Compression BZip

Introduction

1.1 Récupération des fichiers

Depuis la ligne de commande, naviguez vers un répertoire vous appartenant, et exécutez
la commande suivante, qui téléchargera et décompressera un répertoire nommeé bzip
contenant plusieurs fichiers dont une source OCaml :

curl cdn.sci-phy.org/mp2i/tpl11-bzip.tgz | tar xvz }

Le fichier a compléter est le fichier bzip.ml. On y trouvera quelques fonctions utiles qui
seront présentées au fur et a mesure de nos besoins. On y trouve également quatre fichiers
de tests, kanagawa. txt, adn.dat, declaration. txt et ocaml.ppm.

1.2 Objectifs

Dans ce sujet, on s’intéresse a la compression d'une chaine de caracteres (et a sa dé-
compression), selon une variante de la méthode utilisée par I’outil de compression bzip.
Cet outil tente de diminuer la taille occupée en mémoire par une chaine de caractéres en
détectant les occurrences successives d'un méme caractere, et en les enregistrant plus
efficacement. L'utilisation de la transformation de Burrows-Wheeler pemettra d’augmenter
le nombre de répétitions de caracteres, et donc I'efficacité de la méthode.

Il vous est fourni une fonction « read » prenant en argument un chemin vers un fichier
et retournant une chaine de caracteres correspondant au contenu de ce fichier.

1.3 Soucis pratiques

Travailler avec des chaines de caracteres pose quelques problemes pratiques. Parmi ceux-
ci, une limitation de I'outil WinCaml peut vous causer des soucis : les chaines de caractéres,
notamment celle obtenue en chargeant le fichier ocaml . ppm, peuvent contenir le caractere
de code « 0 », et si 'application tente d’afficher une telle chaine, alors I'affichage risque
fort de se bloquer.

1l est, de toute facon, plus simple de travailler avec des entiers qu’avec des caracteres.
Les chaines de caractéres en OCaml sont de simples successions de caractéres, supposés
encodés dans un format de type ASCII étendu. Chaque caracteére peut donc étre associé
a un entier entre 0 et 255, et il est possible de passer d'un caractere a ’entier qui lui est
associé et inversement grace aux fonctions int_of_char et char_of_int.

Pour simplifier les choses, on travaillera donc avec des tableaux d’entiers entre 0 et
255. On dispose donc d'une fonction to_array permettant de convertir une chaine de
caracteéres en tableau d’entiers (une seconde fonction to_string est également disponible

si’on souhaite effectuer la conversion inverse, par exemple pour enregistrer le résultat
dans un fichier, mais attention a ne pas provoquer un affichage de chaines contenant des
caracteres de code « 0 »!).

Pour obtenir un tableau d’entiers correspondant au contenu d’un fichier, on pourra
donc simplement écrire (en adaptant le chemin au besoin)

let data = to_array (read "U:/bzip/adn.dat”)]

On cherche ici a écrire une fonction de compression prenant en argument un tableau
d’entiers entre 0 et 255 et retournant un tableau d’entiers entre 0 et 255 de taille si possible
plus petite, et tel qu'il soit possible, au travers d'une autre fonction, de décompression, de
retrouver le tableau original.

Bien évidemment, il n’est pas possible d’obtenir a tous les coups un tableau plus petit!
Mais la treés grande majorité des fichiers contenant des données qui ne sont pas déja
compressées devraient, on le verra, voir leur taille réduite par I'algorithme de compression
étudié.

Compression par redondance

Avant de commencer, on détermine, dans le tableau en entrée, 'entier k qui apparait
le moins fréquemment (voire jamais). En cas d’égalité, on choisira arbitrairement parmi
les possibilités. Cet entier k est placé en téte du tableau qui contiendra le résultat. Puis la
compression par redondance s’effectue de la fagon suivante :

¢ un entier k est encodé par la succession de deux entiers k et 0

 un entier différent de k qui n’est pas répété est simplement codé par lui-méme;

o deux entiers identiques consécutifs, différents de k, sont également codés par eux-
meémes;

» un entier c répété p fois avec 3 < p <255 est codé par une séquence de trois entiers :
I'entier k, ’entier p, et enfin I'entier ¢ lui-méme.

« un entier ¢ répété p fois avec p > 255 est codé comme | p/255 répétitions de 255 fois
I'entier c, suivi ce qu'il convient pour coder p mod 255 fois I'entier ¢ (par exemple,
1000 occurrences du caractere de code 42 seront encodées par la séquence « k, 255,
¢, k, 255, ¢, k, 255, ¢, k, 235, ¢ »).

Prenons un exemple, et construisons un tableau pour une chaine simple :

let data = to_array "abbaaaacabbbbcccc”;;
val data : int array = [|97; : : : g g g g

On choisira par exemple k = 0, ce qui donnera le tableau suivant apres compression :

encode_RLE data;;
- : int array = [|0; 97; 98; 98; 0; 4; 2 2 ; 0; 45 98; 0; 4; []

Le tableau de 17 caracteres a donc été ici compressé en un tableau de 15 caracteres. Le
facteur de compression est ici faible, mais nous verrons que sur d’autres exemples, le gain
peut étre important.

1. Proposer une fonction frequencies de signature int array -> int array prenant
en argument un tableau d’entiers t et retournant un tableau de 256 entiers tel que la case
d’'index i de ce tableau corresponde au nombre d’occurrences de I'entier i dans le tableau
t.

2. En déduire une fonction less_frequent de signature int array -> int prenanten
argument un tableau d’entiers t et retournant 'entier entre 0 et 255 apparaissant le moins
fréquemment dans le tableau t (en cas d’égalité dans le nombre d’apparitions, on prendra
le plus petit de ces entiers).

3. Ecrire une fonction count_repeats de signature int array -> int -> int qui
prend en argument un tableau d’entiers et un entier indiquant une position dans le tableau,
et retourne le nombre d’entiers successifs identiques a compter de cette position. Si ce
nombre dépasse 255, on retournera 255.

Par exemple, en prenant pour argument le tableau d’exemple et 0, la fonction devra
retourner 1. En lui passant ce méme tableau et 3, elle devra retourner 4, et en lui passant
toujours le méme tableau et 5, elle devra retourner 2. Enfin, en lui passant le tableau et
14, elle devra retourner 3 (il est vivement recommandé d’effectuer ces tests, en particu-
lier le dernier, car un mauvais fonctionnement de cette fonction posera des difficultés
ultérieurement).

4. Ecrire une fonction size_encoded de signature int array -> int qui prend en
entrée un tableau d’entiers et retourne un entier indiquant la longueur qu’aura le tableau
résultat de la compression (15 sur notre exemple).

5. Déterminer la taille avant et apres compression RLE des quatre fichiers fournis en
exemple.

avant compression aprés compression

adn.dat
kanagawa. txt
declaration. txt
ocaml.ppm

Les tailles aprés compression modulo 42 devraient étre 9, 33, 17 et 33.

6. Interpréter les résultats obtenus (notamment I'efficacité ou non de la compression)

sur les différents fichiers.

7. Ecrire une fonction encode_RLE de signature int array -> int array qui prend
en entrée un tableau de caracteres et retourne un tableau de caracteres compressé par la
méthode proposée au-dessus. On pourra commencer par créer un tableau de la bonne
longueur avant d’y placer les bons codes.

Note : RLE signifie « Run Length Encoding », et désigne ’encodage par redondance que
I'on implémente ici.

Pour vérifier que le contenu d’'un tableau arr encodé avec encode_RLE est correct, vous
pouvez utiliser la commande « Hashtbl.hash arr » et comparer 'entier obtenu avec ceux
ci-dessous.

fichier hash original hash RLE
adn.dat 542983240 786551765
kanagawa. txt 399184142 950838657
declaration. txt 934097618 365614891
ocaml . ppm 875403533 97021462

Décompression RLE

8. FEcrire une fonction decode_RLE de signature int array -> int array réalise 'opé-
ration inverse. On pourra d’abord créer une fonction qui détermine la taille du tableau
décompressé, avant de procéder a la décompression proprement dite.

9. Vérifier que le tableau décompressé correspond bien au tableau initial pour chacun
des fichiers d’exemples. On pourra par exemple faire le test suivant :

let data = to_array (read "U:/bzip/adn.dat”) in
data = decode_RLE (encode_RLE data);;

Y Transformée de Burrows-Wheeler et compression BZip

4.1 Principe et objectifs

Lennui est, comme on I'a vu, que cette méthode n’est pas trés efficace sur un texte
normal, car on a rarement un trés grand nombre de caractéres identiques qui se succedent,
autrement dit, si la chalne compressée n’est généralement pas beaucoup plus longue, elle
est trés rarement raccourcie.

La transformée de Burrows-Wheeler est une technique proposée en 1983 par Michael
Burrows et David John Wheeler. Elle réorganise des données afin d’augmenter les chances
que des données identiques se retrouvent cote a cote.

Pour illustrer le principe, considérons la chaine de caracteres ! « concours » (on continue
a travailler sur des tableaux d’entiers, mais il est plus simple, pour présenter la transforma-
tion, de visualiser les choses sous la forme de caractéres. La chaine « concours » correspond
en fait au tableau d’entiers [| 99; ; ; ; ; ; ; [D).

On note R[i] la permutation circulaire vers la gauche de la chaine de 7 rangs. Ainsi, R [0]
correspond a « concours », R[1] a « oncoursc » ou bien R[3] & « courscon ».

Il y a autant de permutations que de caractéeres présents dans la chaine (certaines
pouvant étre identiques). Dans le cas du mot « concours », cela donne 8 permutations,
que 'on classe par ordre lexicographique :

concours
courscon
ncoursco
oncoursc
oursconc
rsconcou
sconcour
ursconco

Le résultat de la transformation de Burrows-Wheeler sur la chaine de caracteres
«concours » correspond aux caractéres présents dans la derniére colonne ci-dessus, soit la
chaine de caracteres « snoccuro ».

On mémorise également l'indice de la lettre, dans la chaine obtenue, qui correspond
a la premiere lettre de la chaine originale. Ce sera la clé de la transformation. Elle sera
indispensable pour réaliser la transformation inverse, mais c’est la seule information
supplémentaire que I'on ait besoin. Dans le cas présent, la clé sera 3 (attention, il y a
également un c en position 4, mais il ne s’agit pas du premier caractére de « concours ».

Sil’on en revient a nos tableaux d’entiers, cela donnera :

let data = to_array "concours”;;
val data : int array = [|99; : : : ; ; ; []

encode_BW data;;
- : int array % int = ([|115; : 3 OBg OOk ; ; 1, 3
let data = to_array "concours”
in let arr, key = encode_BW data
in to_string arr, key;;
- : string * int = ("snoccuro”, 3)

1. Cette séance de travaux pratique se base largement sur une épreuve écrite du concours Polytechnique, et
les chaines de caractéres prises en exemple ont été conservées.

Dans la chaine transformée, les deux c se sont retrouvés cote a cote. Pour des chaines
plus longues, grace au tri, cela arrive encore plus fréquemment, ce qui augmente !'efficacité
des algorithmes de compression utilisant les redondances.

Par exemple, la chaine « concours de 1'ecole polytechnique » sera transformée par
cet algorithme en « seeleeen dlt'ucn ooohcpcc iuryqol » avec pour clé 23.

let data = to_array "concours de 1'ecole polytechnique”
in let arr, key = encode_BW data
in to_string arr, key;;
- : string * int = ("seeleeen dlt'ucn ooohcpcc iuryqgol”,)

On voit ici apparaitre des séquences de trois lettres identiques successives, ce qui laisse
espérer de meilleurs résultats lors d'une compression par redondance sur des textes plus
longs.

10. Ecrire une fonction compare_rotations dont la signature sera compatible avec
int array -> int -> int -> int, quiaccepte en argument un tableau d’entiers et deux
entiers i et j (positifs et strictement inférieurs a la longueur du tableau) et retourne :

e 1siR[i] > RI[j] pour'ordre lexicographique;
e -1siR[i] < RI[j] pour'ordre lexicographique;
e 0siR[i] =RIjl.

On déterminera le résultat sans calculer explicitement les rotations, car le tableau
fourni en parametre peut étre tres long!

On fournit, pour la suite, une fonction sort_rotations qui trie les rotations du tableau
de caracteres s par ordre croissant, et retourne un tableau r d’entiers représentant les
numéros, ordonnés, des rotations (R[r[0]] < R[r[1]] <... < R[r[n - 1]]). Cette fonction
effectue, dans la majorité des cas, O(nIn(n)) appels a la fonction de comparaison. Il s’agit
d’un tri rapide, qui sera étudié un peu plus tard.

let sort_rotations t =
let n = Array.length t in
let order = Array.init n (fun i -> i) in
Array.sort (compare_rotations t) order;
order;;

11. Ecrire une fonction encode_BW de signature int array -> int array * int qui
prend en argument un tableau de caractéres et retourne un tuple constitué du tableau
apres transformation et de la clé.

12. Ecrire une fonction bzip de signature int array -> int array % int qui ap-
plique la méthode de Burrows-Wheeler a un tableau de caracteéres puis le compresse en
exploitant les redondances, et retourne le tableau de caracteres correspondant et la clé de
la transformation de Burrows-Wheeler.

13. Analyser les résultats obtenus avec les quatre fichiers test.

avant compression bzip apres compression bzip

adn.dat
kanagawa. txt
declaration. txt
ocaml.ppm

Bien évidemment, d’autres subtilités entrent en jeu dans le format de compression
bzip pour obtenir le meilleur facteur de compression possible, quelle que soit la source,
mais les idées essentielles sont la! Vous pouvez cette fois encore utiliser la commande
«Hashtbl.hash arr » et comparer 'entier obtenu avec ceux ci-dessous pour vérifier le
bon fonctionnement de vos fonctions. Le tableau contient aussi 1és clés.

fichier hash original hash BZip clé
adn.dat 542983240 230887398 19693
kanagawa. txt 399184142 701580960 15152
declaration. txt 934097618 437203177 3903
ocaml.ppm 875403533 802555628 118668

[l Décompression BZip

Pour que cette transformation puisse étre utilisée pour de la compression de données, il
est indispensable de pouvoir réaliser I'opération inverse inverse.

Pour ce faire, nous allons montrer que la transformation de Burrows-Wheeler peut étre
inversée. On s’intéresse donc a une chaine contenant les mémes caractéres que notre
chaine codée, mais réordonnés selon I’entier qui leur est associé. Reprenons par exemple
le cas de la chaine « concours ».

A chaque caracteére de la chaine codée, on associe le caractére placé au méme endroit
dans la chaine triée. A chaque caracteére de la chaine triée, on associe le méme caracteére de
méme rang dans la premiere.

La figure suivante montre ces deux correspondances :

On retrouve le texte de départ en partant de la clé (ici 3, mise en évidence dans le schéma
ci-dessus) et en suivant simplement les fleches.

I faut donc contruire un tableau t d’indices entiers tel que t. (i) soit la position, dans
le tableau représentant la chaine encodée, correspondant a la i¢ lettre de la chaine triée. Le
tableau t donne donc la correspondance représentée par les fleches de la seconde ligne
vers la premiere. Sur 'exemple, ce serait [| 3; 4; 1; 2; 7; 6; 0; [].

14. Ecrirela fonction find_indices de signature int array -> int array prenanten
parametre un tableau tel qu’obtenu lors d'un appel a codege_BW et retournant le tableau
d’entiers précédemment décrit. Pour ce faire, on réfléchira a la facon dont le résultat
fourni par la fonction frequencies peut nous renseigner sur la position de la premiére
occurrence d'un caractere de code i dans la chaine triée.

15. Ecrire une fonction decode_BW de signature int array x int -> int array qui
prend en argument un tableau de caractéres et un entier (clé) obtenus par I'application de
l'algorithme de Burrows-Wheeler, et retourne le tableau original.

16. Ecrire une fonction bunzip de signature int array % int -> int array qui effec-
tue I'opération inverse de la fonction bzip.

	Introduction
	Récupération des fichiers
	Objectifs
	Soucis pratiques

	Compression par redondance
	Décompression RLE
	Transformée de Burrows-Wheeler et compression BZip
	Principe et objectifs

	Décompression BZip

