
Compression BZip

1 Introduction

1.1 Récupération des fichiers

Depuis la ligne de commande, naviguez vers un répertoire vous appartenant, et exécutez
la commande suivante, qui téléchargera et décompressera un répertoire nommé bzip
contenant plusieurs fichiers dont une source OCaml :

curl cdn.sci-phy.org/mp2i/tp11-bzip.tgz | tar xvz

Le fichier à compléter est le fichier bzip.ml. On y trouvera quelques fonctions utiles qui
seront présentées au fur et à mesure de nos besoins. On y trouve également quatre fichiers
de tests, kanagawa.txt, adn.dat, declaration.txt et ocaml.ppm.

1.2 Objectifs

Dans ce sujet, on s’intéresse à la compression d’une chaîne de caractères (et à sa dé-
compression), selon une variante de la méthode utilisée par l’outil de compression bzip.
Cet outil tente de diminuer la taille occupée en mémoire par une chaîne de caractères en
détectant les occurrences successives d’un même caractère, et en les enregistrant plus
efficacement. L’utilisation de la transformation de Burrows-Wheeler pemettra d’augmenter
le nombre de répétitions de caractères, et donc l’efficacité de la méthode.

Il vous est fourni une fonction « read » prenant en argument un chemin vers un fichier
et retournant une chaîne de caractères correspondant au contenu de ce fichier.

1.3 Soucis pratiques

Travailler avec des chaînes de caractères pose quelques problèmes pratiques. Parmi ceux-
ci, une limitation de l’outil WinCaml peut vous causer des soucis : les chaînes de caractères,
notamment celle obtenue en chargeant le fichier ocaml.ppm, peuvent contenir le caractère
de code « 0 », et si l’application tente d’afficher une telle chaîne, alors l’affichage risque
fort de se bloquer.

Il est, de toute façon, plus simple de travailler avec des entiers qu’avec des caractères.
Les chaînes de caractères en OCaml sont de simples successions de caractères, supposés
encodés dans un format de type ASCII étendu. Chaque caractère peut donc être associé
à un entier entre 0 et 255, et il est possible de passer d’un caractère à l’entier qui lui est
associé et inversement grâce aux fonctions int_of_char et char_of_int.

Pour simplifier les choses, on travaillera donc avec des tableaux d’entiers entre 0 et
255. On dispose donc d’une fonction to_array permettant de convertir une chaîne de
caractères en tableau d’entiers (une seconde fonction to_string est également disponible

si l’on souhaite effectuer la conversion inverse, par exemple pour enregistrer le résultat
dans un fichier, mais attention à ne pas provoquer un affichage de chaînes contenant des
caractères de code « 0 » !).

Pour obtenir un tableau d’entiers correspondant au contenu d’un fichier, on pourra
donc simplement écrire (en adaptant le chemin au besoin)

let data = to_array (read "U:/bzip/adn.dat")

On cherche ici à écrire une fonction de compression prenant en argument un tableau
d’entiers entre 0 et 255 et retournant un tableau d’entiers entre 0 et 255 de taille si possible
plus petite, et tel qu’il soit possible, au travers d’une autre fonction, de décompression, de
retrouver le tableau original.

Bien évidemment, il n’est pas possible d’obtenir à tous les coups un tableau plus petit !
Mais la très grande majorité des fichiers contenant des données qui ne sont pas déjà
compressées devraient, on le verra, voir leur taille réduite par l’algorithme de compression
étudié.

2 Compression par redondance

Avant de commencer, on détermine, dans le tableau en entrée, l’entier k qui apparaît
le moins fréquemment (voire jamais). En cas d’égalité, on choisira arbitrairement parmi
les possibilités. Cet entier k est placé en tête du tableau qui contiendra le résultat. Puis la
compression par redondance s’effectue de la façon suivante :

• un entier k est encodé par la succession de deux entiers k et 0
• un entier différent de k qui n’est pas répêté est simplement codé par lui-même ;
• deux entiers identiques consécutifs, différents de k, sont également codés par eux-

mêmes;
• un entier c répêté p fois avec 3 É p É 255 est codé par une séquence de trois entiers :

l’entier k, l’entier p, et enfin l’entier c lui-même.
• un entier c répêté p fois avec p > 255 est codé comme

⌊
p/255

⌋
répétitions de 255 fois

l’entier c, suivi ce qu’il convient pour coder p mod 255 fois l’entier c (par exemple,
1000 occurrences du caractère de code 42 seront encodées par la séquence « k, 255,
c, k, 255, c, k, 255, c, k, 235, c »).

Prenons un exemple, et construisons un tableau pour une chaîne simple :

let data = to_array "abbaaaacabbbbcccc";;
val data : int array = [|97; 98; 98; 97; 97; 97; 97; 99;

97; 98; 98; 98; 98; 99; 99; 99; 99|]

1

On choisira par exemple k = 0, ce qui donnera le tableau suivant après compression :

encode_RLE data;;
- : int array = [|0; 97; 98; 98; 0; 4; 97; 99; 97; 0; 4; 98; 0; 4; 99|]

Le tableau de 17 caractères a donc été ici compressé en un tableau de 15 caractères. Le
facteur de compression est ici faible, mais nous verrons que sur d’autres exemples, le gain
peut être important.

1. Proposer une fonction frequencies de signature int array -> int array prenant
en argument un tableau d’entiers t et retournant un tableau de 256 entiers tel que la case
d’index i de ce tableau corresponde au nombre d’occurrences de l’entier i dans le tableau
t.

2. En déduire une fonction less_frequent de signature int array -> int prenant en
argument un tableau d’entiers t et retournant l’entier entre 0 et 255 apparaissant le moins
fréquemment dans le tableau t (en cas d’égalité dans le nombre d’apparitions, on prendra
le plus petit de ces entiers).

3. Écrire une fonction count_repeats de signature int array -> int -> int qui
prend en argument un tableau d’entiers et un entier indiquant une position dans le tableau,
et retourne le nombre d’entiers successifs identiques à compter de cette position. Si ce
nombre dépasse 255, on retournera 255.

Par exemple, en prenant pour argument le tableau d’exemple et 0, la fonction devra
retourner 1. En lui passant ce même tableau et 3, elle devra retourner 4, et en lui passant
toujours le même tableau et 5, elle devra retourner 2. Enfin, en lui passant le tableau et
14, elle devra retourner 3 (il est vivement recommandé d’effectuer ces tests, en particu-
lier le dernier, car un mauvais fonctionnement de cette fonction posera des difficultés
ultérieurement).

4. Écrire une fonction size_encoded de signature int array -> int qui prend en
entrée un tableau d’entiers et retourne un entier indiquant la longueur qu’aura le tableau
résultat de la compression (15 sur notre exemple).

5. Déterminer la taille avant et après compression RLE des quatre fichiers fournis en
exemple.

avant compression après compression

adn.dat
kanagawa.txt

declaration.txt
ocaml.ppm

Les tailles après compression modulo 42 devraient être 9, 33, 17 et 33.

6. Interpréter les résultats obtenus (notamment l’efficacité ou non de la compression)

sur les différents fichiers.

7. Écrire une fonction encode_RLE de signature int array -> int array qui prend
en entrée un tableau de caractères et retourne un tableau de caractères compressé par la
méthode proposée au-dessus. On pourra commencer par créer un tableau de la bonne
longueur avant d’y placer les bons codes.

Note : RLE signifie « Run Length Encoding », et désigne l’encodage par redondance que
l’on implémente ici.

Pour vérifier que le contenu d’un tableau arr encodé avec encode_RLE est correct, vous
pouvez utiliser la commande « Hashtbl.hash arr » et comparer l’entier obtenu avec ceux
ci-dessous.

fichier hash original hash RLE

adn.dat 542983240 786551765
kanagawa.txt 399184142 950838657

declaration.txt 934097618 365614891
ocaml.ppm 875403533 97021462

3 Décompression RLE

8. Écrire une fonction decode_RLE de signature int array -> int array réalise l’opé-
ration inverse. On pourra d’abord créer une fonction qui détermine la taille du tableau
décompressé, avant de procéder à la décompression proprement dite.

9. Vérifier que le tableau décompressé correspond bien au tableau initial pour chacun
des fichiers d’exemples. On pourra par exemple faire le test suivant :

let data = to_array (read "U:/bzip/adn.dat") in
data = decode_RLE (encode_RLE data);;

4 Transformée de Burrows-Wheeler et compression BZip

4.1 Principe et objectifs

L’ennui est, comme on l’a vu, que cette méthode n’est pas très efficace sur un texte
normal, car on a rarement un très grand nombre de caractères identiques qui se succèdent,
autrement dit, si la chaîne compressée n’est généralement pas beaucoup plus longue, elle
est très rarement raccourcie.

La transformée de Burrows-Wheeler est une technique proposée en 1983 par Michael
Burrows et David John Wheeler. Elle réorganise des données afin d’augmenter les chances
que des données identiques se retrouvent côte à côte.

2

Pour illustrer le principe, considérons la chaîne de caractères 1 « concours » (on continue
à travailler sur des tableaux d’entiers, mais il est plus simple, pour présenter la transforma-
tion, de visualiser les choses sous la forme de caractères. La chaîne « concours » correspond
en fait au tableau d’entiers [|99; 111; 110; 99; 111; 117; 114; 115|]).

On note R[i] la permutation circulaire vers la gauche de la chaîne de i rangs. Ainsi, R[0]
correspond à « concours », R[1] à « oncoursc » ou bien R[3] à « courscon ».

Il y a autant de permutations que de caractères présents dans la chaîne (certaines
pouvant être identiques). Dans le cas du mot « concours », cela donne 8 permutations,
que l’on classe par ordre lexicographique :

concours
courscon
ncoursco
oncoursc
oursconc
rsconcou
sconcour
ursconco

Le résultat de la transformation de Burrows-Wheeler sur la chaîne de caractères
« concours » correspond aux caractères présents dans la dernière colonne ci-dessus, soit la
chaîne de caractères « snoccuro ».

On mémorise également l’indice de la lettre, dans la chaîne obtenue, qui correspond
à la première lettre de la chaîne originale. Ce sera la clé de la transformation. Elle sera
indispensable pour réaliser la transformation inverse, mais c’est la seule information
supplémentaire que l’on ait besoin. Dans le cas présent, la clé sera 3 (attention, il y a
également un c en position 4, mais il ne s’agit pas du premier caractère de « concours ».

Si l’on en revient à nos tableaux d’entiers, cela donnera :

let data = to_array "concours";;
val data : int array = [|99; 111; 110; 99; 111; 117; 114; 115|]

encode_BW data;;
- : int array * int = ([|115; 110; 111; 99; 99; 117; 114; 111|], 3)

let data = to_array "concours"
in let arr, key = encode_BW data
in to_string arr, key;;

- : string * int = ("snoccuro", 3)

1. Cette séance de travaux pratique se base largement sur une épreuve écrite du concours Polytechnique, et
les chaînes de caractères prises en exemple ont été conservées.

Dans la chaîne transformée, les deux c se sont retrouvés côte à côte. Pour des chaines
plus longues, grâce au tri, cela arrive encore plus fréquemment, ce qui augmente l’efficacité
des algorithmes de compression utilisant les redondances.

Par exemple, la chaîne « concours de l'ecole polytechnique » sera transformée par
cet algorithme en « seeleeen dlt'ucn ooohcpcc iuryqol » avec pour clé 23.

let data = to_array "concours de l'ecole polytechnique"
in let arr, key = encode_BW data
in to_string arr, key;;

- : string * int = ("seeleeen dlt'ucn ooohcpcc iuryqol", 23)

On voit ici apparaître des séquences de trois lettres identiques successives, ce qui laisse
espérer de meilleurs résultats lors d’une compression par redondance sur des textes plus
longs.

10. Écrire une fonction compare_rotations dont la signature sera compatible avec
int array -> int -> int -> int, qui accepte en argument un tableau d’entiers et deux
entiers i et j (positifs et strictement inférieurs à la longueur du tableau) et retourne :

• 1 si R[i] >R[j] pour l’ordre lexicographique ;
• -1 si R[i] <R[j] pour l’ordre lexicographique ;
• 0 si R[i] =R[j].

On déterminera le résultat sans calculer explicitement les rotations, car le tableau
fourni en paramètre peut être très long!

On fournit, pour la suite, une fonction sort_rotations qui trie les rotations du tableau
de caractères s par ordre croissant, et retourne un tableau r d’entiers représentant les
numéros, ordonnés, des rotations (R[r [0]] ÉR[r [1]] É ... ÉR[r [n −1]]). Cette fonction
effectue, dans la majorité des cas, O(n ln(n)) appels à la fonction de comparaison. Il s’agit
d’un tri rapide, qui sera étudié un peu plus tard.

let sort_rotations t =
let n = Array.length t in
let order = Array.init n (fun i -> i) in
Array.sort (compare_rotations t) order;
order;;

11. Écrire une fonction encode_BW de signature int array -> int array * int qui
prend en argument un tableau de caractères et retourne un tuple constitué du tableau
après transformation et de la clé.

12. Écrire une fonction bzip de signature int array -> int array * int qui ap-
plique la méthode de Burrows-Wheeler à un tableau de caractères puis le compresse en
exploitant les redondances, et retourne le tableau de caractères correspondant et la clé de
la transformation de Burrows-Wheeler.

3

13. Analyser les résultats obtenus avec les quatre fichiers test.

avant compression bzip après compression bzip

adn.dat
kanagawa.txt

declaration.txt
ocaml.ppm

Bien évidemment, d’autres subtilités entrent en jeu dans le format de compression
bzip pour obtenir le meilleur facteur de compression possible, quelle que soit la source,
mais les idées essentielles sont là ! Vous pouvez cette fois encore utiliser la commande
« Hashtbl.hash arr » et comparer l’entier obtenu avec ceux ci-dessous pour vérifier le
bon fonctionnement de vos fonctions. Le tableau contient aussi lés clés.

fichier hash original hash BZip clé

adn.dat 542983240 230887398 19693
kanagawa.txt 399184142 701580960 15152

declaration.txt 934097618 437203177 3903
ocaml.ppm 875403533 802555628 118668

5 Décompression BZip

Pour que cette transformation puisse être utilisée pour de la compression de données, il
est indispensable de pouvoir réaliser l’opération inverse inverse.

Pour ce faire, nous allons montrer que la transformation de Burrows-Wheeler peut être
inversée. On s’intéresse donc à une chaîne contenant les mêmes caractères que notre
chaîne codée, mais réordonnés selon l’entier qui leur est associé. Reprenons par exemple
le cas de la chaîne « concours ».

À chaque caractère de la chaîne codée, on associe le caractère placé au même endroit
dans la chaîne triée. À chaque caractère de la chaîne triée, on associe le même caractère de
même rang dans la première.

La figure suivante montre ces deux correspondances :

s n o c c u r o

c c n o o r s u

On retrouve le texte de départ en partant de la clé (ici 3, mise en évidence dans le schéma
ci-dessus) et en suivant simplement les flèches.

Il faut donc contruire un tableau t d’indices entiers tel que t.(i) soit la position, dans
le tableau représentant la chaîne encodée, correspondant à la i e lettre de la chaîne triée. Le
tableau t donne donc la correspondance représentée par les flèches de la seconde ligne
vers la première. Sur l’exemple, ce serait [| 3; 4; 1; 2; 7; 6; 0; 5 |].

14. Écrire la fonction find_indices de signature int array -> int array prenant en
paramètre un tableau tel qu’obtenu lors d’un appel à codege_BW et retournant le tableau
d’entiers précédemment décrit. Pour ce faire, on réfléchira à la façon dont le résultat
fourni par la fonction frequencies peut nous renseigner sur la position de la première
occurrence d’un caractère de code i dans la chaîne triée.

15. Écrire une fonction decode_BW de signature int array * int -> int array qui
prend en argument un tableau de caractères et un entier (clé) obtenus par l’application de
l’algorithme de Burrows-Wheeler, et retourne le tableau original.

16. Écrire une fonction bunzip de signature int array * int -> int array qui effec-
tue l’opération inverse de la fonction bzip.

4

	Introduction
	Récupération des fichiers
	Objectifs
	Soucis pratiques

	Compression par redondance
	Décompression RLE
	Transformée de Burrows-Wheeler et compression BZip
	Principe et objectifs

	Décompression BZip

