Chaines de caracteéres

G. Dewaele

Le probleme a résoudre

On veut également pouvoir ranger du texte en mémoire !

Idée simple : un caractére = un entier naturel
« point de code »

Premiers pas

Chaque fabricant choisit son propre encodage

0 000000000000000000000000000 00 000 0 0000 0000 0000 000000000000000
123456783 RIRBUISHTINAARANSBTAABNIRDUBHTBNWARBUGHTHH505 LIHSHTII0ORSHSETHOD I RBUBT B
1 lllll!ll iRt R ER R R AR AR RN AR SRS RN A RR AR RE RN RERRRR AR R AR R R A R R
222 222 1%2 22222222 2222222 G220 2200822222220 222 220022 2202022222222 202

%333! 33333333 3333333 333333 33333333333333333333333.33333333333333
4444 44444444 4004400 AAA4A4A4AL AAAAAARA0044ARA0A4A40044RRAAMMY
555555“55555555H5555555 5555555555555555 5555555 5555 5555555555555555
66666 66666666 6666666 6666666666666 66666 6 6666 666666666666666666
ERRRINERRRRRR SN ARRANE 771771f7111777771“1117“7__7777117717771711171
] 88.88688888 8888888 K B 888 88888838888888
l!! 099999999 99!9!!% QB%!I&9!959 99999999 g gga 999999999999999

lnnulnsunﬂln!n!n IS! 454647 484950 S 25354 5 S6ST BB 61 GETRONIRBABETEHN

4 Tt

(li¢ 3 EBCDIC)

C'est le chaos...

5081

Des premiéres ébauches de standardisation

Vers 1960 : American Standard Code for Information Interchange

000... 001... 010... 011... 100... 101... 110... 111...
...0000 | NULL DLE 0 © P ' p
0001 | SOH | DC1 ! 1 A Q a q
...0010 STX DC2 2 B R b r
...0011 ETX DC3 # 3 C S c s
...0100 EOT DC4 $ 4 D T d t
...0101 ENQ NAK % 5) E U e u
...0110 ACK SYN & 6 F \% f v
...0111 BEL ETB ! 7 G W g w
...1000 BS CAN (8 H X h X
...1001 TAB EM) 9 | Y i y
...1010 LF SUB & J z J z
...1011 VT ESC + ; K [k {
1100 | FF FS , < L \ | |
..1101 | CR GS = = M] [}
...1110 SO RS . > N . n -
A1 | sl us / ? 0 , o | DEL

Le code ASCII

Code sur 7 bits (dans [0..127])

(possibilité d'avoir un bit de contrdle)

Nombreux codes de controle

e pour les communications (SYN, ACK, NAK, EQT)

pour le conditionnement des données (SOH, STX, ETX)

pour la gestion de leur interprétation (SI, SO, DLE, ESC)

e pour le contrdle des périphériques (DC1... DC4)

pour la gestion de la position (BS, TAB, VT, CR, LF, FF)...

Standardisation ISO/IEC 646

Standardisation dans la norme ISO/IEC 646

Plusieurs variantes pour d'autres langues que I'anglais

Un caractere typographique n'est pas forcément sur 7 bits

par exemple, « 60 08 65» (= * BSe) — &

Variantes locales

1SO646-IRV (= US)

000... | 001... | o10... | @11... | 100... | 101... | 110... | 111...
...0000 | NULL DLE 0 © P ' p
...0001 SOH DC1 [1 A Q a q
...0010 STX DC2 "’ 2 B R b r
...0011 ETX DC3 # 3 C S c s
...0100 EOT DC4 $ 4 D T d t
...0101 ENQ NAK % 5 E u e u
...0110 ACK SYN & 6 F \Y f v
..0111 | BEL | ETB ' 7 © w g w
...1000 BS CAN (8 H X h X
...1001 TAB EM) 9 | Y i y
...1010 LF SUB & J VA j z
...1011 VT ESC + ; K [k {
..1100 | FF FS , < L \ [|
...1101 CR GS - = M] I }
...1110 SO RS . > N . n -
L1111 SI us / ? (0] - o DEL

Variantes locales

ISO646-FR et I1SO646-FR-0

000... | 001... | o10... | @11... | 100... | 101... | 110... | 111...
...0000 | NULL DLE 0 a P y p
...0001 SOH DC1 [1 A Q a q
...0010 STX DC2 "’ 2 B R b r
...0011 ETX DC3 u 3 C S C s
...0100 EOT DC4 $ 4 D T d t
...0101 ENQ NAK % 5 E u e u
...0110 ACK SYN & 6 F \Y% f Y,
..0111 | BEL | ETB ' 7 © w g w
...1000 BS CAN (8 H X h X
...1001 TAB EM) 9 | Y i y
...1010 LF SUB & J VA j z
... 1011 VT ESC + ; K ° k é
...1100 FF FS , < L ¢ | u
...1101 CR GS - = M 8§ | e
...1110 SO RS . > N . n "
L1111 SI us / ? O _ o DEL

Les extensions

On ne peut plus écrire de C!

Les extensions

On ne peut plus écrire de C!

{ et } peuvent étre remplacés par ??< et ??>

Les extensions

On ne peut plus écrire de C!

{ et } peuvent étre remplacés par ??< et ??>

Comme ce n'est pas trés lisible, on a aussi <% et %>

Les extensions

On ne peut plus écrire de C!

{ et } peuvent étre remplacés par ??< et ??>

Comme ce n'est pas trés lisible, on a aussi <% et %>

bool foo(bool t??(??), unsigned i, unsigned j) ?7<
if (t<:i:> ?2?2172?) t<:j:> <% return i??'j; %>
return ?7?-i;

77>

Bon, OK, ca reste illisible

Les extensions

Idée : profiter des 128 codes restants!

A nouveau, quantité de standards

e |IBM CP437, CP850, CP863...

ISO/CEI 8859-1 (latinl) a 8859-16
Microsoft CP1252

ISO-8859-1

Les extensions

Le résultat :

dZmin
C 0%min
Pimin

FNEHH J8min
EHBPE 2021

Latin9 (ISO 8859-15) CP457

0xC9 E F
0x90 invalide E

10

Le standard Unicode

Points de code entre 0x000000 et 0x10FFFF

Plus de 144000 attribués (sur 1112064 possibles)

Dont symboles, emojis, codes de contrdle...

Les 256 premiers basés sur ISO 8859-1 (Latinl)

11

Le standard Unicode

On ne veut pas utiliser 21 bits...

Traduction en séquences d’octets de longueur variable
e UTF-8
e UTF-16
e UCS-2
e UTF-32...

12

Les chaines de caracteres

Il faut donc distinguer
e une séquence de caractéres/symboles

e une succession de bytes encodant cette séquence

Certains langages permettent de manipuler les symboles

13

Les chaines de caractéres en Python 3

In [1]: ch = "J'Q OCaml et C"

In [2]: len(ch)
Out[2]: 14

In [3]: code = ch.encode("utf8")

In [4]: " ".join(hex(c)[2:] for c in code)
Out[4]: 'da 27 f0 9f a7 al 20 4f 43 61 6d 6¢C 20 65 74 20 43'

In [5]: len(code)
Qut[5]: 17

In [6]: code.._decode("cp1252")
Qut[6]: "J'dY§i OCaml et C"

14

Difficultés

Beaucoup de difficultés pratiques :
e que doit-on considérer comme « élémentaire » ?

e plusieurs représentations pour une méme chaine...

La longueur, I'égalité posent probleme

Le stockage également !

15

Les chaines de caractéres en C et OCaml

On ne considere que des tableaux de bytes
Les bibliotheques standard n'interpretent pas les codes

Module OCaml String : « A string s of length n is an indexable
and immutable sequence of n bytes. For historical reasons these
bytes are referred to as characters »

16

Les chaines de caracteres en C

On utilise des tableaux de char

Les fonctions manipulant des chaines utilisent des charx

17

Les chaines de caracteres en C

Probleme : ou se termine la chaine?

Solution : on utilise une sentinelle, le code 0x00

« Hello MP2I! »

— « 48 65 6¢c 6Cc 6f 20 4d 50 32 49 21 00 »

18

Pour définir une chaine :

char ch[] = {0x48, 0x65, 0@x6c, 0x6c, Ox6f, 0x20,
0x4d, 0x50, 0x32, 0x49, 0x21, 0x00};

Char Ch[] - {iHl, 'el, Il', '].I, loi’ 1 l’
IMI’ 'PI, l2|’ II', I!I’ l\el};

Ou, plus simple :

char ch[] = "Hello MP2I!";

19

Manipuler une chaine de caracteres

Une chaine se manipule comme un tableau

ch[i] désigne le char d'index i

Si on écrit :

char ch[] = "Hello MP2I!";

ch[5]
ch[6]

21;
0;

Un affichage de ch donne « Hello! »

(taille en mémoire inchangée, &ch[7] désigne encore P2I!)

20

Manipuler une chaine de caracteres

On peut utiliser

ch[5] = 'I'; |

plutét que

ch[5] = 21; ’

21

Réserver de la place pour une chaine

Pour réserver de la place en mémoire pour une chaine :

char ch[100] = { 0 }; ’

Ou bien

charx ch = malloc(100 x sizeof(char));
ch[0] = 0;

Il est prudent d'avoir toujours un 0 dans le tableau!

22

S’affranchir de I’encodage

Les codes binaires dans le fichier source

23

S’affranchir de I’encodage

Les codes binaires dans le fichier source

se retrouvent a l'identique dans |'exécutable binaire

23

S’affranchir de I’encodage

Les codes binaires dans le fichier source
se retrouvent a l'identique dans |'exécutable binaire

et sont reproduits tels quels en sortie

23

S’affranchir de I’encodage

Les codes binaires dans le fichier source
se retrouvent a l'identique dans |'exécutable binaire

et sont reproduits tels quels en sortie

n

Seuls " et \ nécessitent une interprétation particuliéere

23

Codes d’échappement

Des séquences spéciales pour les éléments problématiques :
« \" » pour représenter « " »

« \\ » pour représenter « \ »

« \0 » pour représenter le caractére de code 0x0

« \n » pour représenter un retour a la ligne

etc.

24

Retour a la ligne

25

Retour a la ligne

Différentes conventions pour les fins de ligne :
e Windows, Symbian OS : CRLF (\r\n soit 9x0d 0x0a)
e Unix, OS-X : LF (\n soit 0x0a)
e Mac OS : CR (\r soit 0x0d)

Cause régulierement de mauvaises surprises

26

Immutabilité des chaines littérales

On peut aussi écrire

char* ch = "Hello MP2I!";

MAIS les chaines littérales produisent un tableau de char

localisé dans une zone mémoire immutable

Un char ch[] déclare un tableau dans une zone mutable

27

Immutabilité des chaines littérales

On a donc

char ch[] = "Hello MP2I!";

char ¢ = ch[@]; // Correct
chfo] = '72"; // Correct

En revanche :

char* ch = "Hello MP2I!";

char ¢ = ch[0]; // Correct
ch[o] = 'Z2"; // Erreur de segmentation !

28

Quelques fonctions

La bibliotheque standard fournit des outils

Elle travaille avec des charx

Import des fonctions avec

#include <string>

29

Longueur d’une chaine

int strlen(charx str)

Retourne la longueur de str
La chaine doit se terminer par \0

Le \0 n'est pas compté

Plus siir :

strnlen_s(char* str, size_t strsz)

30

Comparer des chaines

Cela peut s'écrire :

int my_strlen(charx str) {
int i=0;

while (str[i] != 0) { i++; }

return i;

31

Comparer des chaines

int strcmp(char* lhs, char* rhs)

Retourne 0 si égales, -1 si lhs <y rhs, +1 sinon
Les chaines doivent se terminer par \0

Les caracteres sont comparés comme unsigned char

Plus siir :

int strncmp(char* lhs, char* rhs, size_t count)

32

Comparer des chaines

int my_strcmp(charx lhs, charx rhs) {
int i=0;
While (].hS[l:l 1= 0 && th[l:l == rhs[]_]) { i++; }

if (lhs[i] == 0 && rhs[i] == 0) { return 0; }
if (lhs[i] == 0) { return -1; }
if (rhs[i] == 0) { return 1; }

unsigned char cl = lhs[i], cr = rhs[i];
if (cl < cr) { return -1; } else { return 1; }

83

Copier des chaines

charx strcpy(charx dest, charx src)

Copie le contenu a |'adresse src vers |'adresse dest
Les chaines doivent se terminer par \0
La destination doit étre assez grande

Les zones mémoires doivent étre distinctes

Plus siir : strncpy, strcpy_s, strncpy_s...

34

Les risques

Considérons par exemple :

char ch1[] = "Hello";
char ¢ = 37;
char ch2[] = "World!";

strcpy(chl, "Hello = MP2I!");

Si ¢ et ch2 se trouvent aprés en mémoire

avec strcpy, ils sont écrasés !

B35

Entrées de I'utilisateur

On peut utiliser scanf pour lire des données

Pour lire un entier :

int val = 0;
scanf ("%d", &val);

Pour une chaine de caracteres :

scanf ("%s", buffer);

char buffer[100] = { 0 }; |

36

Super, merci!

char invite[] = "Hello"”;

char value = 37;
bool locked = true;
char name[5] = { 0 };

printf("Entrez votre nom : ");
scanf("%s", name);

printf(”"\n%s %s!\n\n"”, invite, name);

if (locked) { foo_locked(); }
else { foo_unlocked(); }

37

Super, merci!

Bilan :

e tout débordement de buffer peut avoir des conséquences

38

Super, merci!

Bilan :
e tout débordement de buffer peut avoir des conséquences

e scanf peut étre tres dangereux

38

Super, merci!

Bilan :
e tout débordement de buffer peut avoir des conséquences
e scanf peut étre tres dangereux

e |la MP2| ouvre des portes

38

Super, merci!

Bilan :
e tout débordement de buffer peut avoir des conséquences
e scanf peut étre tres dangereux

e |la MP2| ouvre des portes

Solutions possibles :
e scanf("%4s", buffer); (attention au \0)

e fgets(buffer, 5, stdin);

38

Copier des données binaires

void* memcpy(void* dest, void* src, size_t count)

Copie count bytes de src vers dest

Ignore les éventuels \0

void* memset(void* dest, int ch, size_t count)

Copie count fois ch converti en unsigned char vers dest

39

Quelques autres fonctions

char* strchr(charx str, int ch)

premiere occurrence de ch

charx strrchr(char* str, int ch)

derniére occurrence de ch

char* strstr(charx str, charx substr)

premiére occurrence de substr

charx strcat(char* dest, char *src)

ajout de src a la fin de dest

40

Quelques autres fonctions

int atoi(charx str)

Lecture d'un entier

double atof(char* str)

Lecture d'un flottant

41

Recherche de sous-chaine

char* my_strstr(charx str, char* substr) {
int n=strlen(str), ns=strlen(substr);

for (int i=0; i<n-ns+1; ++i) {

int j = 0;

while (j<ns && str[i+jJ]==substr[j]) {
Jtt;

3

if (j ==ns) {

return &(str[il);

}
return NULL;

Recherche de sous-chaine

Complexité en O((n—ng+ 1) x ng) On fera bien mieux !

Cette complexité est bien atteinte :

Exemple : recherche de aaaaab dans aaaaaaaaaaaaa. ..

43

Désigner un caractére dans le source

[

On peut désigner un « caractere » en écrivant « 'x' »
Cela définit en fait un... int!

Il faut qu'il n'y ait qu'un seul byte dans le source entre les

« (c == "a") » peut étre imprévisible

a4

Et en OCaml?

Un type char

littéraux avec (ex:'a', '\n', '\000"...)
Un type string
littéraux avec " (ex : "Hello MP2I!")
= suite d'octets, mais représentation interne non spécifiée
les chaines sont immutables (il existe un type bytes mutable)

la taille est mémorisée en interne, \000 peut se trouver dans la
chaine

45

Accéder a un caractere

let ch = "Hello MP2I!";;
val ch : string = "Hello MP2I!"

String.get;;
- : string -> int -> char = <fun>

String.get ch 6;;

- : char = 'M'
ch.[6];;
- : char = 'M'

46

Quelques fonctions

Pour obtenir la longueur d'une chaine :

String.length;;
- : string -> int = <fun>

Le calcul de la taille est en temps constant O(1)

47

Quelques fonctions

Pour obtenir une sous-chaine :

String.sub;;
- : string -> int -> int -> string = <fun>

Le second entier est la longueur du résultat

Crée une nouvelle chaine en la copiant

(Complexité liée a la taille du résultat)

48

Quelques fonctions

Pour créer une chaine répétition d’'un méme caractere

String.make;;
- : int -> char -> string = <fun>

Pour obtenir la premiére occurrence d'un caractere :

String.index;;
- : string -> char -> int = <fun>

49

