Autour des entiers naturels

Parties de N

1.1 introduction

On s’intéresse ici aux parties de 'ensemble des entiers naturels IN. Il n’existe pas de solu-
tions informatiques pour représenter une partie quelconque de IN. Nous allons cependant
voir différentes manieres de représenter certaines de ces parties, afin de pouvoir effectuer
des opérations sur celles-ci.

On se permettra d’utiliser les fonctions vues en cours sur les listes, telles que List.mem
qui retourne un booléen indiquant la présence d'un élément dans une liste.

1.2 Parties finies

On s’intéresse dans un premier temps aux parties finies de N. On représentera, dans un
premier temps, une partie finie de IN par une liste des entiers ! la constituant, sans doublon.
Parexemple, [0; 1; 2; Joul 2; 0; 3;] représentent tous deux I'ensemble des
entiers strictement inférieurs a 4. La représentation n’est donc pas unique.

1. Ecrire une fonction est_vide de signature int list -> bool (ou bien
'a list -> bool) prenant en argument une liste définissant une partie finie de IN et
retournant un booléen indiquant (en temps constant O(1)) si elle est vide.

2. Ecrire une fonction union de signature int list -> int list -> int list (ou
bien 'a list -> 'a list -> 'a list) prenant en entrée deux parties finies de IN et re-
tournant une liste d’entiers représentant leur union (et ne contenant donc pas de doublon).
On pourra, par exemple, ajouter a la premiere liste les éléments de la seconde liste qui
ne figurent pas dans la premiere. Quelle est la complexité, dans le pire des cas, de cette
fonction?

3. Ecrire de méme deux fonctions inter et diff, de mémes signatures, réalisant les
opérations ensemblistes d’intersection et de différence (on retirera les éléments de la
seconde partie a la premiére, dans ce second cas).

4. Montrer que deux parties P; et P, sont disjointes si et seulement si le résultat d'une
opération ensembliste bien choisie sur ces deux parties donne une partie vide.

5. En déduire une fonction disj de signature int list -> int list -> bool indi-
quant par un booléen si deux parties de IN, fournies en argument a la fonction, sont
disjointes.

6. De facon similaire, proposer une fonction inclus de signature
int list -> int list -> bool prenant en argument deux listes décrivant des parties

1. On oubliera, le temps de ce TP, qu'il existe des entiers que OCaml ne peut représenter, car trop grands.

finies de IN, et retournant un booléen indiquant si la premiére est incluse dans la seconde.

7. Enfin, proposer une fonction egaux de signature int list -> int list -> bool
prenant en argument deux listes décrivant des parties finies de IN, et retournant un booléen
indiquant si elles sont égales. Cette fois encore, on écrira le test en réfléchissant a la
meilleure facon d’utiliser des opérations ensemblistes déja définies.

1.3 Parties finies et cofinies

Lensemble des parties finies de IN n'est pas stable par la complémentation (le complé-
ment A d'une partie A étant I’ensemble des entiers de N n’appartenant pas a A).

On définit une partie cofinie de IN comme une partie de IN dont le complément est une
partie finie de IN. On peut montrer que 'ensemble VV des parties finies ou cofinies de IN
est stable pour les opérations d'union, d’intersection, de différence et de complémentation.
C’est d’ailleurs le plus petit ensemble des parties de IN qui vérifie ces propriétés.

On remarquera que VY ne correspond pas a ’ensemble des parties de IN : I'ensemble
des entiers pairs, ou I'ensemble des nombre premiers, par exemple, ne sont ni des parties
finies, ni des parties cofinies!

On définit le type
type partie = Finie of int list | Cofinie of int list;;]
«Finie [2; 3; 5 J»désigne simplement la partie finie de IN constituée des entiers

2,3et5.«Cofinie [2; 3; 5]»doitquant a elle s’entendre comme le complémentaire
dans IN de I'’ensemble {2, 3; 5}, c’est-a-dire la partie de IN constituée de 0, de 1, de 4 et des
entiers supérieurs ou égaux a 6.

8. Proposer une fonction est_vide_W de signature partie -> bool qui prend en ar-
gument un élément de }V et retournant un booléen indiquant si cette partie de IN est
vide.

9. Ecrire une fonction compl_W de signature partie -> partie qui prend en argument
un élément de WV et retourne son complémentaire.

10. Ecrire deux fonctions Caml appelées union_W et inter_W de signature
partie -> partie -> partie qui prennent en argument deux éléments de)V et re-
tournent respectivement leur union et leur intersection.

11. Erire deux fonction disj_W et inclus_W de signature partie -> partie -> bool
indiquant par un booléen si deux éléments de WV, fournis en argument a la fonction, sont
disjoints dans le cas de disj_W, et sile premier est inclus dans le second pour inclus_W.

12. Ecrire une fonction egaux_W de signature partie -> partie -> bool quiindique

siles deux arguments correspondent au méme élément de WW.

13. Ecrire une fonction complementaires_W de signature partie -> partie -> bool
qui indique si les deux arguments sont complémentaires (leur intersection est disjointe,
leur union est IN).

1.4 Ensemble des parties de IN

11 existe des parties de IN qui ne sont ni finies, ni cofinies, comme les nombres pairs,
les nombres premiers, etc. On peut cependant définir des parties élaborées de IN via un
prédicat (une propriété qui serait vraie pour les entiers qui la constituent, et fausse pour
les autres).

Par exemple, 'ensemble des entiers pairs peut étre associé a la fonction
« fun x -> (x mod 2 = 0) » : les entiers pairs correspondent exactement aux entiers
qui, soumis a cette fonction, donnent un résultat « true ».

On peut donc définir de trés nombreuses parties de IN par un objet de signature
int -> bool. On notera U 'ensemble des parties de IN qui peuvent étre définies par
une fonction f, c’est-a-dire les ensembles de la forme { ieN| f(i) =true }

14. Comment créer une fonction union_U qui réalise 'union de deux parties de IN dé-
finies ainsi? Sa signature doit étre (int -> bool) -> (int -> bool) -> int -> bool
oubien ('a -> bool) -> ('a -> bool) -> 'a -> bool.

15. Définir de méme inter_U, diff_U et compl_U.

Sil’on omet le fait que OCaml ne permet pas de représenter tous les entiers, il n’est en
revanche plus possible de tester si un ensemble défini par une fonction est vide (il faudrait
vérifier tous les entiers de IN un a un, ce qui prendrait un temps infini!). De méme, il est

impossible d’écrire des fonctions vérifiant I'égalité, I'inclusion ou la complémentarité de
deux parties.

16. Ecrire une fonction convert de signature int list -> int -> bool qui prend en
argument une liste d’entiers représentant une partie finie de IN et retourne un objet de
signature int -> bool désignant cette méme partie finie de IN.

17. Ecrire de méme une fonction convert_W de signature partie -> int -> bool qui
prend en argument un partie finie ou cofinie de IN et retourne un objet de signature
int -> bool désignant cette méme partie de IN.

1.5 Opérateur universel

Cette partie est facultative, en fonction du temps dont vous disposez.

On définit la fonction

let foo f1 f2 = function x -> not ((f1 x)&&(f2 x));;]

Cette fonction est universelle, on peut écrire chacune des fonctions précédentes a partir
de foo.

18. Réécrire union_U, inter_U, diff_U et compl_U uniquement a partir de foo (on
s'interdit donc l'usage de tout autre opérateur : les fonctions ne doivent contenir que des
appels a foo, les noms des arguments, et des parenthéses).

Algebre de Peano

2.1 Introduction

Une facon de décrire 'ensemble des entiers naturels a été proposée par G. Peano. Elle
repose sur cing axiomes :
o 'élément appelé « zéro » et noté 0 est un entier naturel;
 tout entier naturel 7 a un unique successeur, noté Sn qui est un entier naturel;
e aucun entier naturel n’a 0 pour successeur;
o deux entiers naturels ayant le méme successeur sont égaux;
« siun ensemble d’entiers naturels contient 0 et contient le successeur de chacun de
ses éléments, alors cet ensemble est IN.

Pour représenter 'ensemble des entiers naturels, on peut donc utiliser le type suivant :

type pint = Zero | S of pint;;]

Ainsi, zéro correspond a I'élément « Zero », trois correspond a « S (S (S Zero)) ».

19. Proposer une fonction int_of_pint de signature pint -> int prenant en argument
un entier en représentation de Peano et retournant sa représentation usuelle.

20. En déduire une fonction print_pint affichant, dans la représentation usuelle, un
entier dans la représentation de Peano (on supposera que I’entier en question ne dépasse
pas les capacités de représentation des entiers de OCaml).

21. Proposer de méme une fonction pint_of_int de signature int -> pint effectuant
la conversion inverse.

2.2 Opérations élémentaires

On définit 'addition de deux entiers en utilisant les propriétés suivantes de I’addition :

x+0=x
x+(y+1)=@x+D+y

22. En déduire une fonction add de signature pint -> pint -> pint calculant la
somme de deux entiers en représentation de Peano (évidemment, sans passer par une
conversion en entiers naturels).

Pour la multiplication de deux entiers, on pourra par exemple écrire :

{xXO=0
xox(y+1)=(xxy)+x

23. En déduire une fonction mul de signature pint -> pint -> pint calculant le pro-
duit de deux entiers en représentation de Peano.

24. Quelle est la complexité de cette opération de multiplication?

On n’oubliera pas d’effectuer quelques tests pour vérifier chacune des fonctions écrites!

2.3 Une multiplication différente
On propose ici une approche différente pour la multiplication.

25. Proposer une fonction is_even de signature pint -> bool retournant un booléen
indiquant si 'argument est pair.

26. Proposer une fonction div2 de signature pint -> pint prenant en argument un
entier n en représentation de Peano et retournant [n/2].

27. Proposer une fonction mul2 de signature pint -> pint prenant en argument un
entier n en représentation de Peano et retournant 2n.

On défini alors la multiplication de la sorte :
xx0=0
xxy=@2xx)x|y/2] siyestpair

xxy=@2xx)x|y/2|+x siyestimpair

28. En déduire une fonction mul_bis de signature pint -> pint -> pint déterminant
le produit de deux entiers.

29. A-t-on obtenu une meilleure complexité?

2.4 Aller plus loin

30. Proposer une fonction fact de signature pint -> pint prenant en argument un
entier n en représentation de Peano et retournant sa factorielle.

31. Ecrire une fonction divmod de signature pint -> pint -> pint * pint prenant
en argument un entier a et un entier b non nul en représentation de peano et retournant
lesentiers getrtelsquea=gxb+r.

32. En déduire une fonction pgcd de signature pint -> pint -> pint calculant le
PGCD de deux entiers en notation de Peano.

	Parties de N
	introduction
	Parties finies
	Parties finies et cofinies
	Ensemble des parties de N
	Opérateur universel

	Algèbre de Peano
	Introduction
	Opérations élémentaires
	Une multiplication différente
	Aller plus loin

