
Suites itérées

1 Principe des suites itérées

On s’intéresse à une suite itérée (un)n∈N, définie par son premier terme u0 et une relation
de récurrence un+1 = f (un). La suite de Syracuse, par exemple, est définie par la récurrence
un+1 = f (un) = un/2 lorsque un est pair, et un+1 = f (un) = 3un +1 si un est impair.

Pour représenter une suite itérée, on définit le type « enregistrement » suivant :

type 'a suite = { u0: 'a; f: 'a -> 'a };;

Ce type permettra de décrire une suite itérée travaillant sur des un de type 'a. Par
exemple, la suite définie par

seq

{
u0 = 4.9

un+1 = sin(un) pour tout n Ê 0

pourra être déclarée en OCaml par

let seq = { u0 = 4.9, f = sin }

Pour accéder au premier terme de la suite seq, on écrira « seq.u0 ». Pour accé-
der à la fonction gouvernant la récurrence de cette même suite, on écrira « seq.f ».
Ainsi, on peut obtenir u1 en écrivant « seq.f seq.u0 » et u2 en écrivat par exemple
« seq.f (seq.f seq.u0) ».

1. Définir une fonction f_syracuse de signature int -> int calculant le passage de un

à un+1 pour la suite de Syracuse.

2. Y a-t-il un risque d’erreur dans le calcul de un+1 en Caml ?

3. Proposer une fonction nth de signature 'a suite -> int -> 'a qui prend en para-
mètre une suite (un)n∈N itérée, et un entier n et retourne le terme un .

4. Déterminer u41 pour la suite de Syracuse dans le cas où u0 = 1023.

5. Écrire une fonction premiers de signature 'a suite -> int -> 'a list qui prend
en paramètre une suite itérée et un entier n et retourne la liste des n premiers éléments de
la suite [u0,u1, . . . ,un−2,un−1]. Quelle est la complexité de cette fonction?

6. Construire la liste des 70 premiers termes de la suite de Syracuse pour u0 = 1023. Que
constate-t-on? Essayer avec d’autres valeurs initiales.

2 Suites cycliques

On dit qu’une suite (un) est (ultimement) cyclique avec une période p ∈ N⋆ lorsqu’il
existe un entier k tel que, pour tout n Ê k, un+p = un . Dans la suite, on suppose la suite
(un) cyclique, et on cherche à déterminer les plus petits k et p qui conviennent (que l’on
notera simplement dans la suite k et p).

•
• •

•

•

• •

•

••u0

u1

uk−1

uk

uk+1

uk+p−1

uk+p

7. Justifier que toute suite itérée d’entiers en OCaml sera cyclique.

8. Montrer que si l’on dispose de la liste des n premiers termes dans l’ordre inverse,
[un−1,un−2, . . . ,u1,u0], on peut vérifier simplement et en temps linéaire si n −1 Ê k +p.

9. Écrire une fonction index de signature 'a -> 'a list -> int prenant en argument
un élément el et une liste d’éléments de même type, et retournant l’index du premier
élément de la liste égal à el, ou −1 si aucun élément de la liste ne vérifie cette égalité.

10. Proposer une fonction periode de signature 'a suite -> int * int prenant
en argument une suite itérée et retournant le couple

(
k, p

)
en un temps de l’ordre de

O
((

k +p
)2

)
.

11. Écrire une fonction decompose de signature 'a suite -> 'a list * 'a list
prenant en argument une suite et retournant le couple de listes [u0,u1, . . . ,uk] et[
uk+1, . . . ,uk+p

]
.

12. Utiliser la fonction précédente pour différentes valeurs de u0 pour la suite de Syra-
cuse.

13. Quelle hypothèse peut-on faire? Il s’agit de la conjecture de Collatz, qui n’a pas
encore pu être démontrée.

14. Qu’en est-il en remplaçant 3un +1 par 3un −1 (ou d’autres fonctions linéaires de
un) ?

1

3 Algorithme de Floyd

Lorsque la prépériode k et la période p sont grands, une recherche de ces valeurs en
un temps proportionnel au carré de

(
k +p

)
n’est plus suffisamment efficace. Il existe un

algorithme linéaire en temps, l’algorithme de Floyd (parfois appelé algorithme du lièvre et
de la tortue), qui permet de déterminer ces deux valeurs en temps linéaire.

On définit la suite itérée (vn)n∈N par v0 = u0 et vn+1 = f (f (vn)) (suite du « lièvre », car
elle « progresse » deux fois plus vite que (un))

15. Justifier que pour une suite (un) cyclique de période p, il existe une infinité d’entiers
i vérifiant ui = vi , et que le plus petit i > 0 pour lequel ui = vi est le plus petit multiple
(non nul) de p supérieur ou égal à k.

16. Proposer une fonction floyd de signature 'a suite -> int qui prend en argument
une suite itérée et retourne le plus petit i > 0 vérifiant ui = vi .

On définit la suite (u′
n)n∈N par u′

0 = ui (où i est le plus petit entier strictement positif
vérifiant ui = vi) et u′

n+1 = f (u′
n).

17. Quel résultat obtient-on en utilisant la fonction floyd sur la suite (u′
n)n∈N ?

18. Justifier que, si i est le plus petit entier strictement positif vérifiant ui = vi , alors la
prépériode k est le plus petit entier vérifiant uk = ui+k .

19. À partir des questions précédentes, proposer une fonction periode dont la signature
serait 'a suite -> int qui, lorsqu’on lui fournit en argument une suite itérée, retourne
la plus petite période p.

20. De même, proposer une fonction preperiode dont la signature serait
'a suite -> int-> int qui retourne, lorsqu’on lui fournit une suite itérée et sa période
p, la valeur de k.

L’algorithme de Floyd présente l’avantage de ne nécessiter un nombre d’opérations de
l’ordre de O

(
k +p

)
, soit moins que l’approche précédente.

4 Algorithme de Prabekhar

On s’intéresse à présent à la suite sur N telle que un+1 soit la somme des carrés des
chiffres de un (algorithme de Prabekhar).

21. Écrire la fonction f_prabekhar qui à tout un associe un+1.

22. Y a-t-il un risque d’erreur dans le calcul de un+1 en Caml ?

23. Déterminer k, p et le contenu du cycle pour différentes valeurs de u0. Qu’en penser ?

24. Justifier qu’un ordinateur peut vérifier la conjecture en testant un nombre fini de u0

(on pourra notamment justifier que pour tout u0 ne figurant pas dans la liste, on atteint un
nombre de cette liste après une ou plusieurs étapes).

5 Fractions rationnelles

Tout rationnel a/b possède une écriture décimale ultérieurement périodique. Par
exemple,

19/112 = 0.1696428571428571428571... = 0.1696428571

1566/7735 = 0.2024563671622495151906916612798965740142210730446

Pour simplifier, dans la suite, on suppose 0 < a < b.

Pour calculer tous les chiffres de a/b, on pourra construire une suite (un)n∈N dans N×N,
définie par :

• u0 = (0, a) ;
• si un = (cn , an), alors un+1 = (⌊10an/b⌋ , (10an mod b)).

Les cn ainsi construits correspondent alors à l’écriture décimale de a/b, le calcul de
la pré-période et de la période dans l’écriture décimale de a/b revenant à calculer la
pré-période et la période de la suite (un).

25. Proposer une fonction de signature int -> int -> int list * int list prenant
en argument deux entiers a et b vérifiant 0 < a < b et retournant les chiffres de l’écriture
décimale de a/b sous la forme de deux listes d’entiers, la première donnant les chiffres
avant la partie périodique (dans l’ordre), la seconde la partie périodique.

26. Vérifier la fonction pour 19/112 et 1566/7735

27. Déterminer l’entier b donnant la période la plus longue pour les fractions de la
forme 1/b avec 1 < b < 10000.

6 Autres suites ultimement périodiques

Soient a et b deux entiers naturels non nuls. On considère la fonction f définie par

fa,b :

{�0 . . a −1�×�0 . . b −1� 7→ �0 . . a −1�×�0 . . b −1�
(p, q) 7→ (

pq +1 mod a, p +q mod b
)

28. Proposer une fonction gen_f de signature int -> int -> int*int -> int*int
qui, pour deux paramètres entiers a et b, retourne fa,b .

29. Écrire une fonction cycles de signature int -> int -> (int*int) list list
qui prend en argument deux entiers a et b et retourne la liste des cycles des suites itérées
utilisant fa,b .

2

	Principe des suites itérées
	Suites cycliques
	Algorithme de Floyd
	Algorithme de Prabekhar
	Fractions rationnelles
	Autres suites ultimement périodiques

