Suites itérées

Principe des suites itérées

On s’intéresse a une suite itérée (u,) ,eNn, définie par son premier terme # et une relation
de récurrence u,+1 = f(uy,). La suite de Syracuse, par exemple, est définie par la récurrence
Up+1 = f(Uy) = u,/2lorsque u, est pair, et u,+1 = f(u,) =3u, + 1 si u, estimpair.

Pour représenter une suite itérée, on définit le type « enregistrement » suivant :

type 'a suite = { u@: 'a; f: 'a -> 'a };; }

Ce type permettra de décrire une suite itérée travaillant sur des u, de type 'a. Par
exemple, la suite définie par

Ug = 4.9
seq .
Up+1 =Sin(uy,) pourtoutn=0

pourra étre déclarée en OCaml par

let seq = { ue = 4.9, f = sin } J

Pour accéder au premier terme de la suite seq, on écrira « seq.u@ ». Pour accé-
der a la fonction gouvernant la récurrence de cette méme suite, on écrira « seq.f ».
Ainsi, on peut obtenir u; en écrivant « seq.f seq.ud » et up en écrivat par exemple
«seq.f (seq.f seq.u@) ».

1. Définir une fonction f_syracuse de signature int -> int calculant le passage de u,,
a uu+1 pour la suite de Syracuse.

2. Y a-t-il un risque d’erreur dans le calcul de u;+; en Caml?

3. Proposer une fonction nth de signature 'a suite -> int -> 'aquiprend en para-
metre une suite (u#,) e itérée, et un entier n et retourne le terme u;,.

4. Déterminer uy; pour la suite de Syracuse dans le cas ou yy = 1023.

5. Ecrire une fonction premiers de signature 'a suite -> int -> 'a list quiprend
en parametre une suite itérée et un entier n et retourne la liste des n premiers éléments de
la suite [ug, Uy, ..., Un—2, Un—1]. Quelle est la complexité de cette fonction?

6. Construire la liste des 70 premiers termes de la suite de Syracuse pour 1y = 1023. Que
constate-t-on? Essayer avec d’autres valeurs initiales.

Suites cycliques

On dit qu’'une suite (u,) est (ultimement) cyclique avec une période p € N* lorsqu’il
existe un entier k tel que, pour tout 7 = k, un+p = Un. Dans la suite, on suppose la suite
(uy) cyclique, et on cherche a déterminer les plus petits k et p qui conviennent (que 'on
notera simplement dans la suite k et p).

/bzl—\ .
.

Uk+p-1
Up \ P= e—,

NS

U o Uk+p .

;

L]
Uk+1

7. Justifier que toute suite itérée d’entiers en OCaml sera cyclique.

8. Montrer que sil’'on dispose de la liste des n premiers termes dans 1'ordre inverse,
[Up—1,Upn—2,..., U1, Up], On peut vérifier simplement et en temps linéaire sin—1= k+ p.

9. Ecrire une fonction index de signature 'a -> 'a list -> int prenant en argument
un élément el et une liste d’éléments de méme type, et retournant I'index du premier
élément de la liste égal a el, ou —1 si aucun élément de la liste ne vérifie cette égalité.

10. Proposer une fonction periode de signature 'a suite -> int * int prenant
en argument une suite itérée et retournant le couple (k, p) en un temps de 'ordre de

o((k+p)?)
11. Ecrire une fonction decompose de signature 'a suite -> 'a list * 'a list
prenant en argument une suite et retournant le couple de listes [ug, uy,..., ux] et

[uk+1,---, uk+p]-

12. Utiliser la fonction précédente pour différentes valeurs de 1 pour la suite de Syra-
cuse.

13. Quelle hypothese peut-on faire? Il s’agit de la conjecture de Collatz, qui n'a pas
encore pu étre démontrée.

14. Qu’en est-il en remplacant 3u, + 1 par 3u, — 1 (ou d’autres fonctions linéaires de
Up)?



Algorithme de Floyd

Lorsque la prépériode k et la période p sont grands, une recherche de ces valeurs en
un temps proportionnel au carré de (k + p) n'est plus suffisamment efficace. Il existe un
algorithme linéaire en temps, I'algorithme de Floyd (parfois appelé algorithme du lievre et
de la tortue), qui permet de déterminer ces deux valeurs en temps linéaire.

On définit la suite itérée (v,) N par vo = ug et v,11 = f(f(vy,)) (suite du «liévre », car
elle « progresse » deux fois plus vite que (1))

15. Justifier que pour une suite (u,) cyclique de période p, il existe une infinité d’entiers
i vérifiant u; = v;, et que le plus petit i > 0 pour lequel u; = v; est le plus petit multiple
(non nul) de p supérieur ou égal a k.

16. Proposer une fonction floyd de signature 'a suite -> int quiprend en argument
une suite itérée et retourne le plus petit i > 0 vérifiant u; = v;.

On définit la suite (u;,) s par uy = u; (oi1 i est le plus petit entier strictement positif
vérifiant u; = v;) et u) = f(up,).

17. Quel résultat obtient-on en utilisant la fonction floyd sur la suite (u},) pen ?

18. Justifier que, si i est le plus petit entier strictement positif vérifiant u; = v;, alors la
prépériode k est le plus petit entier vérifiant uy = u;4 .

19. A partir des questions précédentes, proposer une fonction periode dont la signature
serait 'a suite -> int qui, lorsqu’on lui fournit en argument une suite itérée, retourne
la plus petite période p.

20. De méme, proposer une fonction preperiode dont la signature serait
'a suite -> int-> int quiretourne, lorsqu’on lui fournit une suite itérée et sa période
p, lavaleur de k.

Lalgorithme de Floyd présente I'avantage de ne nécessiter un nombre d’opérations de
I'ordre de O(k + p), soit moins que 'approche précédente.

Y Algorithme de Prabekhar

On s’intéresse a présent a la suite sur IN telle que 1, soit la somme des carrés des
chiffres de u, (algorithme de Prabekhar).

21. Ecrire la fonction f_prabekhar qui a tout u,, associe 1, 1.
22. Y a-t-il un risque d’erreur dans le calcul de u,+; en Caml?
23. Déterminer k, p et le contenu du cycle pour différentes valeurs de uy. Qu’en penser?

24. Justifier qu'un ordinateur peut vérifier la conjecture en testant un nombre fini de 1
(on pourra notamment justifier que pour tout g ne figurant pas dans la liste, on atteint un
nombre de cette liste apres une ou plusieurs étapes).

Fractions rationnelles

Tout rationnel a/b posséde une écriture décimale ultérieurement périodique. Par
exemple,
19/112 = 0.1696428571428571428571... = 0.1696428571

1566/7735 =0.2024563671622495151906916612798965740142210730446

Pour simplifier, dans la suite, on suppose 0 < a < b.

Pour calculer tous les chiffres de a/b, on pourra construire une suite (¢,) ;e dans IN xIN,
définie par:
* uy=(0,a);
e siu, =(cy, ap), alors u,41 = (110a,/b],(10a,, mod b)).

Les ¢, ainsi construits correspondent alors a I'écriture décimale de a/b, le calcul de

la pré-période et de la période dans I'écriture décimale de a/b revenant a calculer la
pré-période et la période de la suite (u,,).

25. Proposer une fonction de signature int -> int -> int list * int list prenant
en argument deux entiers a et b vérifiant 0 < a < b et retournant les chiffres de I'écriture
décimale de a/b sous la forme de deux listes d’entiers, la premiére donnant les chiffres
avant la partie périodique (dans I'ordre), la seconde la partie périodique.

26. Vérifier la fonction pour 19/112 et 1566/7735

27. Déterminer I'entier b donnant la période la plus longue pour les fractions de la
forme 1/b avec 1 < b < 10000.

Il Autres suites ultimement périodiques

Soient a et b deux entiers naturels non nuls. On consideére la fonction f définie par

[0..a-1]%x[0..b=1]—[0..a-1]x[0..b—1]
@b ».q9)— (pg+1 moda,p+q modb)

28. Proposer une fonction gen_f de signature int -> int -> int*int -> intxint
qui, pour deux parameétres entiers a et b, retourne f, ;.

29. Ecrire une fonction cycles de signature int -> int -> (intxint) list list
qui prend en argument deux entiers a et b et retourne la liste des cycles des suites itérées
utilisant f7, 5.



	Principe des suites itérées
	Suites cycliques
	Algorithme de Floyd
	Algorithme de Prabekhar
	Fractions rationnelles
	Autres suites ultimement périodiques

