
Allocations mémoire

1 Introduction

1.1 Récupération des fichiers

Depuis la ligne de commande, naviguez vers un répertoire vous appartenant, et exécutez
la commande suivante, qui téléchargera et décompressera un répertoire nommé alloc
contenant une source en C et un makefile :

curl cdn.sci-phy.org/mp2i/tp9-alloc.tgz | tar xvz

Le fichier à compléter est le fichier alloc.c. On y trouvera toutes les fonctions que l’on
souhaite créer, mais beaucoup sont incomplètes (mention « A COMPLETER ! »). Pour ne
pas gêner la compilation, les fonctions incomplètes qui doivent retourner un pointeur
contiennent « return NULL; ». Bien évidemment, cette ligne pourra être modifiée!

Il s’agit du seul fichier dans ce projet, mais le répertoire contient également un makefile
pour compiler le compiler comme d’habitude (On rappelle les commandes « make all »
pour compiler le programme, « make run » pour le compiler et l’exécuter si la compilation
a réussi).

1.2 Objectifs

Le but de cette séance est d’étudier le mécanisme d’allocation et de libération de la
mémoire (et de s’entraîner à utiliser des listes chaînées !)

Il n’est pas possible de prendre simplement le contrôle de la mémoire, aussi va-t-on ruser
un peu. Le programme va demander au tout début une « grande » quantité de mémoire
(de quoi contenir 1024 entiers). On va ensuite s’efforcer d’écrire deux fonctions ialloc et
ifree permettant de réserver et de libérer une partie de cette mémoire.

La fonction ialloc devra s’efforcer de trouver une portion contiguë des 1024 entiers qui
n’a pas encore été réservée, et retourner l’adresse de début de cette portion. La zone ainsi
allouée ne pourra plus être fournie à un autre demandeur tant qu’elle n’a pas été libérée
par un appel à ifree.

Ce TP est particulièrement difficile, car il fait intervenir de nombreux pointeurs (et
parfois des pointeurs de pointeurs) et des insertions et suppressions dans des listes chaî-
nées. Il faut du temps pour être à l’aise avec de telles structures. Par ailleurs, il est difficile
de trouver ce qui cloche, car les erreurs conduiront souvent à un comportement indé-
fini (undefined behavior) du programme, et donc des erreurs qui semblent apparaître et
disparaître au hasard.

Pour l’instant, efforcez-vous surtout de comprendre au mieux ce que l’on cherche à
faire et comment. n’hésitez pas à faire des dessins pour écrire vos algorithmes. Même si

traditionnellement en C on utilise plutôt des itérations (for et while), il est probable qu’ici
des approches récursives puissent vous faciliter la vie. Essayez au moins d’envisager les
deux possibilités avant de tenter de programmer quoi que ce soit.

1.3 Blocs

Un « bloc » désignera dans la suite un morceau contiguë de ces 1024 entiers. Pour pouvoir
gérer de tels blocs, on définit le type « struct block » suivant :

struct block {
int* p_start;
int size;
struct block* p_next;

};

Dans cette structure, le champ .p_start désigne l’adresse du premier des entiers du
bloc, et .size le nombre d’entiers consécutifs qu’il contient.

L’ensemble des blocs disponibles pour une allocation, de même que l’ensemble des
blocs alloués à un instant t , seront rangés dans des listes chaînées de blocs. On a donc
ajouté un champ .p_next qui permettra, pour tout bloc, de désigner le bloc suivant dans
la liste chaînée (et NULL si c’est le dernier bloc de la liste).

1.4 Gestion des blocs

Pour mémoriser la liste des blocs disponibles et la liste des blocs alloués, on crée une
structure « struct pool » :

struct pool {
struct block* p_avail;
struct block* p_used;

};

Le champ .p_avail sert à mémoriser la liste chaînée des blocs disponibles (il contient
l’adresse de la structure décrivant le premier de ces blocs disponibles). De même, le champ
.p_used mémorise la liste des blocs actuellement utilisés.

L’initialisation de cette structure (allocation des entiers et création des deux listes) est
faite par la fonction new_pool qui retourne une telle structure. La liste des blocs utilisés
est initialement vide, et celle des blocs disponibles ne contient qu’un seul bloc, donc la
taille contient la totalité des entiers alloués.

1

Pour illustrer un peu l’utilisation des structures, supposons que l’on a réservé 1024
entiers (par exemple 8192 octets si les entiers sont sur 64 bits) de la mémoire, aux adresses
0xFFFFA000 à 0xFFFFBFFF, puis qu’ont été réservé deux blocs, l’un de 256 entiers, l’autre
de 320 entiers. L’allocateur utilisé les adresses 0xFFFFA000 à 0xFFFFA7FF pour le premier
bloc, les adresses 0xFFFFA800 à 0xFFFFB3FF pour le second bloc. les adresses 0xFFFFB400
à 0xFFFFBFFF n’ont pas encore été réservées.

Les données de l’allocateur en mémoire ressemblent alors à cela 1 :

pool : struct pool
0xFFFFCE00

(bloc libre 1) : struct block
0xFFFFCE14

(bloc réservé 1) : struct block
0xFFFFCE30

(bloc réservé 2) : struct block
0xFFFFCE4C

0xFFFFCE00
.p_avail

= 0xFFFFCE14

.p_used

= 0xFFFFCE2C

0xFFFFCE14

size = 448

.p_start

= 0xFFFFB400

.p_next

= NULL

0xFFFFCE30

size = 256

.p_start

= 0xFFFFA000

.p_next

= 0xFFFFCE4C

0xFFFFCE4C

size = 320

.p_start

= 0xFFFFA800

.p_next

= NULL

Mémoire

1. Les positions exactes des différents éléments en mémoire ne sont pas totalement réalistes.

2 Premières allocations

2.1 Recherche d’un bloc adéquat

La première chose que l’on va chercher à faire est de compléter la fonction
struct block* get_first(struct block* p_lst, int size) qui prend en argument
une liste chaînée de blocs (disponibles) sous la forme d’un pointeur vers le premier maillon,
et retourne l’adresse de la structure décrivant le premier bloc de la structure qui soit suffi-
sament grand, et NULL s’il n’y en a aucun dans la liste qui convient.

Aucune modification n’est faite à la liste, on se contente de la parcourir et de retourner
l’adresse d’une structure qui pourrait convenir.

1. Compléter la fonction get_first.

2.2 Réservation du bloc

Une fois le bloc identifié, il faut le marquer comme utilisé. Pour ce faire, on veut le retirer
de la liste des blocs disponibles, et le rajouter dans la liste des blocs utilisés. On change
l’objet de type « struct block » de liste, donc on ne crée ni ne supprime aucun bloc.

On commencera par compléter la fonction remove_block_from_list qui vise à retirer
un objet de type « struct block » dont on connait l’adresse (passée en second argument)
d’une liste chaînée qui le contient. Attention, si le bloc se trouve en première position, le
pointeur (typiquement pool.p_avail) qui désigne le premier élément de la liste devra
voir sa valeur changer!.

Par conséquent, on transmet l’adresse de la variable qui contient le pointeur vers le
premier bloc, pour qu’il soit possible de changer cette adresse. Le premier argument est
donc de type struct block** !

2. Proposer une implémentation de remove_block_from_list.

On souhaite ensuite ajouter le bloc à l’autre liste (par exemple en tête de la liste), et
pour ce faire on utilisera une fonction add_block_to_list. Le premier argument est de
nouveau un struct block** car là encore, le pointeur (typiquement pool.p_used) qui
pointe vers le premier bloc utilisé va voir sa valeur modifiée.

3. Proposer une implémentation de add_block_to_list.

4. Enfin, on complétera la fonction ialloc. La stratégie est la suivante :
• on cherche un bloc qui convient dans ceux disponibles
• on retire ce bloc de la liste des blocs disponibles
• on ajoute ce bloc dans la liste des blocs utilisés

Pour le moment, on supposera qu’on allouera le bloc dans son intégralité même s’il est
trop grand.

2

2.3 Premier test

Normalement, le programme devrait être en état d’être exécuté. On testera une première
séquence d’allocation (séquence 1), qui demande successivement des réservations de
tailles 1536, 256, 512, 128, 512, 64, 64 et 64. En principe, le résultat devrait être le suivant :

• la première demande d’allocation échoue (on demande plus que le nombre d’entiers
disponibles) ;

• la seconde demande d’allocation réussit ;
• toutes les demandes suivantes échouent, car on a alloué la totalité du bloc à la

première demande

Par ailleurs, le programme affiche le contenu des deux listes (blocs disponibles et
bloc alloués) avant de s’arrêter, ainsi qu’avant chaque opération lorsque l’on active le
mode « debug » (en ajoutant l’option --debug en lançant le programme, ou en utilisant
make debug à la place de make run). Normalement, il devrait ne plus y avoir de bloc dis-
ponible, et un seul bloc alloué de taille 1024.

5. Compiler (et corriger) le programme jusqu’à avoir le comportement attendu.

2.4 Coupure de bloc

Bien évidemment, on ne veut pas allouer tous les entiers dès la première demande. Il va
falloir donc couper le bloc s’il est trop grand. On va donc modifier la fonction ialloc de la
façon suivante :

• si la taille demandée est égale à la taille du bloc que l’on a identifié comme adéquat,
on procède comme auparavant ;

• si la taille demandée est plus petite, on réserve le début de la zone de la façon suivante,
et on marque libre le reliquat, de la façon suivante :
— on crée (par une allocation dynamique) un nouveau objet « struct bloc » dont

l’adresse de début est celle du bloc identifiée et la taille est la taille demandée
— on ajoute ce nouvel objet dans la liste des blocs utilisés
— on modifie l’adresse de début et la taille du bloc identifié comme adéquat pour

correspondre au reliquat (la taille est réduite de la taille qui a été allouée, l’adresse
de début est celle qui suit immédiatement tout juste la zone allouée).

6. Modifier la fonction ialloc selon les règles précédentes.

7. Tester le programme avec la séquence 1. La première demande doit toujours échouer,
les trois suivantes réussir, la cinquième échouer, les deux suivantes réussir, et la dernière
échouer. Par ailleurs, il ne doit plus y avoir de bloc disponible à l’issue de la séquence (en
particulier, on s’assurera qu’il ne reste pas un bloc de taille nulle !) et on doit retrouver les
cinq blocs dont l’allocation s’est passée correctement parmi les blocs alloués.

3 Première approche pour la libération

À présent, il nous faut voir comment nous pouvons libérer la mémoire qui a été allouée
lorsqu’elle n’est plus utile. Cela se fait avec un appel à ifree qui prend en argument un
pointeur de type int* retournée par un appel précédent à imalloc. Si on passe à ifree
un pointeur nul, la fonction retourne sans rien faire. Cela permet de passer sans risque un
résultat de imalloc même si l’allocation n’a pu avoir lieu.

La première étape est d’identifier le bloc alloué que l’on essaie de libérer, puisque l’on
ne passe en argument qu’une adresse (int*).

8. Compléter la fonction get_ptr qui recherche et retourne, dans une liste de blocs, le
premier bloc dont le champ .start coïncide avec l’adresse fournie en paramètre.

Une fois le bloc identifié, ifree retire ce bloc de la liste des blocs alloués et le replace
dans la liste des blocs disponibles.

9. Compléter la fonction ifree pour effectuer cette opération. On s’inspirera de ce qui
a été fait avec imalloc (il n’est ici pas question de découpe, la fonction devrait plutôt
ressembler à la première version de imalloc).

10. Modifier la fonction main pour qu’elle utilise dorénavant la séquence 2 pour les tests,
et tester le programme. Le comportement doit être le suivant :

• les quatre premières allocations doivent réussir
• les allocations sont ensuite libérées
• les trois allocations suivantes doivent réussir, mais celle qui suit doit échouer (pas de

bloc assez grand)
• les allocations sont à nouveau libérées
• les deux dernières allocations doivent échouer.

Par ailleurs, à l’issue du programme, il doit y avoir huit blocs (de tailles 64, 128, 64, 256,
256, 128, 64 et 64) disponibles.

4 Une allocation plus intelligente

Dans le test précédent, il aurait été possible de satisfaire davantage d’allocations si l’on
avait été plus malins dans le choix des blocs, plutôt que de prendre le premier disponible.

11. Compléter la fonction get_largest qui, contrairement à get_first, cherche le plus
grand bloc qui puisse convenir (on pourra choisir librement en cas d’égalité).

12. Même chose avec la fonction get_smallest qui cherche le plus petit bloc qui puisse
convenir.

13. Modifier la fonction imalloc pour qu’elle fasse appel à l’une, puis à l’autre, de ces
fonctions plutôt qu’à get_first.

14. Quelle stratégie fonctionne mieux? Pourquoi ?

3

5 Une libération plus intelligente

Reste que la dernière demande d’allocation n’est toujours pas satisfaite, alors qu’en
principe il devrait être possible de le faire. La raison est simple : ialloc découpe les blocs,
qui deviennent des blocs de petite taille, mais rien ne permet de les recoller. Nous allons à
présent tenter d’y remédier.

Pour ce faire, plutôt que de remettre les blocs dans la liste des bloc disponible n’importe
où, on va garantir que les blocs sont ordonnés par adresses de début (.p_start) croissantes.

15. Compléter la fonction insert_block_into_list pour effectuer cette insertion.

16. Proposer une fonction consecutive prenant en argument deux pointeurs vers deux
blocs (supposés provenant du même « pool » de mémoire), et retournant un booléen
indiquant si le second suit immédiatement le premier en mémoire.

17. Proposer une fonction clean_list qui prend une liste de blocs disponibles, et
effectue des fusions de blocs consécutifs (on prendra garde à bien appeler free pour
supprimer la struct block qui disparaît) tant qu’il y a des blocs consécutifs dans la liste.

18. Tester à nouveau le programme avec la séquence 2. Toutes les allocations doivent
dorénavant réussir !

19. Trouver une séquence d’allocations et de désallocations telle qu’il n’y a jamais plus
de 1024 entiers requis à un quelconque instant, et qui pourtant conduit à des allocations
impossibles.

4

	Introduction
	Récupération des fichiers
	Objectifs
	Blocs
	Gestion des blocs

	Premières allocations
	Recherche d'un bloc adéquat
	Réservation du bloc
	Premier test
	Coupure de bloc

	Première approche pour la libération
	Une allocation plus intelligente
	Une libération plus intelligente

