
Châınes de caractères

G. Dewaele

Le problème à résoudre

On veut également pouvoir ranger du texte en mémoire !

Idée simple : un caractère ≡ un entier naturel

« point de code »

1

Premiers pas

Chaque fabricant choisit son propre encodage

(lié à EBCDIC)

C’est le chaos...

2

Des premières ébauches de standardisation

Vers 1960 : American Standard Code for Information Interchange

000... 001... 010... 011... 100... 101... 110... 111...

...0000 NULL DLE 0 @ P ‘ p

...0001 SOH DC1 ! 1 A Q a q

...0010 STX DC2 ” 2 B R b r

...0011 ETX DC3 # 3 C S c s

...0100 EOT DC4 $ 4 D T d t

...0101 ENQ NAK % 5 E U e u

...0110 ACK SYN & 6 F V f v

...0111 BEL ETB ’ 7 G W g w

...1000 BS CAN (8 H X h x

...1001 TAB EM) 9 I Y i y

...1010 LF SUB * : J Z j z

...1011 VT ESC + ; K [k {

...1100 FF FS , < L \ l |

...1101 CR GS - = M] l }

...1110 SO RS . > N ˆ n ˜

...1111 SI US / ? O o DEL

3

Le code ASCII

Code sur 7 bits (dans �0 . . 127�)
(possibilité d’avoir un bit de contrôle)

Nombreux codes de contrôle

• pour les communications (SYN, ACK, NAK, EOT)

• pour le conditionnement des données (SOH, STX, ETX)

• pour la gestion de leur interprétation (SI, SO, DLE, ESC)

• pour le contrôle des périphériques (DC1... DC4)

• pour la gestion de la position (BS, TAB, VT, CR, LF, FF)...

4

Standardisation ISO/IEC 646

Standardisation dans la norme ISO/IEC 646

Plusieurs variantes pour d’autres langues que l’anglais

Un caractère typographique n’est pas forcément sur 7 bits

par exemple, « 60 08 65 » (≡ ` BS e) 7→ è

5

Variantes locales

ISO646-IRV (≡ US)

000... 001... 010... 011... 100... 101... 110... 111...

...0000 NULL DLE 0 @ P ‘ p

...0001 SOH DC1 ! 1 A Q a q

...0010 STX DC2 ” 2 B R b r

...0011 ETX DC3 # 3 C S c s

...0100 EOT DC4 $ 4 D T d t

...0101 ENQ NAK % 5 E U e u

...0110 ACK SYN & 6 F V f v

...0111 BEL ETB ’ 7 G W g w

...1000 BS CAN (8 H X h x

...1001 TAB EM) 9 I Y i y

...1010 LF SUB * : J Z j z

...1011 VT ESC + ; K [k {

...1100 FF FS , < L \ l |

...1101 CR GS - = M] l }

...1110 SO RS . > N ˆ n ˜

...1111 SI US / ? O o DEL

6

Variantes locales

ISO646-FR et ISO646-FR-0

000... 001... 010... 011... 100... 101... 110... 111...

...0000 NULL DLE 0 à P µ p

...0001 SOH DC1 ! 1 A Q a q

...0010 STX DC2 ” 2 B R b r

...0011 ETX DC3 3 C S c s

...0100 EOT DC4 $ 4 D T d t

...0101 ENQ NAK % 5 E U e u

...0110 ACK SYN & 6 F V f v

...0111 BEL ETB ’ 7 G W g w

...1000 BS CAN (8 H X h x

...1001 TAB EM) 9 I Y i y

...1010 LF SUB * : J Z j z

...1011 VT ESC + ; K ° k é

...1100 FF FS , < L ç l ù

...1101 CR GS - = M § l è

...1110 SO RS . > N ˆ n ¨

...1111 SI US / ? O o DEL

7

Les extensions

On ne peut plus écrire de C !

{ et } peuvent être remplacés par ??< et ??>

Comme ce n’est pas très lisible, on a aussi <% et %>

bool foo(bool t??(??), unsigned i, unsigned j) ??<

if (t<:i:> ??!??! t<:j:> <% return i??'j; %>

return ??-i;

??>

Bon, OK, ça reste illisible

8

Les extensions

On ne peut plus écrire de C !

{ et } peuvent être remplacés par ??< et ??>

Comme ce n’est pas très lisible, on a aussi <% et %>

bool foo(bool t??(??), unsigned i, unsigned j) ??<

if (t<:i:> ??!??! t<:j:> <% return i??'j; %>

return ??-i;

??>

Bon, OK, ça reste illisible

8

Les extensions

On ne peut plus écrire de C !

{ et } peuvent être remplacés par ??< et ??>

Comme ce n’est pas très lisible, on a aussi <% et %>

bool foo(bool t??(??), unsigned i, unsigned j) ??<

if (t<:i:> ??!??! t<:j:> <% return i??'j; %>

return ??-i;

??>

Bon, OK, ça reste illisible

8

Les extensions

On ne peut plus écrire de C !

{ et } peuvent être remplacés par ??< et ??>

Comme ce n’est pas très lisible, on a aussi <% et %>

bool foo(bool t??(??), unsigned i, unsigned j) ??<

if (t<:i:> ??!??! t<:j:> <% return i??'j; %>

return ??-i;

??>

Bon, OK, ça reste illisible

8

Les extensions

Idée : profiter des 128 codes restants !

À nouveau, quantité de standards

• IBM CP437, CP850, CP863...

• ISO/CEI 8859-1 (latin1) à 8859-16

• Microsoft CP1252

• ISO-8859-1

• ...

9

Les extensions

Le résultat :

Latin9 (ISO 8859-15) CP457

0xC9 É

0x90 invalide É

10

Le standard Unicode

Points de code entre 0x000000 et 0x10FFFF

Plus de 144000 attribués (sur 1112064 possibles)

Dont symboles, emojis, codes de contrôle...

Les 256 premiers basés sur ISO 8859-1 (Latin1)

11

Le standard Unicode

On ne veut pas utiliser 21 bits...

Traduction en séquences d’octets de longueur variable

• UTF-8

• UTF-16

• UCS-2

• UTF-32...

12

Les châınes de caractères

Il faut donc distinguer

• une séquence de caractères/symboles

• une succession de bytes encodant cette séquence

Certains langages permettent de manipuler les symboles

13

Les châınes de caractères en Python 3

14

Difficultés

Beaucoup de difficultés pratiques :

• que doit-on considérer comme « élémentaire » ?

• plusieurs représentations pour une même châıne...

La longueur, l’égalité posent problème

Le stockage également !

15

Les châınes de caractères en C et OCaml

On ne considère que des tableaux de bytes

Les bibliothèques standard n’interprètent pas les codes

Module OCaml String : « A string s of length n is an indexable

and immutable sequence of n bytes. For historical reasons these

bytes are referred to as characters »

16

Les châınes de caractères en C

On utilise des tableaux de char

Les fonctions manipulant des châınes utilisent des char*

17

Les châınes de caractères en C

Problème : où se termine la châıne ?

Solution : on utilise une sentinelle, le code 0x00

« Hello MP2I! »

7→ « 48 65 6c 6c 6f 20 4d 50 32 49 21 00 »

18

Littéraux

Pour définir une châıne :

char ch[] = {0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x20,

0x4d, 0x50, 0x32, 0x49, 0x21, 0x00};

char ch[] = {'H', 'e', 'l', 'l', 'o', ' ',

'M', 'P', '2', 'I', '!', '\0'};

Ou, plus simple :

char ch[] = "Hello MP2I!";

19

Manipuler une châıne de caractères

Une châıne se manipule comme un tableau

ch[i] désigne le char d’index i

Si on écrit :

char ch[] = "Hello MP2I!";

ch[5] = 21;

ch[6] = 0;

Un affichage de ch donne « Hello! »

(taille en mémoire inchangée, &ch[7] désigne encore P2I!)

20

Manipuler une châıne de caractères

On peut utiliser

ch[5] = '!';

plutôt que

ch[5] = 21;

21

Réserver de la place pour une châıne

Pour réserver de la place en mémoire pour une châıne :

char ch[100] = { 0 };

Ou bien

char* ch = malloc(100 * sizeof(char));

ch[0] = 0;

Il est prudent d’avoir toujours un 0 dans le tableau !

22

S’affranchir de l’encodage

Les codes binaires dans le fichier source

se retrouvent à l’identique dans l’exécutable binaire

et sont reproduits tels quels en sortie

Seuls " et \ nécessitent une interprétation particulière

23

S’affranchir de l’encodage

Les codes binaires dans le fichier source

se retrouvent à l’identique dans l’exécutable binaire

et sont reproduits tels quels en sortie

Seuls " et \ nécessitent une interprétation particulière

23

S’affranchir de l’encodage

Les codes binaires dans le fichier source

se retrouvent à l’identique dans l’exécutable binaire

et sont reproduits tels quels en sortie

Seuls " et \ nécessitent une interprétation particulière

23

S’affranchir de l’encodage

Les codes binaires dans le fichier source

se retrouvent à l’identique dans l’exécutable binaire

et sont reproduits tels quels en sortie

Seuls " et \ nécessitent une interprétation particulière

23

Codes d’échappement

Des séquences spéciales pour les éléments problématiques :

« \" » pour représenter « " »

« \\ » pour représenter « \ »

« \0 » pour représenter le caractère de code 0x0

« \n » pour représenter un retour à la ligne

etc.

24

Retour à la ligne

25

Retour à la ligne

Différentes conventions pour les fins de ligne :

• Windows, Symbian OS : CRLF (\r\n soit 0x0d 0x0a)

• Unix, OS-X : LF (\n soit 0x0a)

• Mac OS : CR (\r soit 0x0d)

Cause régulièrement de mauvaises surprises

26

Immutabilité des châınes littérales

On peut aussi écrire

char* ch = "Hello MP2I!";

MAIS les châınes littérales produisent un tableau de char

localisé dans une zone mémoire immutable

Un char ch[] déclare un tableau dans une zone mutable

27

Immutabilité des châınes littérales

On a donc

char ch[] = "Hello MP2I!";

char c = ch[0]; // Correct

ch[0] = 'Z'; // Correct

En revanche :

char* ch = "Hello MP2I!";

char c = ch[0]; // Correct

ch[0] = 'Z'; // Erreur de segmentation !

28

Quelques fonctions

La bibliothèque standard fournit des outils

Elle travaille avec des char*

Import des fonctions avec

#include <string>

29

Longueur d’une châıne

int strlen(char* str)

Retourne la longueur de str

La châıne doit se terminer par \0

Le \0 n’est pas compté

Plus sûr :

strnlen_s(char* str, size_t strsz)

30

Comparer des châınes

Cela peut s’écrire :

int my_strlen(char* str) {

int i=0;

while (str[i] != 0) { i++; }

return i;

}

31

Comparer des châınes

int strcmp(char* lhs, char* rhs)

Retourne 0 si égales, -1 si lhs⪯L rhs, +1 sinon

Les châınes doivent se terminer par \0

Les caractères sont comparés comme unsigned char

Plus sûr :

int strncmp(char* lhs, char* rhs, size_t count)

32

Comparer des châınes

int my_strcmp(char* lhs, char* rhs) {

int i=0;

while (lhs[i] != 0 && lhs[i] == rhs[i]) { i++; }

if (lhs[i] == 0 && rhs[i] == 0) { return 0; }

if (lhs[i] == 0) { return -1; }

if (rhs[i] == 0) { return 1; }

unsigned char cl = lhs[i], cr = rhs[i];

if (cl < cr) { return -1; } else { return 1; }

}

33

Copier des châınes

char* strcpy(char* dest, char* src)

Copie le contenu à l’adresse src vers l’adresse dest

Les châınes doivent se terminer par \0

La destination doit être assez grande

Les zones mémoires doivent être distinctes

Plus sûr : strncpy, strcpy_s, strncpy_s...

34

Les risques

Considérons par exemple :

char ch1[] = "Hello";

char c = 37;

char ch2[] = "World!";

strcpy(ch1, "Hello * MP2I!");

Si c et ch2 se trouvent après en mémoire

avec strcpy, ils sont écrasés !

35

Entrées de l’utilisateur

On peut utiliser scanf pour lire des données

Pour lire un entier :

int val = 0;

scanf("%d", &val);

Pour une châıne de caractères :

char buffer[100] = { 0 };

scanf("%s", buffer);

36

Super, merci !

char invite[] = "Hello";

char value = 37;

bool locked = true;

char name[5] = { 0 };

printf("Entrez votre nom : ");

scanf("%s", name);

printf("\n%s %s!\n\n", invite, name);

if (locked) { foo_locked(); }

else { foo_unlocked(); }

37

Super, merci !

Bilan :

• tout débordement de buffer peut avoir des conséquences

• scanf peut être très dangereux

• la MP2I ouvre des portes

Solutions possibles :

• scanf("%4s", buffer); (attention au \0)

• fgets(buffer, 5, stdin);

38

Super, merci !

Bilan :

• tout débordement de buffer peut avoir des conséquences

• scanf peut être très dangereux

• la MP2I ouvre des portes

Solutions possibles :

• scanf("%4s", buffer); (attention au \0)

• fgets(buffer, 5, stdin);

38

Super, merci !

Bilan :

• tout débordement de buffer peut avoir des conséquences

• scanf peut être très dangereux

• la MP2I ouvre des portes

Solutions possibles :

• scanf("%4s", buffer); (attention au \0)

• fgets(buffer, 5, stdin);

38

Super, merci !

Bilan :

• tout débordement de buffer peut avoir des conséquences

• scanf peut être très dangereux

• la MP2I ouvre des portes

Solutions possibles :

• scanf("%4s", buffer); (attention au \0)

• fgets(buffer, 5, stdin);

38

Copier des données binaires

void* memcpy(void* dest, void* src, size_t count)

Copie count bytes de src vers dest

Ignore les éventuels \0

void* memset(void* dest, int ch, size_t count)

Copie count fois ch converti en unsigned char vers dest

39

Quelques autres fonctions

char* strchr(char* str, int ch)

première occurrence de ch

char* strrchr(char* str, int ch)

dernière occurrence de ch

char* strstr(char* str, char* substr)

première occurrence de substr

char* strcat(char* dest, char *src)

ajout de src à la fin de dest

40

Quelques autres fonctions

int atoi(char* str)

Lecture d’un entier

double atof(char* str)

Lecture d’un flottant

41

Recherche de sous-châıne

char* my_strstr(char* str, char* substr) {

int n=strlen(str), ns=strlen(substr);

for (int i=0; i<n-ns+1; ++i) {

int j = 0;

while (j<ns && str[i+j]==substr[j]) {

j++;

}

if (j == ns) {

return &(str[i]);

}

}

return NULL;

}
42

Recherche de sous-châıne

Complexité en O ((n −ns +1)×ns) On fera bien mieux !

Cette complexité est bien atteinte :

Exemple : recherche de aaaaab dans aaaaaaaaaaaaa...

43

Désigner un caractère dans le source

On peut désigner un « caractère » en écrivant « 'x' »

Cela définit en fait un... int !

Il faut qu’il n’y ait qu’un seul byte dans le source entre les '

« (c == 'à') » peut être imprévisible

44

Et en OCaml ?

Un type char

littéraux avec ' (ex : 'a', '\n', '\000'...)

Un type string

littéraux avec " (ex : "Hello MP2I!")

≡ suite d’octets, mais représentation interne non spécifiée

les châınes sont immutables (il existe un type bytes mutable)

la taille est mémorisée en interne, \000 peut se trouver dans la

châıne

45

Accéder à un caractère

let ch = "Hello MP2I!";;

val ch : string = "Hello MP2I!"

String.get;;

- : string -> int -> char = <fun>

String.get ch 6;;

- : char = 'M'

ch.[6];;

- : char = 'M'

46

Quelques fonctions

Pour obtenir la longueur d’une châıne :

String.length;;

- : string -> int = <fun>

Le calcul de la taille est en temps constant O (1)

47

Quelques fonctions

Pour obtenir une sous-châıne :

String.sub;;

- : string -> int -> int -> string = <fun>

Le second entier est la longueur du résultat

Crée une nouvelle châıne en la copiant

(Complexité liée à la taille du résultat)

48

Quelques fonctions

Pour créer une châıne répétition d’un même caractère :

String.make;;

- : int -> char -> string = <fun>

Pour obtenir la première occurrence d’un caractère :

String.index;;

- : string -> char -> int = <fun>

49

