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Raison du binaire

Il est aisé de mémoriser/de transmettre des 0 et des 1 :

• trous/absence de trous dans des cartes perforées

• tension/absence de tension sur une ligne électrique

• interrupteur (relais) ouvert/fermé

• lumière/obscurité (cables optiques, télécommandes IR)

• orientation de moments magnétiques (bandes magnétiques,

disquettes, disques durs mécaniques)

• mini-condensateurs (mémoire moderne)

• pièges à électrons (mémoire flash)

• cavités dans une couche métallique (CD, DVD)...

Avoir plus de deux états augmente les risques de confusion.
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Conséquences

Il faut représenter les objets à manipuler par des suites de 0 et 1 :

• valeurs numériques,

• caractères et châınes de caractères,

• images,

• vidéos,

• sons,

• programmes...
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La représentation décimale (base 10)
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La représentation décimale (base 10)
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La représentation décimale (base 10)
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La représentation décimale (base 10)

1×102 + 2×10 + 3 → 123
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La représentation binaire (base 2)
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La représentation binaire (base 2)
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La représentation binaire (base 2)
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La représentation binaire (base 2)
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La représentation binaire (base 2)
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La représentation binaire (base 2)
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La représentation binaire (base 2)
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La représentation binaire (base 2)

1×26 + 1×25 + 1×24 + 1×23 + 0×22 + 1×2 + 1 → 1111011

4



Représentation en base b

Les nombres s’écrivent avec b chiffres différents :

• 0 et 1 en base 2 (binaire)

• 0, 1, 2, ..., 6, 7 en base 8 (octale)

• 0, 1, 2, ..., 8, 9 en base 10 (décimale)

• 0, 1, 2, ..., 8, 9, A, B, ..., F en base 16 (hexadécimale)

Un nombre N =∑
ai bi s’écrit en concaténant les chiffres ai :

a8 a7 a6 a5 a4 a3 a2 a1 a0

Il faut
⌊

logb(N)+1
⌋

chiffres.
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Conversion en base b

Décomposition :

ai =
⌊

N

bi

⌋
%b

Reconstruction :

N =
p∑

i=0
ai bi

On peut trouver des méthodes plus efficaces.
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Algorithme de décomposition en base b

123

int i = 0;

while (N>0) {

a[i] = N % b;

i++;

N = N / b;

}
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Algorithme de décomposition en base b

123 2

int i = 0;

while (N>0) {

a[i] = N % b;

i++;

N = N / b;

}
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Algorithme de décomposition en base b

123
1

2
61

1

int i = 0;

while (N>0) {

a[i] = N % b;

i++;

N = N / b;

}
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Algorithme de décomposition en base b

123
1

2
61 2
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int i = 0;

while (N>0) {

a[i] = N % b;

i++;

N = N / b;

}
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Algorithme de décomposition en base b

123
1

2
61
1

2
30

11

int i = 0;

while (N>0) {

a[i] = N % b;

i++;

N = N / b;

}
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Algorithme de décomposition en base b

123
1

2
61
1

2
30
0

2
15

011

int i = 0;

while (N>0) {

a[i] = N % b;

i++;

N = N / b;

}
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Algorithme de décomposition en base b

123
1

2
61
1

2
30
0

2
15
1

2
7

1011

int i = 0;

while (N>0) {

a[i] = N % b;

i++;

N = N / b;

}
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Algorithme de décomposition en base b

123
1

2
61
1

2
30
0

2
15
1

2
7
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2
3
1

2
1
1

2
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int i = 0;

while (N>0) {

a[i] = N % b;

i++;

N = N / b;

}
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Algorithme de décomposition en base b

123
1

2
61
1

2
30
0

2
15
1

2
7
1

2
3
1

2
1
1

2
0

1111011

int i = 0;

while (N>0) {

a[i] = N % b;

i++;

N = N / b;

}
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Recomposition par la méthode de Horner

N =
p∑

i=0
ai bi = (

a0 + b × (
a1 + b × (

... × (
ap−2 + b × (

ap−1 + b × ap
))

...
)))

int N = 0;

for (int i=p; i>=0; --i) {

N = b * N + a[i]

}
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Recomposition par la méthode de Horner

N =
p∑

i=0
ai bi = (

a0 + b × (
a1 + b × (

... × (
ap−2 + b × (

ap−1 + b × ap
))

...
)))

int N = 0;

for (int i=p; i>=0; --i) {

N = b * N + a[i]

}
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Représentation hexadécimale (base 16)

La notation binaire n’est pas toujours commode.

1492(10) → 101 1101 0100(2)

La conversion du binaire au décimal n’est pas immédiate.

Pour représenter des valeurs binaires, on utilise donc souvent la base

hexadécimale (base 16).

1492(10) = 5×162 +13×16+4 → 5D4(16)

9



Conversion binaire / hexadécimal

Le passage entre les deux bases est simple car 16 = 24.

101 1101 0100(2) → 5D4(16)

On groupe les chiffres par 4, en partant de la droite :

0100(2) → 4(10) → 4(16)

1101(2) → 13(10) → D(16)

101(2) → 5(10) → 5(16)

La conversion en sens inverse est tout aussi simple...
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Affichages avec C

Pour afficher un int en base 10 :

printf("%d", n);

En base 16 :

printf("%x", n);
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Affichages avec C

En binaire, pas de solution immédiate :

void printb(int n) {

if (n==0) { printf("0"); }

else if (n==1) { printf("1"); }

else if (n<0) { printf("-"); printb(-n); }

else { printb(n/2); printb(n%2); }

}
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Affichages avec OCaml

On dispose de la fonction Printf.printf

# Printf.printf;;

- : ('a, out_channel, unit) format -> 'a = <fun>

# Printf.printf "En hexadécimal : %x\n" 54321;;

En hexadécimal : d431

- : unit = ()
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La mémoire d’un ordinateur

La mémoire ne stocke pas les bits isolément mais des bytes

En général, les bytes sont des octets (groupes de 8 bits)

adresse mémoire

•••

••
•

49754 0 0 1 0 1 0 1 0

49753 1 1 0 1 0 0 1 0

49752 1 0 0 0 0 1 1 1

49751 0 1 1 0 0 1 0 1

49750 1 1 1 1 1 0 0 0

4974F 0 0 0 1 1 0 1 1

4974E 1 0 0 1 1 0 0 1
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Entiers naturels sur 8, 16, 32 et 64 bits

Un octet peut contenir un entier entre 0 et
7∑

i=0
2i = 28 −1 = 255.

C’est fréquemment insuffisant, donc on utilise plusieurs octets :

• 16 bits → entre 0 et 216 −1 = 65535 ;

• 32 bits → entre 0 et 232 −1 ' 4,3×109 ;

• 64 bits → entre 0 et 264 −1 ' 1,8×1019...

Note : OCaml réserve un bit pour son propre usage
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Boutisme (endianness)

L’ordre des octets en mémoire est délicat.

Par exemple, 51130560(10) = 030C30C0(16)

Soit en binaire 00000011 00001100 00110000 11000000(2)
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Petit boutiste (« little-endian »)

Par exemple, 51130560(10) = 030C30C0(16)

Soit en binaire 00000011 00001100 00110000 11000000(2)

•••

••
•

49751 0 0 0 0 0 0 1 1

49750 0 0 0 0 1 1 0 0

4974F 0 0 1 1 0 0 0 0

4974E 1 1 0 0 0 0 0 0

Exemples : Intel x86, x86/64
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Grand boutiste (« big-endian »)

Par exemple, 51130560(10) = 030C30C0(16)

Soit en binaire 00000011 00001100 00110000 11000000(2)

•••

••
•

49751 1 1 0 0 0 0 0 0

49750 0 0 1 1 0 0 0 0

4974F 0 0 0 0 1 1 0 0

4974E 0 0 0 0 0 0 1 1

Exemples : Motorola 68000
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Pour le processeur

Chaque solution a ses (légers) avantages :

• petit-boutisme : conversions/arithmétique plus faciles

• gros-boutisme : comparaisons plus faciles

Certaines architectures sont bi-boutistes
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Au-delà de la mémoire

Ce problème se retrouve également :

• dans les fichiers « binaires »

• dans les communications

IP → Network Byte Order (gros boutiste)

Pour gérer le problème, on dispose :

• de l’instruction « bswap » en assembleur x86

• de fonctions « htonl » et « ntohl »

• ...

20



Et les entiers négatifs ?

Représentation des entiers naturels sur 4 bits :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

On réutilise les 2p−1 codes commençant par 1

Le bit de poids fort indiquera le signe (ap−1 = 1 : négatif)

Plusieurs solutions possibles !
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Entiers relatifs en signe + magnitude

Entiers relatifs sur 4 bits, signe + magnitude :

0 1 2 3 4 5 6 7 -0 -1 -2 -3 -4 -5 -6 -7
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Hormis le bit de signe, même représentation que les positifs

⊕ valeur absolue et négation simples

ª deux zéros !

ª opérations arithmétiques complexes
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Entiers relatifs en complément à 1

Entiers relatifs sur 4 bits, complément à 1 :

0 1 2 3 4 5 6 7 -7 -6 -5 -4 -3 -2 -1 -0
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

n < 0 est représenté par le complément de −n

⊕ valeur absolue et négation simples

⊕ opérations arithmétiques moins problématiques

ª toujours deux zéros
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Entiers relatifs en complément à 2

Entiers relatifs sur 4 bits, complément à 2 :

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

n < 0 est représenté par le complément de −n −1

⊕ opérations arithmétiques similaires aux naturels

⊕ une seule représentation pour zéro

ª valeur absolue et négation un peu plus complexes
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Entiers relatifs sur 8, 16, 32 et 64 bits

On peut ainsi coder sur p bits les entiers de −2p−1 à 2p−1 −1.

• 8 bits → entre -128 et +127 ;

• 16 bits → entre −215 =−32768 et 215 −1 = 32767 ;

• 32 bits → entre −231 '−2,1×109 et 231 −1 ' 2,1×109

• 64 bits → entre −263 '−9,2×1018 et 263 −1 ' 9,2×1018...

Le bit de poids fort (ap−1) indique le signe (0 ≡ positif, 1 ≡ négatif).
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Interprétations

Tout se passe comme si la seconde moitié des représentations :

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

se trouvait en fait de l’autre côté :

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111

Tout se passe comme si le bit ap−1 « valait » −2p−1 et non 2p−1.

N =
p−2∑
i=0

ai 2i +ap−1
(−2p−1)
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Codage et décodage en complément à 2

Pour encoder sur p bits un entier −2p−1 É n < 0, possibilités :

• coder n +2p comme un entier positif sur p bits

• coder |n −1| sur p bits puis inverser tous les bits

• coder |n| sur p bits, inverser tous les bits et ajouter 1

Et inversement pour le décodage si ap−1 = 1 !
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Exemple de codage en complément à deux

Exemple du codage de −27 sur p = 8 bits :

27 = 16+8+2+1 → 00011011(2)

−27 → 11100100(2) +1 = 11100101(2)

L’octet 11100101(2) peut représenter également l’entier 229 !

Le programme doit savoir comment interpréter les données...
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Exemples d’additions d’entiers positifs

Pour calculer 17 + 42 :

00010001

00101010+

=

Pour calculer 17 + 105 :

00010001

01101001+

=
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Exemples d’additions d’entiers positifs

Pour calculer 17 + 42 :

00010001

00101010+

= 00111011

Pour calculer 17 + 105 :

00010001

01101001+

=

29



Exemples d’additions d’entiers positifs

Pour calculer 17 + 42 :

00010001

00101010+

= 00111011 → 59

Pour calculer 17 + 105 :

00010001

01101001+

=
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Exemples d’additions d’entiers positifs

Pour calculer 17 + 42 :

00010001

00101010+

= 00111011 → 59

Pour calculer 17 + 105 :

00010001

01101001+

= 01111010
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Exemples d’additions d’entiers positifs

Pour calculer 17 + 42 :

00010001

00101010+

= 00111011 → 59

Pour calculer 17 + 105 :

00010001

01101001+

= 01111010 → 122
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Exemples d’additions de signes différents (résultat négatif)

Pour calculer 17 + (-37) :

00010001

11011011+

=

Pour calculer 42 + (-94) :

00101010

10100010+

=
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Exemples d’additions de signes différents (résultat négatif)

Pour calculer 17 + (-37) :

00010001

11011011+

= 11101100

Pour calculer 42 + (-94) :

00101010

10100010+

=

30



Exemples d’additions de signes différents (résultat négatif)

Pour calculer 17 + (-37) :

00010001

11011011+

= 11101100 → -20

Pour calculer 42 + (-94) :

00101010

10100010+

=

30



Exemples d’additions de signes différents (résultat négatif)

Pour calculer 17 + (-37) :

00010001

11011011+

= 11101100 → -20

Pour calculer 42 + (-94) :

00101010

10100010+

= 11001100
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Exemples d’additions de signes différents (résultat négatif)

Pour calculer 17 + (-37) :

00010001

11011011+

= 11101100 → -20

Pour calculer 42 + (-94) :

00101010

10100010+

= 11001100 → -52
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Exemples d’additions de signes différents (résultat positif)

Pour calculer 17 + (-5) :

00010001

11111011+

=

Pour calculer 105 + (-37) :

01101001

11011011+

=

Les résultats sont corrects si l’on ignore le 1 supplémentaire !
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Exemples d’additions de signes différents (résultat positif)

Pour calculer 17 + (-5) :

00010001

11111011+

= 1 00001100

Pour calculer 105 + (-37) :

01101001

11011011+

=

Les résultats sont corrects si l’on ignore le 1 supplémentaire !
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Exemples d’additions de signes différents (résultat positif)

Pour calculer 17 + (-5) :

00010001

11111011+

= 1 00001100 → 12

Pour calculer 105 + (-37) :

01101001

11011011+

=

Les résultats sont corrects si l’on ignore le 1 supplémentaire !
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Exemples d’additions de signes différents (résultat positif)

Pour calculer 17 + (-5) :

00010001

11111011+

= 1 00001100 → 12

Pour calculer 105 + (-37) :

01101001

11011011+

= 1 01000100

Les résultats sont corrects si l’on ignore le 1 supplémentaire !
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Exemples d’additions de signes différents (résultat positif)

Pour calculer 17 + (-5) :

00010001

11111011+

= 1 00001100 → 12

Pour calculer 105 + (-37) :

01101001

11011011+

= 1 01000100 → 68

Les résultats sont corrects si l’on ignore le 1 supplémentaire !
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Exemples d’additions de signes différents (résultat positif)

Pour calculer 17 + (-5) :

00010001

11111011+

= 1 00001100 → 12

Pour calculer 105 + (-37) :

01101001

11011011+

= 1 01000100 → 68

Les résultats sont corrects si l’on ignore le 1 supplémentaire !
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Exemples d’additions d’entiers négatifs

Pour calculer (-37) + (-5) :

11011011

11111011+

=

Pour calculer (-17) + (-94) :

11101111

10100010+

=

Les résultats sont corrects si l’on ignore le 1 supplémentaire !
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Exemples d’additions d’entiers négatifs

Pour calculer (-37) + (-5) :

11011011

11111011+

= 1 11010110

Pour calculer (-17) + (-94) :

11101111

10100010+

=

Les résultats sont corrects si l’on ignore le 1 supplémentaire !
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Exemples d’additions d’entiers négatifs

Pour calculer (-37) + (-5) :

11011011

11111011+

= 1 11010110 → -42

Pour calculer (-17) + (-94) :

11101111

10100010+

=

Les résultats sont corrects si l’on ignore le 1 supplémentaire !
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Exemples d’additions d’entiers négatifs

Pour calculer (-37) + (-5) :

11011011

11111011+

= 1 11010110 → -42

Pour calculer (-17) + (-94) :

11101111

10100010+

= 1 10010001

Les résultats sont corrects si l’on ignore le 1 supplémentaire !

32



Exemples d’additions d’entiers négatifs

Pour calculer (-37) + (-5) :

11011011

11111011+

= 1 11010110 → -42

Pour calculer (-17) + (-94) :

11101111

10100010+

= 1 10010001 → -111

Les résultats sont corrects si l’on ignore le 1 supplémentaire !
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Exemples d’additions d’entiers négatifs

Pour calculer (-37) + (-5) :

11011011

11111011+

= 1 11010110 → -42

Pour calculer (-17) + (-94) :

11101111

10100010+

= 1 10010001 → -111

Les résultats sont corrects si l’on ignore le 1 supplémentaire !
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Exemples d’additions d’entiers (résultat non représentable)

Pour calculer 42 + 105 :

00101010

01101001+

=

Pour calculer (-37) + (-94) :

11011011

10100010+

=

Les résultats sont incorrects (dont mauvais signe)
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Exemples d’additions d’entiers (résultat non représentable)

Pour calculer 42 + 105 :

00101010

01101001+

= 10010011

Pour calculer (-37) + (-94) :

11011011

10100010+

=

Les résultats sont incorrects (dont mauvais signe)
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Exemples d’additions d’entiers (résultat non représentable)

Pour calculer 42 + 105 :

00101010

01101001+

= 10010011 → -109

Pour calculer (-37) + (-94) :

11011011

10100010+

=

Les résultats sont incorrects (dont mauvais signe)
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Exemples d’additions d’entiers (résultat non représentable)

Pour calculer 42 + 105 :

00101010

01101001+

= 10010011 → -109

Pour calculer (-37) + (-94) :

11011011

10100010+

= 1 01111101

Les résultats sont incorrects (dont mauvais signe)
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Exemples d’additions d’entiers (résultat non représentable)

Pour calculer 42 + 105 :

00101010

01101001+

= 10010011 → -109

Pour calculer (-37) + (-94) :

11011011

10100010+

= 1 01111101 → 125

Les résultats sont incorrects (dont mauvais signe)
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Exemples d’additions d’entiers (résultat non représentable)

Pour calculer 42 + 105 :

00101010

01101001+

= 10010011 → -109

Pour calculer (-37) + (-94) :

11011011

10100010+

= 1 01111101 → 125

Les résultats sont incorrects (dont mauvais signe)
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Débordements

Il y a débordement lorsque le résultat d’un calcul n’est pas

représentable

Même une division entière peut déborder :

INT_MIN/−1 si en complément à 2 sans trap
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34



Processeur et débordements

En l’absence de débordement,

on peut utiliser les mêmes circuits pour

• les additions d’entiers naturels

• les additions d’enters relatifs en complément à 2
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Additions binaires et électronique

a0a1

b0b1

r0r1r2

+
=
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Additions binaires et électronique

a0a1

b0b1

r0r1r2

+
=

0+0 = 0

0+1 = 1

1+0 = 1

1+1 = 10
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Additions binaires et électronique

a0a1

b0b1

r0r1r2

+
=

0+0 = 0

0+1 = 1

1+0 = 1

1+1 = 10

= 1
a0

b0

r0
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Additions binaires et électronique

c1

a0a1

b0b1

r0r1r2

+
=

0+0 = 0

0+1 = 1

1+0 = 1

1+1 = 10

= 1
a0

b0

r0
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Additions binaires et électronique

c1

a0a1

b0b1

r0r1r2

+
=

0+0 = 0

0+1 = 1

1+0 = 1

1+1 = 10

= 1
a0

b0

r0

&

•
•

c1
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Additions binaires et électronique

c1c2

a0a1

b0b1

r0r1r2

+
=

0+0 = 0

0+1 = 1

1+0 = 1

1+1 = 10

1+1+1 = 11

= 1
a1

b1

&

•
•

= 1
c1

&

•

•

c2≥ 1

r1
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Processeur et débordements

S’il y a débordement, cela dépend du processeur :

• arithmétique modulaire (on ignore les bits supplémentaires)

Sommer de deux entiers positifs peut donner un négatif

Sommer de deux entiers négatifs peut donner un positif

• arithmétique à saturation...
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Dans le processeur

Le processeur peut détecter ces débordements

Une même instruction peut servir à additionner

• deux entiers naturels

• deux entiers relatifs

Le débordement dépend de l’interprétation des données !
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Du côté des langages

OCaml n’utilise qu’un type d’entiers (relatifs en complément à 2)

Il ignore les débordements (arithmétique modulaire)

Le langage C possède des dizaines de types entiers

Pour gérer les architectures qui n’utilisent pas le complément à 2 ou

l’arithmétique modulaire, les débordements sont UB pour les int !

Python 3 utilise des entiers de taille arbitraire

Il ajoute des bits lorsque c’est nécessaire
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Conséquences d’un débordement

La plupart des langages ne font rien de particulier !

Les conséquences peuvent être graves...

Premier vol d’Ariane 5 en 1996 : autodestruction.

40



Le cas d’Ariane 5

Un capteur mesure l’inclinaison (en fait, la vitesse horizontale)

La valeur est stockée comme un entier relatif sur 22 bits.

Après quelques secondes, la fusée s’incline un peu vers la gauche,

mais la valeur déborde...

... c’est interprété comme une inclinaison à droite.

La correction de trajectoire amplifie le problème, jusqu’à ce que

l’inclinaison, ingérable, nécessite une autodestruction du lanceur.
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l’inclinaison, ingérable, nécessite une autodestruction du lanceur.

41



L’arbre qui cache la forêt

L’exemple d’Ariane 5 laisse penser que c’est exceptionnel

Il n’en est rien !

C’est un problème incroyablement répandu

Cela touche la plupart des programmes !
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Plus récent, MS Exchange

Format YYMMDDHHMM pour stocker des dates dans un entier

22 novembre 2017, 10h23 → 1711221023

Dans un entier signé 32 bits...

... tout est cassé le 1er janvier 2022 à minuit !

43
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Le bug de l’an 2000

De l’intérêt de réfléchir aux solutions choisies :
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La délicate question des dates

Temps selon POSIX : secondes depuis 1er janvier 1970

entier 32 bits signé : 19 janvier 2038 à 3h14 et 8 secondes

La gestion des dates, heures et durées est très complexe
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Petit tour d’horizon de la jungle des entiers en C

Important : très peu de ce qui suit est exigible en concours !
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Les entiers en C

Le module stdint.h fournit des types entiers de taille fixée

On peut typiquement trouver les types signés suivants :

int8_t int16_t int32_t int64_t

On peut également trouver les types non-signés suivants :

uint8_t uint16_t uint32_t uint64_t
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Les entiers en C

Il peut également fournir des types assurant une taille minimale

Les plus rapides possibles :

int_fast8_t uint_fast8_t ...

Les plus petits (en taille mémoire) possibles :

int_least8_t uint_least8_t ...
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Les entiers en C

Spécifier la taille ne permet pas au compilateur de choisir le type le

plus efficace pour l’architecture considérée

Il existe des types génériques
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Le type char

Le type char désigne un entier de taille 1 byte

byte = plus petit entier adressable (sizeof(char)=1)

Souvent un octet, mais peut être davantage

Le type char peut être signé ou non
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Le type char

On dispose aussi de deux types de même taille que char

l’un signé, signed char, contient au moins �0 . . 255�
l’autre non signé, unsigned char, contient au moins �−127 . . 127�

L’implémentation associe librement char à l’un ou l’autre
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Les types signés

On dispose ensuite des types signés suivants :

• short, qui contient au moins �−32767 . . 32767�
• int, qui contient au moins �−32767 . . 32767�
• long, qui contient au moins �−231 +1 . . 231 −1�
• long long, qui contient au moins �−263 +1 . . 263 −1�

Chaque représentation contient au moins la précédente

int est a priori la représentation la plus rapide
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Les types signés

Il est possible de préciser « signed » avant et « int » après

Cela correspond au même type

Par exemple, « signed short », « short int » et

« signed short int » sont des alias de short
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Les types signés

Pour les signés :

• la représentation binaire est non spécifiée (certains codes

peuvent être illégaux, « traps »)

• les débordements sont UB

On veut pouvoir utiliser les opérations du processeur !
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Les types non signés

On dispose de même des types non signés suivants :

• unsigned short, qui contient au moins �0 . . 65535�
• unsigned int, qui contient au moins �0 . . 65535�
• unsigned long, qui contient au moins �0 . . 232 −1�
• unsigned long long, qui contient au moins �0 . . 264 −1�

Chaque représentation contient au moins la précédente

On peut également ajouter « int » derrière
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Les types non signés

Pour les non signés sur p bits :

• entiers entre 0 et 2p −1

• arithmétique modulo 2p

Principal but : pouvoir utiliser la représentation binaire
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Opérations sur les types non signés

On dispose d’opérateurs unaires :

~ effectue un complément à 1 (n 7→ 2p −1−n)

- effectue un complément à 2 (n 7→ 2p −n)

D’opérateurs binaires logiques :

& effectue un « et » binaire bit à bit

| effectue un « ou » binaire bit à bit

^ effectue un « ou exclusif » binaire bit à bit
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Opérations sur les types non signés

On dispose aussi d’opérateurs binaires arithmétiques :

a<<b donne a ×2b (mod 2p )

a>>b donne
⌊

a
2b

⌋
Revient à décaler de b rangs vers la gauche (resp. la droite) la

représentation binaire de a (en complétant avec des zéros)

Remarque : a<<b est UB si b< 0 ou bÊp
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Et sur les signés ?

À fuir !

a<<b et a>>b sont UB si b est négatif ou bÊ p

a<<b est UB si a est négatif ou a<<b déborde

a>>b est laissé au choix de l’implémentation si a négatif

a&b, a|b et a^b opèrent a priori sur les bits...

... mais comme la représentation n’est pas imposée

• le résultat est incertain

• UB si débordement (écritures binaires illégales)

• le cas de −0 n’est pas limpide
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Pour les calculs en C

Considérons à présent un calcul tel que :

c = a + b;

a et b doivent être mis dans un format commun

• a et b subissent possiblement une promotion

• puis une conversion dans un format commun

Le résultat sera converti dans le type de c
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Rangs

On définit des « rangs » pour les types numériques

_Bool

≺ char / unsigned char / signed char

≺ unsigned short / short

≺ unsigned int / int

≺ unsigned long / long

≺ unsigned long long / long long
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Règles de promotion

Les arguments de rang strictement inférieur à int

(soit _Bool, char, short, signés ou non) sont promus

• en int si c’est possible sans perte

• en unsigned int sinon

Les valeurs ne peuvent pas changer lors de la promotion
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Règles de choix de la représentation commune

Après promotion

• même type → pas de conversion nécessaire

• deux signés → type de rang le plus élevé

• deux non-signés → type de rang le plus élevé

• non-signé de rang supérieur ou égal au rang du signé

→ conversion vers le type non-signé

• le type signé inclue le type non-signé

→ conversion vers le type signé

• sinon conversion des deux arguments vers le type non-signé

« correspondant » au type de l’argument signé
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Exemples

opérande 1 opérande 2 convertis en

int int

int

unsigned int unsigned int

unsigned int

short short

int

unsigned short unsigned short

int / unsigned int ?

char char

int / unsigned int ?

signed char signed char

int

unsigned int int

unsigned int

unsigned long int

unsigned long

unsigned short int

int / unsigned int ?

unsigned int long

long / unsigned long ?
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Conversion finale

Le résultat est enfin converti :

Vers _Bool, 0 → false, sinon true

Aucun problème possible

Vers un unsigned, on rajoute/retire MAX+1 jusqu’à ce que ça rentre

Arithmétique modulaire, toujours valable

Vers un signed, si c’est représentable, super !

Sinon, le résultat dépend des choix de l’implémentation
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Et les constantes (littéraux) ?

Préfixes : 0 (octal), 0x (hexadécimal)

Suffixes : U (unsigned), L (long), LL (long long)

Constante Type choisi parmi :

1234 int, long, long long

0x5D4 int, unsigned int, long, unsigned long, ...

1234U unsigned int, unsigned long, unsigned long long

0x5D4U unsigned int, unsigned long, unsigned long long

1234L long, long long

1234UL unsigned long, unsigned long long

Note : le signe « - » ne fait pas partie de la constante !
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Autres entiers

size_t : non signé, capable de contenir une taille

C’est le type retourné par sizeof

Rétrospectivement, c’était une mauvaise idée

ptrdiff_t : signé, capable de contenir le nombre de « cases » entre

deux pointeurs de même type
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Autres entiers

On est tenté d’écrire :

int foo(int* tab, size_t length) {

for (size_t i = length; i>=0; --i) {

// faire quelque chose avec tab[i]

}

return ...;

}

La boucle ne s’arrête jamais !
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Entiers dans le cadre du programme

int8_t, int32_t, int64_t et int

uint8_t, uint32_t, uint64_t et unsigned int

Littéraux sans suffixes et sans souci de typage

+ - * / et % (opérandes positifs pour ce dernier)

Savoir qu’il faut éviter les débordements
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Entiers dans le cadre du programme

bool, uniquement pour des booléens, sans conversion

! && ||

char, utilisé uniquement dans le cadre de châınes

70



Nombres réels et binaire

Nous avons vu comment décomposer un entier en binaire :

21 = 24 +22 +20

21 = 10101(2)

Pour un réel, même chose, avec des puissances négatives de 2 :

21.625 = 24 +22 +20 +2−1 +2−3

21.625 = 10101.101(2)
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Nombres réels en binaire

Un nombre avec un nombre fini de décimales en base 10 peut avoir

une infinité de chiffres après la virgule en base 2 :

21.9 = 24 +22 +20 +2−1 +2−2 +2−3 +2−6 +2−7 +2−10 +2−11...

21.9 = 10101.1110011001100...(2)

Toutefois, on peut montrer qu’il y a nécessairement une périodicité

(comme pour les décimales d’un rationnel).

On note parfois la périodicité par une barre supérieure :

21.9 = 10101.11100(2)

Celle-ci peut être très longue.
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Comment stocker un réel en mémoire ?

On souhaite ranger cela dans 32 ou 64 bits.

Problèmes :

• on ne peut pas représenter la virgule

• il peut y avoir un nombre quelconque de chiffres de chaque côté

Solution : la représentation scientifique
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La représentation scientifique pour les décimaux

On peut mettre n’importe quel décimal non nul sous la forme :

±a ×10b où 1 É a < 10 et b entier.

Cette représentation est unique !

Par exemple, 102349.2211 =+1.023492211×105.
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La représentation scientifique en base 2

Même chose, mais en écrivant le nombre sous la forme

±a ×2b où 1 É a < 2 et b entier.

Par exemple,

21.625 = 10101.101(2)

=+1.0101101(2) ×24

=+1.0101101(2) ×10
100(2)

(2)

75



Quels morceaux stocker ?

Les parties en rouge sont toujours présentes, seules les parties en

bleu sont importantes

21.625 =+1.0101101(2)×24

Soit :

• le signe (+ ou −) ;

• les chiffres après la virgule ;

• l’exposant.
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La représentation IEEE sur 32 bits

21.625 =+1.0101101(2)×24

Pour représenter un réel sur 32 bits, la norme IEEE propose :

• 1 bit pour le signe (0 pour + et 1 pour −) ;

• 8 bits pour l’exposant ;

• 23 bits pour la mantisse (chiffres après la virgule).

Pour l’exposant, on ne stocke pas un entier signé en complément à

2 mais l’entier non signé b + (
28−1 −1

)
soit b +127.

signe exposant+127 mantisse

0 10000011 01011010000000000000000
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Et zéro ?

Zéro ne peut pas être représenté sous la forme a ×2b avec 1 É a !

On utilise alors le codage spécifique suivant :

signe exposant+127 mantisse

0 00000000 00000000000000000000000

Pour ne pas confondre avec 1.0×2−127, les valeurs admises, pour un

nombre normalisé, pour exposant+127 sont celles comprises entre

• 00000001(2), soit un exposant égal à -126 ;

• 11111110(2), soit un exposant égal à +127 ;
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Quels nombres positifs peut-on représenter ?

Plus petit nombre positif normalisé :

signe exposant+127 mantisse

0 00000001 00000000000000000000000

1.00000000000000000000000(2) ×2−126 ' 1.17549435×10−38

Plus grand nombre positif normalisé :

signe exposant+127 mantisse

0 11111110 11111111111111111111111

1.11111111111111111111111(2) ×2+127 ' 3.40282346×10+38
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Autres codages particuliers

En fait, il existe d’autres codages :

• pour représenter moins zéro ;

• pour représenter +∞ et −∞ ;

• pour représenter not-a-number (NaN) ;

• pour représenter des valeurs très petites, avec cependant moins
de chiffres significatifs (représentation dite dénormalisée)

• entre 1.4×10−45 et 1.17549421×10−38

• entre −1.17549421×10−38 et −1.4×10−45
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Pourquoi une norme ?

La norme IEEE-754 a été introduite en 1985.

Elle définit notamment :

• comment représenter des réels en binaire (les flottants) ;

• la façon d’effectuer les calculs sur ces flottants

(tous les bits du résultat corrects pour +, −, ×, ÷, p) ;

• différentes règles d’arrondis.
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Pourquoi une norme ?

Avant cette norme :

• le même calcul donnait des résultats différents selon le

processeur et le langage (manque de portabilité) ;

• certains choix étaient curieux ou surprenants

(x + y différent de y +x, 0.5×x différent de x/2.0, etc.)
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Précision sur une valeur normalisée

Le dernier bit significatif d’une valeur normalisée vaut 2−23+b .

On a donc une précision relative ∆x
x d’environ 2−23 ' 1.2×10−7.

Les calculs se font donc avec ' sept chiffres significatifs.

Valeurs représentables proches de 1 :

0 01111110 11111111111111111111110 0.99999988

0 01111110 11111111111111111111111 0.99999994

0 01111111 00000000000000000000000 1.00000000

0 01111111 00000000000000000000001 1.00000012

0 01111111 00000000000000000000010 1.00000024...
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La plupart des valeurs ne sont pas représentables !

Par exemple, 0.3 = 1.0011(2) ×2−2 ' 1.0011001100110011...×2−2

Il est nécessaire d’arrondir (ou de tronquer) la mantisse.

Valeurs représentables proches de 0.3 :

0 01111101 00110011001100110011000 0.299999952

0 01111101 00110011001100110011001 0.299999982

0 01111101 00110011001100110011010 0.300000012 ←
0 01111101 00110011001100110011011 0.300000042

0 01111101 00110011001100110011100 0.300000072...
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Et l’affichage ?

Une infinité de réels ont donc la même approximation flottante.

0 01111011 10100011000001010101001 0.1022999957...

0 01111011 10100011000001010101010 0.1023000032... (A)

0 01111011 10100011000001010101011 0.1023000106...

Tous les réels dans l’intervalle [0.10229999945,0.1023000069] sont

représentés par le même flottant (A).

À l’affichage, on choisit celui avec la plus courte mantisse décimale.

On affiche donc ici 0.1023.
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En cas d’ambiguité...

Parfois, il y a plusieurs « candidats » possibles :

0 01111011 10100011000001010101000 0.1022999882...

0 01111011 10100011000001010101001 0.1022999957... (B)

0 01111011 10100011000001010101010 0.1023000032...

8 candidats avec 9 décimales dans [0.10229999195,0.10229999945].

On choisit le plus proche de la valeur flottante

C’est-à-dire dans le cas présent 0.102299996.
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Bilan sur l’affichage

Finalement, voici quelques flottants 32 bits et l’affichage associé :

Représentation flottante 32 bits Affichage

0 01111011 10100011000001010101000 0.10229999

0 01111011 10100011000001010101001 0.102299996

0 01111011 10100011000001010101010 0.1023

0 01111011 10100011000001010101011 0.10230001

0 01111011 10100011000001010101100 0.10230002

On « cache » l’approximation autant que possible.
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Limitations des flottants 32 bits

Les flottants sur 32 bits sont fréquemment insuffisants :

• seulement 7 chiffres significatifs ;

• pas de nombres entre 0 et 1,40×10−45 ;

• pas de nombres supérieurs à 3,40×1038.

→ Flottants IEEE sur 64 bits (double précision) :

• 1 bit pour le signe (0 pour + et 1 pour −) ;

• 11 bits pour l’exposant (on range exposant+
(
211−1 −1

)
) ;

• 52 bits pour la mantisse (chiffres après la virgule).
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Flottants sur 64 bits (double précision)

Précision relative ∆x
x d’environ 2−52 ' 2.2×10−16,

soit quinze à seize chiffres significatifs.

Peut représenter des nombres 4,94×10−324 à 1,80×10308

(avec précision réduite pour ceux inférieurs à 2,23×10−308).

≡ généralement au type double en C, au type float en OCaml
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Calculs en arithmétique flottante

Les résultats des calculs sont mémorisés comme des flottants.

Ils vont donc être arrondis à la plus proche valeur représentable !

Les valeurs décimales fournies par l’utilisateur le sont aussi.

En général, l’affichage rend les calculs apparamment corrects :

# 0.1 +. 0.1;;

- : float = 0.2
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Conséquences sur les calculs

On peut cependant remarquer le mécanisme d’arrondi :

# 0.10229999999999997;;

- : float = 0.10229999999999997

# 0.10229999999999998;;

- : float = 0.10229999999999997

# 0.1022999999999999951;;

- : float = 0.10229999999999999

# 0.102299999999999996;;

- : float = 0.1023
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Conséquences sur les calculs

Certains calculs peuvent sembler imprécis, voire incorrects :

# 0.1 +. 0.2;;

- : float = 0.30000000000000004

# 0.1 *. 3.0;;

- : float = 0.30000000000000004

# 0.1 +. 0.2 = 0.3;;

- : bool = false

# 0.1 *. 3.0 = 0.3;;

- : bool = false
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S’explique en considérant les arrondis successifs

0.0999999999999999917

0.1000000000000000056 ← 0.1

0.1000000000000000194

...

0.199999999999999983

0.200000000000000011 ← 0.2

0.200000000000000039

...

0.299999999999999934

0.299999999999999989 ← 0.3

0.300000000000000044 ← 0.1+0.2 ou 0.1×3

0.300000000000000099
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Dans la vie réelle

Durant la première guerre du golfe, des missiles américains Patriots

associés à un système de suivi radar performant ont eu pour tâche

d’intercepter les missiles irakiens Scud.
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Bug du système

Le 25 février 1991, le système radar ne parvient pas à lancer

convenablement des Patriots contre un Scud visant des

barraquements américains

Le missile Scud fait 28 morts et 98 blessés

L’analyse de l’incident a montré qu’une imprécision de calcul a

provoqué l’incapacité du radar à suivre le Scud

(cela étant, en pratique, l’efficacité des missiles anti-missiles, même

sans bug, était et reste extrêmement limité)
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Origine de l’erreur de calcul

Le radar compte les dixièmes de seconde écoulés (n, entier)

Pour le suivi, n æ 0.1×n, flottant sur 24 bits

0.1 non représentable 7−→ 95 ns d’erreur pour chaque 0,1 s

Après 100 h, erreur de 0,34 s

Pour v = 1676 m/s, 573 m d’erreur !
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Correction du bug

Une modification de l’algorithme de conversion entier→flottant

permet de s’affranchir de cette erreur

Malheureusement, le correctif est arrivé un jour trop tard

Les israéliens avaient noté et signalé une imprécision du radar de

20% après 8 h de fonctionnement en continu

Les américains pensaient que le problème n’était pas critique car le

système devait être réinitialisé régulièrement (cela prend moins

d’une minute), remettant l’erreur à zéro
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Absorption

Les petites valeurs peuvent être absorbées par les grandes :

# let a = 6.022e23 and b = 123456.789;;

val a : float = 6.022e+023

val b : float = 123456.789

# a +. b;;

- : float = 6.022e+023

# a +. b = a;;

- : bool = true
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Absorption

Un exemple d’absorption partielle en simple précision :

1010101011001010101.0101100000000000000000

+ 11.0010101110100110101011

= 1010101011001011000.1000001110100110101011

Un exemple d’absorption totale en simple précision :

1010101011001010101.010110000000000000000000000000

+ 0.000000111010011010101101101001

= 1010101011001010101.010110111010011010101101101001
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Cancellation

On peut avoir une perte de précision lors de la soustraction de

valeurs proches :

# let a = 30000000000.888889

and b = 30000000000.111111;;

val a : float = 30000000000.888889

val b : float = 30000000000.111111

# a +. b;;

- : float = 60000000001.

# a -. b;;

- : float = 0.77777862548828125
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Cancellation

Un exemple de cancellation en simple précision :

1010101011001010101.01011

- 1010101011001010011.00001

= 10.0101000000000000000000

On ajoute des bits supplémentaires (des zéros) qui ne sont pas

nécessairement les bons !

101



Cancellation catastrophique

Le résultat peut être catastrophique si les deux valeurs ont déjà subi

des arrondis (par exemple par absorption) :

# let a = 6.022e23 and b = 123456.789;;

val a : float = 6.022e+023

val b : float = 123456.789

# a +. b -. a;;

- : float = 0.

# 1. /. (a +. b -. a);;

- : float = infinity
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Calcul d’un terme d’une suite

Considérons la suite récurrente suivante :

u0 = e ;

un = (un−1 −1)×n pour n ≥ 1.

Que vaut u50 ?
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Calcul itératif

On peut calculer itérativement les termes de la liste :

# let u = ref (exp 1.0);;

val u : float ref = {contents = 2.7182818284590451}

# for i = 1 to 50 do

u := (!u -. 1.0) *. float_of_int i

done;;

- : unit = ()

# !u;;

- : float = -4.3968039301820685e+048
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Calcul direct

On peut cependant montrer que

u50 = 50!×
(

u0 −
49∑

k=0

1

k !

)

Essayons...

# let rec fact n =

if n = 0 then 1.0 else

float_of_int n *. fact (n - 1);;

val fact : int -> float = <fun>
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Calcul direct

u50 = 50!×
(

u0 −
49∑

k=0

1

k !

)

# let s = ref 0.0;

- : unit = ()

# for i = 0 to 49 do s := !s +. 1.0 /. fact i done;;

val s : float ref = {contents = 0.}

# fact 50 *. (exp 1.0 -. !s);;

- : float = -1.3506570618255054e+049

Ce n’est pas le même résultat...
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Creusons encore...

On sait, par ailleurs, que

e = 1

0!
+ 1

1!
+ 1

2!
+ 1

3!
+ 1

4!
+ ... =

∞∑
k=0

1

k !
donc u50 = 50!×

∞∑
k=50

1

k !

Cela donne...

# let s = ref 0.0;;

val s : float ref = {contents = 0.}

# for i = 50 to 1000 do s := !s +. 1.0 /. fact i done;;

- : unit = ()

# fact 50 *. !s;;

- : float = 1.019992165836668

C’est cette fois-ci complètement différent ! 107



Creusons encore...

Ce n’est pas parce qu’on a arrêté la somme à 1000 :

# 1. /. fact 200;;

- : float = 0.
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Au bilan

On a donc trois résultats différents pour le même calcul :

• -4.3968039301820685e+48

• -1.3506570618255054e+49

• 1.019992165836668

Le dernier résultat est quasiment la bonne valeur.

La différence entre les deux premiers est causée par des erreurs

d’arrondis successifs.

La différence entre le troisième et les deux autres par le fait que

« exp 1.0 » n’est pas tout à fait égal à e !
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Influence de u0

Pour s’en convaincre :

# let s = ref 0.0;;

val s : float ref = {contents = 0.}

# for i = 0 to 49 do s := !s +. 1.0 /. fact i done;;

- : unit = ()

# fact 50 *. (exp 1.0 -. !s);;

- : float = -1.3506570618255054e+049

# fact 50 *. (exp 1.0 +. 2.** -52. -. !s);;

- : float = 0.

# fact 50 *. (exp 1.0 +. 2.** -50. -. !s);;

- : float = 1.3506570618255054e+049
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La série harmonique

La série harmonique (un) est définie par

un = 1

n

On définit classiquement la n-ième somme partielle Hn

Hn = 1+ 1

2
+ 1

3
+ ...+ 1

n
=

n∑
k=1

1

k

Hn = ln(n)+γ+O(1) −−−−→
n→∞ +∞
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Calcul des sommes partielles

On peut vouloir calculer Hn de la façon suivante :

# let h n =

let s = ref 0. in

for k = 1 to n do

s := !s +. 1.0 /. float_of_int k

done;

!s;;

val h : int -> float = <fun>

Problème : h n ne tend pas vers +∞
En effet, 1/k finit par être absorbé par s !

En double précision, lorsque s
1/k atteint 252 soit k ' 1014.
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La série harmonique

La série, calculée de cette façon, finit par converger :

100 102 104 106 108 1010 1012 1014 1016
0

5

10

15

20

25

30

35

40
Calcul numérique des sommes partielles

H(n) correct
calcul avec float 64 bits
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Calcul des sommes partielles

Changer l’ordre de sommation change le résultat...

# let hd n =

let s = ref 0. in for k = n downto 1 do

s := !s +. 1.0 /. float_of_int k

done; !s;;

val hd : int -> float = <fun>

# hd 10000000000;;

- : float = 23.603066594888269

# h 10000000000;;

- : float = 23.6030665949975

Il est possible (quoique délicat) de calculer correctement Hn . 114



Précautions à prendre sur les flottants

Quelques points à garder en tête :

• préférer les entiers aux flottants aussi souvent que possible ;

• garder à l’esprit que les résultats peuvent avoir des problèmes

de précision importants ;

• parfois, (a +b)+ c 6= a + (b + c) ;

• parfois (a +b)−a 6= b ;

• sommer des flottants nécessite des précautions !
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Test de nullité correct d’un réel

On n’écrira en général pas :

if x = 0 then

...

Mais de préférence :

if fabs x < 1e-10 then

...

où

let fabs x =

if x < 0.0 then -.x else x;;
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Test d’« égalité » correct de réels

De même, on n’écrira en général pas :

if x = y then

...

Mais de préférence :

if fabs (x-y) < max (fabs x) (fabs y) *. 1e-10 then

...

117


