Représentation des données numeériques

G. Dewaele

Raison du binaire

Il est aisé de mémoriser/de transmettre des 0 et des 1 :

trous/absence de trous dans des cartes perforées
tension/absence de tension sur une ligne électrique
interrupteur (relais) ouvert/fermé

lumiere /obscurité (cables optiques, télécommandes IR)

orientation de moments magnétiques (bandes magnétiques,
disquettes, disques durs mécaniques)

mini-condensateurs (mémoire moderne)
pieges a électrons (mémoire flash)

cavités dans une couche métallique (CD, DVD)...

Avoir plus de deux états augmente les risques de confusion.

Conséquences

Il faut représenter les objets a manipuler par des suites de O et 1 :
e valeurs numériques,
e caracteres et chaines de caracteres,
e images,
e vidéos,
e sons,

® programmes...

—_
(=)
i
Q
(7]
[1°)
Q2
N
2
1]
£
(S
‘O
©
c
2
)
]
-
(=
[)
(7]
‘0
-
Q.
Q
-
«
-

—_
(=)
i
Q
(7]
[1°)
Q2
N
2
1]
£
(S
‘O
©
c
2
)
]
-
(=
[)
(7]
‘0
-
Q.
Q
-
«
-

—
(=)
i
Q
(7]
[1°)
Q2
N
2
1]
£
Q
‘O
©
c
S
)
]
)
c
[)
(7]
‘0
=
Q.
Q
-
(4]
-

1x10%2 +2%x10 + 3 — 123

—_
N
[)
(7]
(4]
o
N
Q
=
®
S
S
c
.2
£
]
=
=
[)
(7]
‘0
S
=%
Q
£
(y°]
-

—_
(9]
[}
[72]
(4]
2
N
()
=
(1}
£
S
=
2
£
[}
=
=
[}
(7]
‘O
S
a
()
£
(y°]
-

e
[
|

La représentation binaire (base 2)

La représentation binaire (base 2)

—_
N
[)
(7]
(v}
o

N
Q
=
®
S
S
c
.2
£
]
=
(=
[)
(7]
‘0
S

=%
Q
£
«
-

—_
(9]
[}
[72]
(4]
2
N
()
=
(1}
£
<o)
=
S
£
[}
=
=
[}
(7]
‘O
S
Q.
()
£
(y°]
-

x28 + 1x22 +0x22 +1x2+4+1— 1111011

x 25 +

1x26 +

Représentation en base b

Les nombres s'écrivent avec b chiffres différents :
e 0 et 1 en base 2 (binaire)
e 0, 1,2 ..., 6, 7 en base 8 (octale)
e 0, 1,2 ..., 8 9 en base 10 (décimale)
©0,1,2 ...8 9 A, B, .., Fen base 16 (hexadécimale)

Un nombre N =Y a;b’ s'écrit en concaténant les chiffres a; :
Cas [ar [s [as | an [s [z | or] ao]

Il faut |log, (N) + 1] chiffres.

Conversion en base b

Décomposition :

N
a; = {EJ %b
Reconstruction :)
N= Z aibi
i=0

On peut trouver des méthodes plus efficaces.

Algorithme de décomposition en base b

123

Algorithme de décomposition en base b
123 #

Algorithme de décomposition en base b
123 # 1
1 fel

Algorithme de décomposition en base b
123 # 1
1 |61 %

Algorithme de décomposition en base b
123 # 11
1 |61 %
1 130

Algorithme de décomposition en base b
123 F 011

Algorithme de décomposition en base b
123 F 1011

Algorithme de décomposition en base b
F 11011
i
B

Algorithme de décomposition en base b

123 F 111011
F F

1 E

7

1

= W(IN

%

Algorithme de décomposition en base b
123 F 1111011

2

15%
1 |7

1

= WIN
= =N

Algorithme de décomposition en base b
123 F 1111011

2

15%
1 |7

1

= WIN
= =N

int i = 0;

while (N>0) {
ali]l = N % b;
i++;
N=N/b;

Recomposition par la méthode de Horner

P .
N=) aib'=(ap+ b x (a1 + b x (... x (ap—2 + b x (ap-1 + b x ap))...)))
i=0

Recomposition par la méthode de Horner

p
2: aib' = (ao + b x (a1 + b x (... x (ap—z + b x (ap-1 + b x ap))...)))

int N = 0;

for (int i=p; i>=0; --i) {
=b * N+ ali]

}

Représentation hexadécimale (base 16)

La notation binaire n'est pas toujours commode.

149219) — 1011101 0100

La conversion du binaire au décimal n'est pas immédiate.

Pour représenter des valeurs binaires, on utilise donc souvent la base
hexadécimale (base 16).

149210) =5 x 16°+13x16+4 — 5D416)

Conversion binaire / hexadécimal

Le passage entre les deux bases est simple car 16 =24,

1011101 01002y — 5D4(1)

On groupe les chiffres par 4, en partant de la droite :
1101y — 1310y — Dae)

1012y — 5a0 — Sae

La conversion en sens inverse est tout aussi simple...

10

Affichages avec C

Pour afficher un int en base 10 :

printf("%d”, n); ’

En base 16 :

printf("%x", n); ’

11

Affichages avec C

En binaire, pas de solution immédiate :

void printb(int n) {
if (n==0) { printf("0"); }
else if (n==1) { printf("1"); }
else if (n<@) { printf(”"-"); printb(-n); }
else { printb(n/2); printb(n%2); }

12

Affichages avec OCaml

On dispose de la fonction Printf.printf

Printf.printf;;
- : ('a, out_channel, unit) format -> 'a = <fun>

Printf.printf "En hexadécimal : %x\n" 54321;;
En hexadécimal : d431
- :unit = O

13

La mémoire d'un ordinateur

La mémoire ne stocke pas les bits isolément mais des bytes

En général, les bytes sont des octets (groupes de 8 bits)

adresse mémoire
4974E |1 /0 0 |1|1/0|0|1
4974F (0|0 01|10 |11
49750 |1 /1 |1|1/1/0 /0|0
49751 |01 /1|0/0|1 /0 1
49752 |1 /0/0|(0/0 |11 1
49753 |1 /1/0|1/0|0 1/|0
49754 |0 01|01 |0 1/0

14

Entiers naturels sur 8, 16, 32 et 64 bits

7 .
Un octet peut contenir un entier entre 0 et Y 2 =2%-1=255.
i=0

C'est fréquemment insuffisant, donc on utilise plusieurs octets :
e 16 bits — entre 0 et 216 —1=65535;
e 32 bits — entre 0 et 232 —1=4,3x10%;

e 64 bits — entre 0 et 264 —1~1,8x1019...

Note : OCaml réserve un bit pour son propre usage

15

Boutisme (endianness)

L'ordre des octets en mémoire est délicat.
Par exemple, 51130560(10) = 030C30C0(16)

Soit en binaire 00000011 00001100 00110000 110000002

16

Petit boutiste (« little-endian »)

Par exemple, 51130560(10) = 030C30C0(16)

Soit en binaire 00000011 00001100 00110000 110000002

4974E |11 /0|00 0]|0 O
4974F |00 1]1/0/0/0 0
49750 [0 0|00 |1 /1|00
49751 |0/0|0 |0 0|0 |11

Exemples : Intel x86, x86/64

17

Grand boutiste (« big-endian »)

Par exemple, 51130560(10) = 030C30C0(16)

Soit en binaire 00000011 00001100 00110000 11000000 2)

4974E |00 |0|0|0O 0|11
4974F |00 0|0 |1]1/00
49750 [0 0|1/1/0/0|0|0
49751 |1 1/{0/0/0/0|0|0

Exemples : Motorola 68000

18

Pour le processeur

Chaque solution a ses (légers) avantages :
e petit-boutisme : conversions/arithmétique plus faciles

e gros-boutisme : comparaisons plus faciles

Certaines architectures sont bi-boutistes

19

Au-dela de la mémoire

Ce probleme se retrouve également :
e dans les fichiers « binaires »
e dans les communications

IP — Network Byte Order (gros boutiste)

Pour gérer le probleme, on dispose :
e de l'instruction « bswap » en assembleur x86
e de fonctions « htonl » et « ntohl »

20

Et les entiers négatifs ?

Représentation des entiers naturels sur 4 bits :

loJ1]2[3]4]5]6]7[8]9]10]11]12]13]14]15]

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

21

Et les entiers négatifs ?

Représentation des entiers naturels sur 4 bits :

loJ1]2[3]4]5]6]7[8]9]10]11]12]13]14]15]

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

On réutilise les 2P~! codes commencant par 1
Le bit de poids fort indiquera le signe (a,-1 =1 : négatif)

Plusieurs solutions possibles !

21

Entiers relatifs en signe + magnitude

Entiers relatifs sur 4 bits, signe + magnitude :

[olt]2[3[4]5]6[7[-0]-1]-2[-3]-4]5]-6]7]

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Hormis le bit de signe, méme représentation que les positifs

@ valeur absolue et négation simples
© deux zéros !

© opérations arithmétiques complexes

22

Entiers relatifs en complément a 1

Entiers relatifs sur 4 bits, complément a 1 :

[olt]2[3[4]5]6[7[-7]6]-5[-4]-3]2]-1]-0]

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

n <0 est représenté par le complément de —n

@ valeur absolue et négation simples
@® opérations arithmétiques moins problématiques

© toujours deux zéros

23

Entiers relatifs en complément a 2

Entiers relatifs sur 4 bits, complément a 2 :

(ol1]2[3[4]5]6[7[-8]7]-6[-5]-4]3]-2][1]

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

n <0 est représenté par le complément de —n—1

@ opérations arithmétiques similaires aux naturels
@ une seule représentation pour zéro

o valeur absolue et négation un peu plus complexes

24

Entiers relatifs sur 8, 16, 32 et 64 bits

On peut ainsi coder sur p bits les entiers de —2P~1 3 2P~1 —1.

8 bits — entre -128 et +127;

e 16 bits — entre —215=-32768 et 21> —1=32767;

32 bits — entre =231 ~—-21x10% et 231 —1~2,1 x 10°

64 bits — entre =253~ -9 2x 1018 et 263-1~9,2x10!8. ..

Le bit de poids fort (a,-1) indique le signe (0 = positif, 1 = négatif).

25

Interprétations

Tout se passe comme si la seconde moitié des représentations :

[olt]2[3[4]s5]6[7[-8]7]-6[-5]-4]3]-2][1]

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

se trouvait en fait de I'autre coté :
-8]-7[-6]-5]-4]-3[-2]-1[0[1[2]3[4]5[6]7]

1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111

Tout se passe comme si le bit ap-1 « valait » —2P~1 et non 2P71.

p-2 X
N=)Y ai2"+ap_(-2P71)
i=0

26

Codage et décodage en complément a 2

Pour encoder sur p bits un entier —2r-l<n<o, possibilités :

e coder n+2P comme un entier positif sur p bits
e coder |[n—1]| sur p bits puis inverser tous les bits

e coder |n| sur p bits, inverser tous les bits et ajouter 1

Et inversement pour le décodage si a,1=1!

27

Exemple de codage en complément a deux

Exemple du codage de —27 sur p =8 bits :
27 = 16+8+2+1 — 00011011

—27 — 11100100z +1 = 11100101

L'octet 111001012 peut représenter également I'entier 229!

Le programme doit savoir comment interpréter les données...

28

Exemples d’additions d’entiers positifs

Pour calculer 17 + 42 :

00010001
+ 00101010

Pour calculer 17 + 105 :

00010001
+ 01101001

29

Exemples d’additions d’entiers positifs

Pour calculer 17 + 42 :

00010001
+ 00101010

= 00111011

Pour calculer 17 + 105 :

00010001
+ 01101001

29

Exemples d’additions d’entiers positifs

Pour calculer 17 + 42 :

00010001
+ 00101010

= 00111011 — 59

Pour calculer 17 + 105 :

00010001
+ 01101001

29

Exemples d’additions d’entiers positifs

Pour calculer 17 + 42 :

00010001
+ 00101010

= 00111011 — 59

Pour calculer 17 + 105 :

00010001
+ 01101001

= 01111010

29

Exemples d’additions d’entiers positifs

Pour calculer 17 + 42 :

00010001
+ 00101010

= 00111011 — 59

Pour calculer 17 + 105 :

00010001
+ 01101001

= 01111010 — 122

29

Exemples d’additions de signes différents (résultat négatif)

Pour calculer 17 + (-37) :

00010001
+ 11011011

Pour calculer 42 + (-94) :

00101010
+ 10100010

30

Exemples d’additions de signes différents (résultat négatif)

Pour calculer 17 + (-37) :

00010001
+ 11011011

= 11101100

Pour calculer 42 + (-94) :

00101010
+ 10100010

30

Exemples d’additions de signes différents (résultat négatif)

Pour calculer 17 + (-37) :

00010001
+ 11011011

= 11101100 — -20

Pour calculer 42 + (-94) :

00101010
+ 10100010

30

Exemples d’additions de signes différents (résultat négatif)

Pour calculer 17 + (-37) :

00010001
+ 11011011

= 11101100 — -20

Pour calculer 42 + (-94) :

00101010
+ 10100010

= 11001100

30

Exemples d’additions de signes différents (résultat négatif)

Pour calculer 17 + (-37) :

+

Pour calculer 42 + (-94) :

00010001

11011011

11101100 — -20

00101010
10100010

11001100 — -52

30

Exemples d’additions de signes différents (résultat positif)

Pour calculer 17 + (-5) :

00010001
+ 11111011

Pour calculer 105 + (-37) :

01101001
+ 11011011

31

Exemples d’additions de signes différents (résultat positif)

Pour calculer 17 + (-5) :

00010001
+ 11111011

= 100001100

Pour calculer 105 + (-37) :

01101001
+ 11011011

31

Exemples d’additions de signes différents (résultat positif)

Pour calculer 17 + (-5) :

00010001
+ 11111011

= 100001100 — 12

Pour calculer 105 + (-37) :

01101001
+ 11011011

31

Exemples d’additions de signes différents (résultat positif)

Pour calculer 17 + (-5) :

00010001
+ 11111011

= 100001100 — 12

Pour calculer 105 + (-37) :

01101001
+ 11011011

= 101000100

31

Exemples d’additions de signes différents (résultat positif)

Pour calculer 17 + (-5) :

00010001
+ 11111011

= 100001100 — 12

Pour calculer 105 + (-37) :

01101001
+ 11011011

= 101000100 — 68

31

Exemples d’additions de signes différents (résultat positif)

Pour calculer 17 + (-5) :

00010001
+ 11111011

= 100001100 — 12

Pour calculer 105 + (-37) :

01101001
+ 11011011

= 101000100 — 68

Les résultats sont corrects si I'on ignore le 1 supplémentaire !

31

Exemples d’additions d’entiers négatifs

Pour calculer (-37) + (-5) :

11011011
+ 11111011

Pour calculer (-17) + (-94) :

11101111
+ 10100010

32

Exemples d’additions d’entiers négatifs

Pour calculer (-37) + (-5) :

11011011
+ 11111011

= 111010110

Pour calculer (-17) + (-94) :

11101111
+ 10100010

32

Exemples d’additions d’entiers négatifs

Pour calculer (-37) + (-5) :

11011011
+ 11111011

= 111010110 — -42

Pour calculer (-17) + (-94) :

11101111
+ 10100010

32

Exemples d’additions d’entiers négatifs

Pour calculer (-37) + (-5) :

11011011
+ 11111011

= 111010110 — -42

Pour calculer (-17) + (-94) :

11101111
+ 10100010

= 110010001

32

Exemples d’additions d’entiers négatifs

Pour calculer (-37) + (-5) :

11011011
+ 11111011

= 111010110 — -42

Pour calculer (-17) + (-94) :

11101111
+ 10100010

= 110010001 — -111

32

Exemples d’additions d’entiers négatifs

Pour calculer (-37) + (-5) :

11011011
+ 11111011

= 111010110 — -42

Pour calculer (-17) + (-94) :

11101111
+ 10100010

= 110010001 — -111

Les résultats sont corrects si I'on ignore le 1 supplémentaire !

32

Exemples d’additions d’entiers (résultat non représentable)

Pour calculer 42 + 105 :

00101010
+ 01101001

Pour calculer (-37) + (-94) :

11011011
+ 10100010

833

Exemples d’additions d’entiers (résultat non représentable)

Pour calculer 42 + 105 :

00101010
+ 01101001

= 10010011

Pour calculer (-37) + (-94) :

11011011
+ 10100010

833

Exemples d’additions d’entiers (résultat non représentable)

Pour calculer 42 + 105 :

00101010
+ 01101001

= 10010011 — -109

Pour calculer (-37) + (-94) :

11011011
+ 10100010

833

Exemples d’additions d’entiers (résultat non représentable)

Pour calculer 42 + 105 :

00101010
+ 01101001

= 10010011 — -109

Pour calculer (-37) + (-94) :

11011011
+ 10100010

= 101111101

833

Exemples d’additions d’entiers (résultat non représentable)

Pour calculer 42 + 105 :

Pour calculer (-37) + (-94) :

00101010
01101001

10010011 — -109

11011011

10100010

01111101 — 125

833

Exemples d’additions d’entiers (résultat non représentable)

Pour calculer 42 + 105 :

00101010
+ 01101001

= 10010011 — -109

Pour calculer (-37) + (-94) :

11011011
+ 10100010

= 101111101 — 125

Les résultats sont incorrects (dont mauvais signe)

833

Débordements

Il'y a débordement lorsque le résultat d'un calcul n'est pas
représentable

Méme une division entiére peut déborder :

34

Débordements

Il'y a débordement lorsque le résultat d'un calcul n'est pas
représentable

Méme une division entiére peut déborder :

INT_MIN/ -1 si en complément a 2 sans trap

34

Processeur et débordements

En I'absence de débordement,
on peut utiliser les mémes circuits pour
e les additions d’entiers naturels

e les additions d’enters relatifs en complément a 2

B35

Additions binaires et électronique

ay dp

+ bl b()

= Iz n n

36

Additions binaires et électronique

ay dop
P bl bo

= I n n
0+0=0
0+1=1

1+0=1
1+1=10

36

Additions binaires et électronique

ay dop
apg ———
+ b1 b =1 +—— To
1 bo bo
= T2 n no
0+0=0
0+1=1
1+0=1

1+1=10

36

Additions binaires et électronique

C1
a ao
ag ——
+ b1 by by — | =1 — To
= I n n
0+0=0
0+1=1
1+0=1
1+1=10

36

Additions binaires et électronique

C1
ay dao
ap
+ b1 by by =1 — To
= I n n
0+0=0
0+1=1
1+0=1 g —— o
1+1=10 T

36

Additions binaires et électronique

C2 a

ay dp

ay
+ b1 b() b = 1l
1

= T2 n no

0+0=0
0+1=1
1+0=1 2l — @
1+1=10
1+1+1=11

36

Processeur et débordements

S'il y a débordement, cela dépend du processeur :
e arithmétique modulaire (on ignore les bits supplémentaires)
Sommer de deux entiers positifs peut donner un négatif
Sommer de deux entiers négatifs peut donner un positif

e arithmétique a saturation...

37

Dans le processeur

Le processeur peut détecter ces débordements

Une méme instruction peut servir a additionner
e deux entiers naturels
e deux entiers relatifs

Le débordement dépend de l'interprétation des données!

38

Du co6té des langages

OCaml n'utilise qu'un type d'entiers (relatifs en complément a 2)

I ignore les débordements (arithmétique modulaire)

Le langage C possede des dizaines de types entiers

Pour gérer les architectures qui n'utilisent pas le complément a 2 ou
I'arithmétique modulaire, les débordements sont UB pour les int !

Python 3 utilise des entiers de taille arbitraire

Il ajoute des bits lorsque c'est nécessaire

39

Conséquences d’un débordement

La plupart des langages ne font rien de particulier!

Les conséquences peuvent étre graves...

Premier vol d’Ariane 5 en 1996 : autodestruction.

40

Le cas d’Ariane 5

Un capteur mesure I'inclinaison (en fait, la vitesse horizontale)
La valeur est stockée comme un entier relatif sur 22 bits.

Apres quelques secondes, la fusée s'incline un peu vers la gauche,

mais la valeur déborde...

41

Le cas d’Ariane 5

Un capteur mesure I'inclinaison (en fait, la vitesse horizontale)
La valeur est stockée comme un entier relatif sur 22 bits.

Apres quelques secondes, la fusée s'incline un peu vers la gauche,
mais la valeur déborde...

... C'est interprété comme une inclinaison a droite.

La correction de trajectoire amplifie le probleme, jusqu'a ce que
I'inclinaison, ingérable, nécessite une autodestruction du lanceur.

41

L’arbre qui cache la forét

L'exemple d'Ariane 5 laisse penser que c'est exceptionnel

Il n’en est rien!

C'est un probleme incroyablement répandu

Cela touche /a plupart des programmes !

42

Plus récent, MS Exchange

Format YYMMDDHHMM pour stocker des dates dans un entier
22 novembre 2017, 10h23 — 1711221023

43

Plus récent, MS Exchange

Format YYMMDDHHMM pour stocker des dates dans un entier
22 novembre 2017, 10h23 — 1711221023

Dans un entier signé 32 bits...

43

Plus récent, MS Exchange

Format YYMMDDHHMM pour stocker des dates dans un entier
22 novembre 2017, 10h23 — 1711221023

Dans un entier signé 32 bits...

... tout est cassé le 1°" janvier 2022 a minuit!

43

Le bug de I'an 2000

De I'intérét de réfléchir aux solutions choisies :

a4

La délicate question des dates

Temps selon POSIX : secondes depuis 1° janvier 1970
entier 32 bits signé : 19 janvier 2038 a 3h14 et 8 secondes

La gestion des dates, heures et durées est tres complexe

45

Petit tour d’horizon de la jungle des entiers en C

Important : trées peu de ce qui suit est exigible en concours!

46

Les entiers en C

Le module stdint.h fournit des types entiers de taille fixée

On peut typiquement trouver les types signés suivants :

int8_t int16_t int32_t int64_t

On peut également trouver les types non-signés suivants :

uint8_t uintl16_t uint32_t wuint64_t

47

Les entiers en C

Il peut également fournir des types assurant une taille minimale

Les plus rapides possibles :

int_fast8_t uint_fast8_t

Les plus petits (en taille mémoire) possibles :

int_least8_t uint_least8_t

48

Les entiers en C

Spécifier la taille ne permet pas au compilateur de choisir le type le
plus efficace pour |'architecture considérée

Il existe des types génériques

49

Le type char

Le type char désigne un entier de taille 1 byte

byte = plus petit entier adressable (sizeof(char)=1)

Souvent un octet, mais peut étre davantage

Le type char peut étre signé ou non

50

Le type char

On dispose aussi de deux types de méme taille que char
I'un signé, signed char, contient au moins [0..255]

I'autre non signé, unsigned char, contient au moins [-127..127]

L'implémentation associe librement char a I'un ou I'autre

Bl

Les types signés

On dispose ensuite des types signés suivants :
e short, qui contient au moins [-32767..32767]
e int, qui contient au moins [-32767 ..32767]
e long, qui contient au moins [-231+1..231 —1]

e long long, qui contient au moins [-2% +1..2%3 —1]

Chaque représentation contient au moins la précédente

int est a priori la représentation la plus rapide

52

Les types signés

Il est possible de préciser « signed » avant et « int » apres

Cela correspond au méme type

Par exemple, « signed short », « short int » et
« signed short int » sont des alias de short

53

Les types signés

Pour les signés :

e la représentation binaire est non spécifiée (certains codes
peuvent étre illégaux, « traps »)

e les débordements sont UB

On veut pouvoir utiliser les opérations du processeur !

54

Les types non signés

On dispose de méme des types non signés suivants :
e unsigned short, qui contient au moins [0..65535]
e unsigned int, qui contient au moins [0..65535]
e unsigned long, qui contient au moins [0..2% —1]

e unsigned long long, qui contient au moins [0..25% —1]

Chaque représentation contient au moins la précédente

On peut également ajouter « int » derriere

55

Les types non signés

Pour les non signés sur p bits :
e entiers entre 0 et 27 —1

e arithmétique modulo 2P

Principal but : pouvoir utiliser la représentation binaire

56

Opérations sur les types non signés

On dispose d'opérateurs unaires :
~ effectue un complément a 1 (n— 2P —1-n)

- effectue un complément a 2 (n— 2P —n)

D'opérateurs binaires logiques :
& effectue un « et » binaire bit a bit
| effectue un « ou » binaire bit a bit

A effectue un « ou exclusif » binaire bit a bit

57

Opérations sur les types non signés

On dispose aussi d'opérateurs binaires arithmétiques :
a<<b donne a x 2? (mod 27)

a>>b donne {Z%J

Revient a décaler de b rangs vers la gauche (resp. la droite) la
représentation binaire de a (en complétant avec des zéros)

Remarque : a<<b est UB si b< 0 ou b=p

58

Et sur les signés?

A fuir!

a<<b et a>>b sont UB si b est négatif ou b= p

a<<b est UB si a est négatif ou a<<b déborde

a>>b est laissé au choix de I'implémentation si a négatif

a&b, a|b et a*b opeérent a priori sur les bits...
. mais comme la représentation n’est pas imposée

e le résultat est incertain
e UB si débordement (écritures binaires illégales)

e le cas de —0 n'est pas limpide
59

Pour les calculs en C

Considérons a présent un calcul tel que :

c=a+b;

60

Pour les calculs en C

Considérons a présent un calcul tel que :

c=a+b;

a et b doivent étre mis dans un format commun

60

Pour les calculs en C

Considérons a présent un calcul tel que :

c=a+b;

a et b doivent étre mis dans un format commun

Le résultat sera converti dans le type de ¢

60

Pour les calculs en C

Considérons a présent un calcul tel que :

c=a+b;

a et b doivent étre mis dans un format commun
e a et b subissent possiblement une promotion

e puis une conversion dans un format commun

Le résultat sera converti dans le type de ¢

60

On définit des « rangs » pour les types numériques
_Bool
< char / unsigned char / signed char
< unsigned short / short
< unsigned int / int
< unsigned long / long

< unsigned long long / long long

61

Regles de promotion

Les arguments de rang strictement inférieur a int
(soit _Bool, char, short, signés ou non) sont promus
e en int si c'est possible sans perte

e en unsigned int sinon

Les valeurs ne peuvent pas changer lors de la promotion

62

Regles de choix de la représentation commune

Aprés promotion

e méme type — pas de conversion nécessaire

e deux signés — type de rang le plus élevé

e deux non-signés — type de rang le plus élevé

e non-signé de rang supérieur ou égal au rang du signé
— conversion vers le type non-signé

e le type signé inclue le type non-signé
— conversion vers le type signé

e sinon conversion des deux arguments vers le type non-signé
« correspondant » au type de I'argument signé

63

opérande 1

opérande 2 convertis en

int
unsigned int

short
unsigned short

char
signed char
unsigned int
unsigned long
unsigned short
unsigned int

int
unsigned int

short
unsigned short

char
signed char

int

int

int

long

64

opérande 1

opérande 2 convertis en

int
unsigned int

short
unsigned short

char
signed char
unsigned int
unsigned long
unsigned short
unsigned int

int int
unsigned int
short
unsigned short
char
signed char
int
int
int
long

64

opérande 1

opérande 2 convertis en

int
unsigned int

short
unsigned short

char
signed char
unsigned int
unsigned long
unsigned short
unsigned int

int int

unsigned int unsigned int
short
unsigned short
char
signed char
int
int
int
long

64

opérande 1

opérande 2 convertis en

int
unsigned int

short
unsigned short

char
signed char
unsigned int
unsigned long
unsigned short
unsigned int

int int

unsigned int unsigned int
short int
unsigned short

char

signed char

int

int

int

long

64

opérande 1

opérande 2

convertis en

int
unsigned int

short
unsigned short

char
signed char
unsigned int
unsigned long
unsigned short
unsigned int

int
unsigned int

short
unsigned short

char
signed char

int

int

int

long

int
unsigned int
int
int / unsigned int?

64

opérande 1

opérande 2

convertis en

int
unsigned int

short
unsigned short

char
signed char
unsigned int
unsigned long
unsigned short
unsigned int

int
unsigned int

short
unsigned short

char
signed char

int

int

int

long

int
unsigned int
int
int / unsigned int?
int / unsigned int?

64

opérande 1

opérande 2

convertis en

int
unsigned int

short
unsigned short

char
signed char
unsigned int
unsigned long
unsigned short
unsigned int

int
unsigned int

short
unsigned short

char
signed char

int

int

int

long

int
unsigned int
int
int / unsigned int?
int / unsigned int?
int

64

opérande 1

opérande 2

convertis en

int
unsigned int

short
unsigned short

char
signed char
unsigned int
unsigned long
unsigned short
unsigned int

int
unsigned int

short
unsigned short

char
signed char

int

int

int

long

int
unsigned int
int
int / unsigned int?
int / unsigned int?
int
unsigned int

64

opérande 1

opérande 2

convertis en

int
unsigned int

short
unsigned short

char
signed char
unsigned int
unsigned long
unsigned short
unsigned int

int
unsigned int

short
unsigned short

char
signed char

int

int

int

long

int
unsigned int
int
int / unsigned int?
int / unsigned int?
int
unsigned int
unsigned long

64

opérande 1

opérande 2

convertis en

int
unsigned int

short
unsigned short

char
signed char
unsigned int
unsigned long
unsigned short
unsigned int

int
unsigned int

short
unsigned short

char
signed char

int

int

int

long

int
unsigned int
int
int / unsigned int?
int / unsigned int?
int
unsigned int
unsigned long
int / unsigned int?

64

opérande 1

opérande 2

convertis en

int
unsigned int

short
unsigned short

char
signed char
unsigned int
unsigned long
unsigned short
unsigned int

int
unsigned int

short
unsigned short

char
signed char

int

int

int

long

int
unsigned int
int
int / unsigned int?
int / unsigned int?
int
unsigned int
unsigned long
int / unsigned int?
long / unsigned long?

64

Conversion finale

Le résultat est enfin converti :

Vers _Bool, © — false, sinon true

Aucun probleme possible

Vers un unsigned, on rajoute/retire MAX+1 jusqu'a ce que ¢a rentre

Arithmétique modulaire, toujours valable

Vers un signed, si c'est représentable, super!

Sinon, le résultat dépend des choix de I'implémentation

65

Et les constantes (littéraux) ?

Préfixes : 0 (octal), 0x (hexadécimal)

Suffixes : U (unsigned), L (long), LL (long long)

Constante Type choisi parmi :
1234 int, long, long long
0x5D4 int, unsigned int, long, unsigned long, ..
1234U unsigned int, unsigned long, unsigned long 1ong
0x5D4U unsigned int, unsigned long, unsigned long long
1234L long, long long
1234UL unsigned long, unsigned long long

Note : le signe « - » ne fait pas partie de la constante!

66

Autres entiers

size_t : non signé, capable de contenir une taille
C'est le type retourné par sizeof

Rétrospectivement, c'était une mauvaise idée

ptrdiff_t : signé, capable de contenir le nombre de « cases » entre
deux pointeurs de méme type

67

Autres entiers

On est tenté d'écrire :

int foo(int* tab, size_t length) {
for (size_t i = length; i>=0; --i) {
// faire quelque chose avec tab[i]

3

return ..

*

68

Autres entiers

On est tenté d'écrire :

int foo(int* tab, size_t length) {
for (size_t i = length; i>=0; --i) {
// faire quelque chose avec tab[i]

3

return ...;

La boucle ne s'arréte jamais !

68

Entiers dans le cadre du programme

int8_t, int32_t, int64_t et int

uint8_t, uint32_t, uint64_t et unsigned int
Littéraux sans suffixes et sans souci de typage

+ - % / et % (opérandes positifs pour ce dernier)

Savoir qu'il faut éviter les débordements

69

Entiers dans le cadre du programme

bool, uniquement pour des booléens, sans conversion

Vo&& ||

char, utilisé uniquement dans le cadre de chaines

70

Nombres réels et binaire

Nous avons vu comment décomposer un entier en binaire :
21 =124 22+ 29

21=10101(,

71

Nombres réels et binaire

Nous avons vu comment décomposer un entier en binaire :
21 =124 22+ 29

21=10101(,

Pour un réel, méme chose, avec des puissances négatives de 2 :
21.625=2"+22+2%+271 4+ 273

21.625=10101.101)

71

Nombres réels en binaire

Un nombre avec un nombre fini de décimales en base 10 peut avoir
une infinité de chiffres apres la virgule en base 2 :

21.9=2%+224204271 4272427342704 277 2710 71

21.9=10101.1110011001100...(2

72

Nombres réels en binaire

Un nombre avec un nombre fini de décimales en base 10 peut avoir
une infinité de chiffres apres la virgule en base 2 :

21.9=2%+224204271 4272427342704 277 2710 71
21.9=10101.1110011001100...(2

Toutefois, on peut montrer qu'il y a nécessairement une périodicité
(comme pour les décimales d'un rationnel).

On note parfois la périodicité par une barre supérieure :

21.9=10101.11100(y)

Celle-ci peut étre tres longue.

72

Comment stocker un réel en mémoire ?

On souhaite ranger cela dans 32 ou 64 bits.

Problemes :

e on ne peut pas représenter la virgule

e il peut y avoir un nombre quelconque de chiffres de chaque coté

Solution : la représentation scientifique

73

La représentation scientifique pour les décimaux

On peut mettre n'importe quel décimal non nul sous la forme :

+ax10” ol 1<a<10 et b entier.

Cette représentation est unique!

Par exemple, 102349.2211 = +1.023492211 x 10°.

74

La représentation scientifique en base 2

Méme chose, mais en écrivant le nombre sous la forme

+ax2? ol l1<a<2 et b entier.

Par exemple,
21.625 = 10101.101 5

=+1.0101101 5 x 2*

= +1.0101101) x 107,

75

Quels morceaux stocker ?

Les parties en rouge sont toujours présentes, seules les parties en

bleu sont importantes

21.625 = +1.0101101 5 x2*

Soit :
e le signe (+ ou —);
e les chiffres aprés la virgule;

e |'exposant.

76

La représentation IEEE sur 32 bits

21.625 = +1.0101101 5 x2*

Pour représenter un réel sur 32 bits, la norme |IEEE propose :
e 1 bit pour le signe (0 pour + et 1 pour —);
e 8 bits pour I'exposant;

e 23 bits pour la mantisse (chiffres aprés la virgule).

Pour I'exposant, on ne stocke pas un entier signé en complément a
2 mais I'entier non signé b+ (2871 1) soit b+127.

signe | exposant+127 mantisse
0 10000011 01011010000000000000000

7

Et zéro?

Zéro ne peut pas &tre représenté sous la forme a x2? avec 1< a!

On utilise alors le codage spécifique suivant :

signe | exposant+127 mantisse
0 00000000 00000000000000000000000

Pour ne pas confondre avec 1.0 x 27127 les valeurs admises, pour un

nombre normalisé, pour exposant+127 sont celles comprises entre
e 00000001 2), soit un exposant égal a -126;

e 11111110y, soit un exposant égal a +127;

78

Quels nombres positifs peut-on représenter ?

Plus petit nombre positif normalisé :

signe | exposant+127 mantisse
0 00000001 00000000000000000000000

1.00000000000000000000000,) x 2”26 ~ 1.17549435 x 10738

Plus grand nombre positif normalisé :

signe | exposant+127 mantisse
0 11111110 11111111111111111111111

1.11111111111111111111111p) x 2"127 =~ 3.40282346 x 10*38

79

Autres codages particuliers

En fait, il existe d’autres codages :
e pour représenter moins zéro;
® pour représenter +oo et —co;

e pour représenter not-a-number (NaN);

e pour représenter des valeurs trés petites, avec cependant moins
de chiffres significatifs (représentation dite dénormalisée)

e entre 1.4x107% et 1.17549421 x 10738

e entre —1.17549421 x 10738 et —1.4x 10™%°

80

Pourquoi une norme?

La norme |[EEE-754 a été introduite en 1985.

Elle définit notamment :
e comment représenter des réels en binaire (les flottants);
e la facon d’effectuer les calculs sur ces flottants
(tous les bits du résultat corrects pour +, —, x, +, \/);

o différentes regles d'arrondis.

81

Pourquoi une norme?

Avant cette norme :

e le méme calcul donnait des résultats différents selon le
processeur et le langage (manque de portabilité) ;

e certains choix étaient curieux ou surprenants

(x+ y différent de y+x, 0.5x x différent de x/2.0, etc.)

82

Précision sur une valeur normalisée

Le dernier bit significatif d'une valeur normalisée vaut 2723+P,

On a donc une précision relative ££ d'environ 272 ~1.2x 1077,

Les calculs se font donc avec = sept chiffres significatifs.

Valeurs représentables proches de 1 :

001111110 11111111111111111111110 | 0.99999988
001111110 11111111111111111111111 | 0.99999994
0 01111111 00000000000000000000000 | 1.00000000
0 01111111 00000000000000000000001 | 1.00000012
001111111 00000000000000000000010 | 1.00000024...

83

La plupart des valeurs ne sont pas représentables !

Par exemple, 0.3 =1.0011¢) x 272 ~1.0011001100110011... x 272
Il est nécessaire d’arrondir (ou de tronquer) la mantisse.

Valeurs représentables proches de 0.3 :

0 01111101 00110011001100110011000 | 0.299999952
001111101 00110011001100110011001 | 0.299999982

0 01111101 00110011001100110011010 | 0.300000012 —
0 01111101 00110011001100110011011 | 0.300000042

0 01111101 00110011001100110011100 | 0.300000072...

84

Et I’affichage ?

Une infinité de réels ont donc la méme approximation flottante.

0 01111011 10100011000001010101001 | 0.1022999957...
0 01111011 10100011000001010101010 | 0.1023000032... (A)
0 01111011 10100011000001010101011 | 0.1023000106...

Tous les réels dans I'intervalle [0.10229999945,0.1023000069] sont
représentés par le méme flottant (A).

A I'affichage, on choisit celui avec la plus courte mantisse décimale.

On affiche donc ici 0.1023.

85

En cas d’ambiguité...

Parfois, il y a plusieurs « candidats » possibles :

0 01111011 10100011000001010101000 | 0.1022999882...
001111011 10100011000001010101001 | 0.1022999957... (B)
0 01111011 10100011000001010101010 | 0.1023000032...

8 candidats avec 9 décimales dans [0.10229999195,0.10229999945].

On choisit le plus proche de la valeur flottante

C'est-a-dire dans le cas présent 0.102299996.

86

Bilan sur I'affichage

Finalement, voici quelques flottants 32 bits et I'affichage associé :

Représentation flottante 32 bits Affichage
001111011 10100011000001010101000 | 0.10229999
001111011 10100011000001010101001 | 0.102299996
001111011 10100011000001010101010 | 0.1023
001111011 10100011000001010101011 | 0.10230001
001111011 10100011000001010101100 | 0.10230002

On « cache » |'approximation autant que possible.

87

Limitations des flottants 32 bits

Les flottants sur 32 bits sont fréquemment insuffisants :
e seulement 7 chiffres significatifs ;
e pas de nombres entre 0 et 1,40 x 1074%;
e pas de nombres supérieurs 3 3,40 x 1038
— Flottants IEEE sur 64 bits (double précision) :
e 1 bit pour le signe (0 pour + et 1 pour —);
e 11 bits pour I'exposant (on range exposant+(2171-1));

e 52 bits pour la mantisse (chiffres aprés la virgule).

88

Flottants sur 64 bits (double précision)

Précision relative % d’environ 272 ~22x 10716,

soit quinze a seize chiffres significatifs.

Peut représenter des nombres 4,94 x 107324 3 1,80 x 10398

(avec précision réduite pour ceux inférieurs a 2,23 x 1073%8).

= généralement au type double en C, au type float en OCaml

89

Calculs en arithmétique flottante

Les résultats des calculs sont mémorisés comme des flottants.

Ils vont donc étre arrondis a la plus proche valeur représentable !
Les valeurs décimales fournies par I'utilisateur le sont aussi.

En général, I'affichage rend les calculs apparamment corrects :

#0.1+. 0.1;;
- : float = 0.2

90

Conséquences sur les calculs

On peut cependant remarquer le mécanisme d'arrondi :

0.10229999999999997; ;
- : float = 0.10229999999999997

0.10229999999999998; ;
- : float = 0.10229999999999997

0.1022999999999999951; ;
- : float = 0.10229999999999999

0.102299999999999996; ;
- : float = 0.1023

91

Conséquences sur les calculs

Certains calculs peuvent sembler imprécis, voire incorrects :

0.1 +. 0.2;;
- : float = 0.30000000000000004

#0.1 %, 3.0;;
- : float = 0.30000000000000004

#0.1+. 0.2 =0.3;;
- : bool

false

0.1 x. 3.0 =0.3;;
- : bool

false

92

S’explique en considérant les arrondis successifs

0.0999999999999999917
0.1000000000000000056
0.1000000000000000194

0.199999999999999983
0.200000000000000011
0.200000000000000039

0.299999999999999934
0.299999999999999989
0.300000000000000044
0.300000000000000099

—0.1

—0.2

—0.3
—0.1+0.20u0.1x3

93

Dans la vie réelle

Durant la premiere guerre du golfe, des missiles américains Patriots
associés a un systeme de suivi radar performant ont eu pour tache
d’intercepter les missiles irakiens Scud.

94

Bug du systeme

Le 25 février 1991, le systéeme radar ne parvient pas a lancer
convenablement des Patriots contre un Scud visant des

barraquements américains

Le missile Scud fait 28 morts et 98 blessés

L'analyse de I'incident a montré qu'une imprécision de calcul a
provoqué l'incapacité du radar a suivre le Scud

(cela étant, en pratique, I'efficacité des missiles anti-missiles, méme
sans bug, était et reste extrémement limité)

95

Origine de I'erreur de calcul

Le radar compte les dixiemes de seconde écoulés (n, entier)

96

Origine de I’erreur de calcul

Le radar compte les dixiemes de seconde écoulés (n, entier)

Pour le suivi, n ~ 0.1xn, flottant sur 24 bits

96

Origine de I’erreur de calcul

Le radar compte les dixiemes de seconde écoulés (n, entier)
Pour le suivi, n ~ 0.1xn, flottant sur 24 bits

0.1 non représentable — 95 ns d’erreur pour chaque 0,1s

96

Origine de I’erreur de calcul

Le radar compte les dixiemes de seconde écoulés (n, entier)
Pour le suivi, n ~ 0.1xn, flottant sur 24 bits

0.1 non représentable — 95 ns d’erreur pour chaque 0,1s

Aprés 100 h, erreur de 0,34s

96

Origine de I’erreur de calcul

Le radar compte les dixiemes de seconde écoulés (n, entier)
Pour le suivi, n ~ 0.1xn, flottant sur 24 bits

0.1 non représentable — 95 ns d’erreur pour chaque 0,1s
Aprés 100 h, erreur de 0,34s

Pour v =1676 m/s, 573 m d’erreur!!

96

Correction du bug

Une modification de I'algorithme de conversion entier—flottant
permet de s'affranchir de cette erreur

Malheureusement, le correctif est arrivé un jour trop tard

Les israéliens avaient noté et signalé une imprécision du radar de
20% apres 8 h de fonctionnement en continu

Les américains pensaient que le probleme n’était pas critique car le
systéme devait étre réinitialisé régulierement (cela prend moins
d'une minute), remettant I'erreur a zéro

97

Les petites valeurs peuvent étre absorbées par les grandes :

let a = 6.022e23 and b = 123456.789;;
val a : float = 6.022e+023
val b : float = 123456.789

#a+. b;;
- : float = 6.022e+023

#a+. b=a;;
- : bool = true

98

Un exemple d'absorption partielle en simple précision :

1010101011001010101.01011
+ 11.0010101110100110101011

= 1010101011001011000.1000001110100110101011

Un exemple d'absorption totale en simple précision :

1010101011001010101.01011
+ 0.000000111010011010101101101001

= 1010101011001010101.010110111010011010101101101001

99

Cancellation

On peut avoir une perte de précision lors de la soustraction de
valeurs proches :

let a = 30000000000.888889

and b = 30000000000.111111;;
val a : float = 30000000000.888889
val b : float = 30000000000.111111

#a+. b;;
- : float = 60000000001.

#a-.b;;
- : float = 0.77777862548828125

100

Cancellation

Un exemple de cancellation en simple précision :
1010101011001010101.01011
- 1010101011001010011.00001

= 10.0101000000000000000000

On ajoute des bits supplémentaires (des zéros) qui ne sont pas
nécessairement les bons !

101

Cancellation catastrophique

Le résultat peut étre catastrophique si les deux valeurs ont déja subi
des arrondis (par exemple par absorption) :

let a = 6.022e23 and b = 123456.789;;
val a : float = 6.022e+023
val b : float = 123456.789

#a+.b-.a;;
- : float = 0.

#1. /. (a+. b-.2a);;
- : float = infinity

102

Calcul d’un terme d’une suite

Considérons la suite récurrente suivante :
Up =¢€,

Up=(Up-1—1)xn pour n=1.

Que vaut usg ?

103

Calcul itératif

On peut calculer itérativement les termes de la liste :

let u = ref (exp 1.0);;
val u : float ref = {contents = 2.7182818284590451}

for i = 1 to 50 do
u:= (lu-. 1.0) x. float_of_int i
done;;

- : unit

O

lu;;
- : float = -4.3968039301820685e+048

104

Calcul direct

On peut cependant montrer que

49 1
Usg = 50! x uo—Z—‘
i=o k!

Essayons...

let rec fact n =
if n = 0 then 1.0 else
float_of_int n *x. fact (n - 1);;
val fact : int -> float = <fun>

105

Calcul direct

49 1
u50=50!>< uO—ZE

k=0

let s = ref 0.0;
- :unit = O

for i =0 to 49 dos :=!s +. 1.0 /. fact i done;;
val s : float ref = {contents = 0.}

fact 50 *. (exp 1.0 -. !s);;
- : float = -1.3506570618255054e+049

Ce n’est pas le méme résultat...

106

Creusons encore...

On sait, par ailleurs, que

1 1 1 1 1 COM|| COM|

e=~+—+o+—+—+..=) — donc uz=50x) —

o 12 3 4l =k S k!
Cela donne...

let s = ref 0.0;;
val s : float ref = {contents = 0.}

for i = 50 to 1000 do s := !s +. 1.0 /. fact i done;;
:unit = (O

fact 50 *. !s;;
- : float = 1.019992165836668

C'est cette fois-ci compléetement différent ! 107

Creusons encore...

Ce n’est pas parce qu'on a arrété la somme a 1000 :

1. /. fact 200;;
- : float = 0.

108

On a donc trois résultats différents pour le méme calcul :
e -4.3968039301820685e-+48
e -1.3506570618255054e+49
e 1.019992165836668

Le dernier résultat est quasiment la bonne valeur.

La différence entre les deux premiers est causée par des erreurs
d’arrondis successifs.

La différence entre le troisieme et les deux autres par le fait que

«exp 1.0 » n'est pas tout a fait égal a e!
109

Influence de uy

Pour s'en convaincre :

let s = ref 0.0;;
val s : float ref = {contents = 0.}

for i =0 to 49 dos :=!s +. 1.0 /. fact i done;;
- :unit = O
fact 50 *. (exp 1.0 -. !s);;

- : float = -1.3506570618255054e+049

fact 50 x. (exp 1.0 +. 2.%x =52, -, Is);;
- : float = 0.

fact 50 x. (exp 1.0 +. 2.%x -50. -. !s);;
- : float = 1.3506570618255054e+049

110

La série harmonique

La série harmonique (u,) est définie par

un = —
n
On définit classiquement la n-ieme somme partielle H,

1 1 1 &1
Hy=1+-+=-+..+—= =
" 2 3 n ,;k

H,=In(n) +y+0(1) +00

n—oo

111

Calcul des sommes partielles

On peut vouloir calculer H,, de la fagon suivante :

let h n =
let s = ref 0. in
for k = 1 to n do
s := s +. 1.0 /. float_of_int k
done;
I's;;
val h : int -> float = <fun>

Probléme : h n ne tend pas vers +oo

En effet, 1/k finit par étre absorbé par s!

En double précision, lorsque 377 atteint 252 soit k= 10". 1o

La série harmonique

La série, calculée de cette facon, finit par converger :

20 Calcul numérique des sommes partielles

— H(n) correct
35.| ® e calcul avec float 64 bits

30

25

20

15

10

10° 10° 10* 10° 10° 10 10 10" 10"

113

Calcul des sommes partielles

Changer I'ordre de sommation change le résultat...

let hd n =
let s = ref 0. in for k = n downto 1 do
s :=Is+. 1.0 /. float_of_int k
done; !s;;

val hd : int -> float = <fun>

+*

hd 10000000000 ;
- : float = 23.603066594888269

h 10000000000; ;
- : float = 23.6030665949975

I est possible (quoique délicat) de calculer correctement H,,. 114

Précautions a prendre sur les flottants

Quelques points a garder en téte :
e préférer les entiers aux flottants aussi souvent que possible ;

garder a l'esprit que les résultats peuvent avoir des problemes

de précision importants;

parfois, (a+b)+c#a+(b+c);

parfois (a+b)—a#b;

sommer des flottants nécessite des précautions !

115

Test de nullité correct d’un réel

On n’écrira en général pas :

if x = 0 then |

Mais de préférence :

if fabs x < 1e-10 then |

N

ou

let fabs x =
if x < 0.0 then -.x else x;;

116

Test d’« égalité » correct de réels

De méme, on n'écrira en général pas :

if x = y then |

Mais de préférence :

if fabs (x-y) < max (fabs x) (fabs y) *. 1e-10 then |

117

