0.; 0.]|1;
[lo.; 0.; @.]1]]

En effet, on a deux fois la méme ligne!

matr.(0) == matr.(1);; (x Test d'identité ! %)
- : bool = true

76

Les tableaux a deux dimensions

Les problemes sont évidents :

matr.(0).(1) <= 42.0;;
- :unit = O
matr;;

- : float array array = [|[]|0.; 42.; 0.]|];
[]o.; 42.; o.|]|1]

7

Les tableaux a deux dimensions

Une solution peut étre :

let matr = Array.make 2 [| |1;;

val matr : '_a array array = [|[||]1; C|1]l]

for i=0 to 1 do matr.(i) <- Array.make 3 0.0 done;;
:unit = O

matr;;
- : float array array = [|[]|0.; 0.; 0.]|1;
Clo.; @.; 0.111]

++

matr.(0) == matr.(1);;
: bool = false

78

Les tableaux a deux dimensions

On dispose de solutions plus simple :

let matr = Array.make_matrix 2 3 0.0;;
val matr : float array array = [|[[]0.; 0.; 0.|];
[lo.; @.; @.]1]]

let matr = Array.init 2 (fun i -> Array.make 3 0.0);
val matr : float array array = [|[]0.; 0.; 0.]|1;
[l19.; @.; 0.]1]]

79

Les tableaux a deux dimensions

Il existe de nombreuses autres fonctions sur les array

e Array.copy,

e Array.sub,

e Array.iter

e Array.map,

e Array.mem,

e Array.to_list

e Array.of_list

e Array.sort...

80

