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Le problème à résoudre

On veut également pouvoir ranger du texte en mémoire !

Idée simple : un caractère ≡ un entier naturel

« point de code »
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Premiers pas

Chaque fabricant choisit son propre encodage

(lié à EBCDIC)

C’est le chaos...
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Des premières ébauches de standardisation

Vers 1960 : American Standard Code for Information Interchange

000... 001... 010... 011... 100... 101... 110... 111...

...0000 NULL DLE 0 @ P ‘ p

...0001 SOH DC1 ! 1 A Q a q

...0010 STX DC2 ” 2 B R b r

...0011 ETX DC3 # 3 C S c s

...0100 EOT DC4 $ 4 D T d t

...0101 ENQ NAK % 5 E U e u

...0110 ACK SYN & 6 F V f v

...0111 BEL ETB ’ 7 G W g w

...1000 BS CAN ( 8 H X h x

...1001 TAB EM ) 9 I Y i y

...1010 LF SUB * : J Z j z

...1011 VT ESC + ; K [ k {

...1100 FF FS , < L \ l |

...1101 CR GS - = M ] l }

...1110 SO RS . > N ˆ n ˜

...1111 SI US / ? O o DEL
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Le code ASCII

Code sur 7 bits (dans �0 . . 127�)
(possibilité d’avoir un bit de contrôle)

Nombreux codes de contrôle

• pour les communications (SYN, ACK, NAK, EOT)

• pour le conditionnement des données (SOH, STX, ETX)

• pour la gestion de leur interprétation (SI, SO, DLE, ESC)

• pour le contrôle des périphériques (DC1... DC4)

• pour la gestion de la position (BS, TAB, VT, CR, LF, FF)...
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Standardisation ISO/IEC 646

Standardisation dans la norme ISO/IEC 646

Plusieurs variantes pour d’autres langues que l’anglais

Un caractère typographique n’est pas forcément sur 7 bits

par exemple, « 60 08 65 » (≡ ` BS e) 7→ è
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Variantes locales

ISO646-IRV (≡ US)

000... 001... 010... 011... 100... 101... 110... 111...

...0000 NULL DLE 0 @ P ‘ p

...0001 SOH DC1 ! 1 A Q a q

...0010 STX DC2 ” 2 B R b r

...0011 ETX DC3 # 3 C S c s

...0100 EOT DC4 $ 4 D T d t

...0101 ENQ NAK % 5 E U e u

...0110 ACK SYN & 6 F V f v

...0111 BEL ETB ’ 7 G W g w

...1000 BS CAN ( 8 H X h x

...1001 TAB EM ) 9 I Y i y

...1010 LF SUB * : J Z j z

...1011 VT ESC + ; K [ k {

...1100 FF FS , < L \ l |

...1101 CR GS - = M ] l }

...1110 SO RS . > N ˆ n ˜

...1111 SI US / ? O o DEL
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Variantes locales

ISO646-FR et ISO646-FR-0

000... 001... 010... 011... 100... 101... 110... 111...

...0000 NULL DLE 0 à P µ p

...0001 SOH DC1 ! 1 A Q a q

...0010 STX DC2 ” 2 B R b r

...0011 ETX DC3 3 C S c s

...0100 EOT DC4 $ 4 D T d t

...0101 ENQ NAK % 5 E U e u

...0110 ACK SYN & 6 F V f v

...0111 BEL ETB ’ 7 G W g w

...1000 BS CAN ( 8 H X h x

...1001 TAB EM ) 9 I Y i y

...1010 LF SUB * : J Z j z

...1011 VT ESC + ; K ° k é

...1100 FF FS , < L ç l ù

...1101 CR GS - = M § l è

...1110 SO RS . > N ˆ n ¨

...1111 SI US / ? O o DEL
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Les extensions

On ne peut plus écrire de C !

{ et } peuvent être remplacés par ??< et ??>

Comme ce n’est pas très lisible, on a aussi <% et %>

bool foo(bool t??(??), unsigned i, unsigned j) ??<

if (t<:i:> ??!??! t<:j:> <% return i??'j; %>

return ??-i;

??>

Bon, OK, ça reste illisible
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Les extensions

Idée : profiter des 128 codes restants !

À nouveau, quantité de standards

• IBM CP437, CP850, CP863...

• ISO/CEI 8859-1 (latin1) à 8859-16

• Microsoft CP1252

• ISO-8859-1

• ...
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Les extensions

Le résultat :

Latin9 (ISO 8859-15) CP457

0xC9 É

0x90 invalide É
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Le standard Unicode

Points de code entre 0x000000 et 0x10FFFF

Plus de 144000 attribués (sur 1112064 possibles)

Dont symboles, emojis, codes de contrôle...

Les 256 premiers basés sur ISO 8859-1 (Latin1)
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Le standard Unicode

On ne veut pas utiliser 21 bits...

Traduction en séquences d’octets de longueur variable

• UTF-8

• UTF-16

• UCS-2

• UTF-32...
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Les châınes de caractères

Il faut donc distinguer

• une séquence de caractères/symboles

• une succession de bytes encodant cette séquence

Certains langages permettent de manipuler les symboles
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Les châınes de caractères en Python 3
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Difficultés

Beaucoup de difficultés pratiques :

• que doit-on considérer comme « élémentaire » ?

• plusieurs représentations pour une même châıne...

La longueur, l’égalité posent problème

Le stockage également !

15



Les châınes de caractères en C et OCaml

On ne considère que des tableaux de bytes

Les bibliothèques standard n’interprètent pas les codes

Module OCaml String : « A string s of length n is an indexable

and immutable sequence of n bytes. For historical reasons these

bytes are referred to as characters »
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Les châınes de caractères en C

On utilise des tableaux de char

Les fonctions manipulant des châınes utilisent des char*
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Les châınes de caractères en C

Problème : où se termine la châıne ?

Solution : on utilise une sentinelle, le code 0x00

« Hello MP2I! »

7→ « 48 65 6c 6c 6f 20 4d 50 32 49 21 00 »
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Littéraux

Pour définir une châıne :

char ch[] = {0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x20,

0x4d, 0x50, 0x32, 0x49, 0x21, 0x00};

char ch[] = {'H', 'e', 'l', 'l', 'o', ' ',

'M', 'P', '2', 'I', '!', '\0'};

Ou, plus simple :

char ch[] = "Hello MP2I!";
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Manipuler une châıne de caractères

Une châıne se manipule comme un tableau

ch[i] désigne le char d’index i

Si on écrit :

char ch[] = "Hello MP2I!";

ch[5] = 21;

ch[6] = 0;

Un affichage de ch donne « Hello! »

(taille en mémoire inchangée, &ch[7] désigne encore P2I!)
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Manipuler une châıne de caractères

On peut utiliser

ch[5] = '!';

plutôt que

ch[5] = 21;
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Réserver de la place pour une châıne

Pour réserver de la place en mémoire pour une châıne :

char ch[100] = { 0 };

Ou bien

char* ch = malloc(100 * sizeof(char));

ch[0] = 0;

Il est prudent d’avoir toujours un 0 dans le tableau !
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S’affranchir de l’encodage

Les codes binaires dans le fichier source

se retrouvent à l’identique dans l’exécutable binaire

et sont reproduits tels quels en sortie

Seuls " et \ nécessitent une interprétation particulière
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Codes d’échappement

Des séquences spéciales pour les éléments problématiques :

« \" » pour représenter « " »

« \\ » pour représenter « \ »

« \0 » pour représenter le caractère de code 0x0

« \n » pour représenter un retour à la ligne

etc.
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Retour à la ligne
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Retour à la ligne

Différentes conventions pour les fins de ligne :

• Windows, Symbian OS : CRLF (\r\n soit 0x0d 0x0a)

• Unix, OS-X : LF (\n soit 0x0a)

• Mac OS : CR (\r soit 0x0d)

Cause régulièrement de mauvaises surprises
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Immutabilité des châınes littérales

On peut aussi écrire

char* ch = "Hello MP2I!";

MAIS les châınes littérales produisent un tableau de char

localisé dans une zone mémoire immutable

Un char ch[] déclare un tableau dans une zone mutable
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Immutabilité des châınes littérales

On a donc

char ch[] = "Hello MP2I!";

char c = ch[0]; // Correct

ch[0] = 'Z'; // Correct

En revanche :

char* ch = "Hello MP2I!";

char c = ch[0]; // Correct

ch[0] = 'Z'; // Erreur de segmentation !
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Quelques fonctions

La bibliothèque standard fournit des outils

Elle travaille avec des char*

Import des fonctions avec

#include <string>
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Longueur d’une châıne

int strlen(char* str)

Retourne la longueur de str

La châıne doit se terminer par \0

Le \0 n’est pas compté

Plus sûr :

strnlen_s(char* str, size_t strsz)
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Comparer des châınes

Cela peut s’écrire :

int my_strlen(char* str) {

int i=0;

while (str[i] != 0) { i++; }

return i;

}
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Comparer des châınes

int strcmp(char* lhs, char* rhs)

Retourne 0 si égales, -1 si lhs⪯L rhs, +1 sinon

Les châınes doivent se terminer par \0

Les caractères sont comparés comme unsigned char

Plus sûr :

int strncmp(char* lhs, char* rhs, size_t count)
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Comparer des châınes

int my_strcmp(char* lhs, char* rhs) {

int i=0;

while (lhs[i] != 0 && lhs[i] == rhs[i]) { i++; }

if (lhs[i] == 0 && rhs[i] == 0) { return 0; }

if (lhs[i] == 0) { return -1; }

if (rhs[i] == 0) { return 1; }

unsigned char cl = lhs[i], cr = rhs[i];

if (cl < cr) { return -1; } else { return 1; }

}
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Copier des châınes

char* strcpy(char* dest, char* src)

Copie le contenu à l’adresse src vers l’adresse dest

Les châınes doivent se terminer par \0

La destination doit être assez grande

Les zones mémoires doivent être distinctes

Plus sûr : strncpy, strcpy_s, strncpy_s...

34



Les risques

Considérons par exemple :

char ch1[] = "Hello";

char c = 37;

char ch2[] = "World!";

strcpy(ch1, "Hello * MP2I!");

Si c et ch2 se trouvent après en mémoire

avec strcpy, ils sont écrasés !
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Entrées de l’utilisateur

On peut utiliser scanf pour lire des données

Pour lire un entier :

int val = 0;

scanf("%d", &val);

Pour une châıne de caractères :

char buffer[100] = { 0 };

scanf("%s", buffer);
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Super, merci !

char invite[] = "Hello";

char value = 37;

bool locked = true;

char name[5] = { 0 };

printf("Entrez votre nom : ");

scanf("%s", name);

printf("\n%s %s!\n\n", invite, name);

if (locked) { foo_locked(); }

else { foo_unlocked(); }
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Super, merci !

Bilan :

• tout débordement de buffer peut avoir des conséquences

• scanf peut être très dangereux

• la MP2I ouvre des portes

Solutions possibles :

• scanf("%4s", buffer); (attention au \0)

• fgets(buffer, 5, stdin);
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Copier des données binaires

void* memcpy(void* dest, void* src, size_t count)

Copie count bytes de src vers dest

Ignore les éventuels \0

void* memset(void* dest, int ch, size_t count)

Copie count fois ch converti en unsigned char vers dest
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Quelques autres fonctions

char* strchr(char* str, int ch)

première occurrence de ch

char* strrchr(char* str, int ch)

dernière occurrence de ch

char* strstr(char* str, char* substr)

première occurrence de substr

char* strcat(char* dest, char *src)

ajout de src à la fin de dest
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Quelques autres fonctions

int atoi(char* str)

Lecture d’un entier

double atof(char* str)

Lecture d’un flottant
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Recherche de sous-châıne

char* my_strstr(char* str, char* substr) {

int n=strlen(str), ns=strlen(substr);

for (int i=0; i<n-ns+1; ++i) {

int j = 0;

while (j<ns && str[i+j]==substr[j]) {

j++;

}

if (j == ns) {

return &(str[i]);

}

}

return NULL;

}
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Recherche de sous-châıne

Complexité en O ((n −ns +1)×ns) On fera bien mieux !

Cette complexité est bien atteinte :

Exemple : recherche de aaaaab dans aaaaaaaaaaaaa...
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Désigner un caractère dans le source

On peut désigner un « caractère » en écrivant « 'x' »

Cela définit en fait un... int !

Il faut qu’il n’y ait qu’un seul byte dans le source entre les '

« (c == 'à') » peut être imprévisible

44



Et en OCaml ?

Un type char

littéraux avec ' (ex : 'a', '\n', '\000'...)

Un type string

littéraux avec " (ex : "Hello MP2I!")

≡ suite d’octets, mais représentation interne non spécifiée

les châınes sont immutables (il existe un type bytes mutable)

la taille est mémorisée en interne, \000 peut se trouver dans la

châıne
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Accéder à un caractère

# let ch = "Hello MP2I!";;

val ch : string = "Hello MP2I!"

# String.get;;

- : string -> int -> char = <fun>

# String.get ch 6;;

- : char = 'M'

# ch.[6];;

- : char = 'M'
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Quelques fonctions

Pour obtenir la longueur d’une châıne :

# String.length;;

- : string -> int = <fun>

Le calcul de la taille est en temps constant O (1)
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Quelques fonctions

Pour obtenir une sous-châıne :

# String.sub;;

- : string -> int -> int -> string = <fun>

Le second entier est la longueur du résultat

Crée une nouvelle châıne en la copiant

(Complexité liée à la taille du résultat)
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Quelques fonctions

Pour créer une châıne répétition d’un même caractère :

# String.make;;

- : int -> char -> string = <fun>

Pour obtenir la première occurrence d’un caractère :

# String.index;;

- : string -> char -> int = <fun>

49


