
Générateurs pseudo-aléatoires

« ...its very name RANDU is enough to bring dismay into the eyes
and stomachs of many computer scientists! »

Donald E. Knuth

1 Introduction

1.1 Récupération des fichiers

Depuis la ligne de commande, naviguez vers un répertoire vous appartenant, et exécutez
la commande suivante, qui téléchargera et décompressera un répertoire nommé random
contenant plusieurs fichiers dont une source C :

curl cdn.sci-phy.org/mp2i/tp10-random.tgz | tar xvz

Le fichier à compléter est le fichier random.c. On y trouvera quelques fonctions utiles
qui seront présentées au fur et à mesure de nos besoins. On y trouve également un fichier
makefile aidant à la compilation, et le module permettant de créer des images ppm que
nous avons déjà utilisé à plusieurs reprises.

1.2 Buts de l’étude

Dans la vie de tous les jours, si l’on souhaite obtenir un élément choisi aléatoirement
parmi un ensemble fini E, la solution la plus simple consiste à lancer un dé équilibré
ayant un nombre de faces égal au cardinal de l’ensemble en question, après avoir associé
chacune des faces du dé à un des éléments de E. Par exemple, si E = �1 . . 6�, on peut utiliser
un dé « courant » à six faces.

Cela fonctionne car le jet de dé est chaotique : une toute petite variation des conditions
initiales (que l’on ne peut reproduire de façon exactement identique à chaque lancer)
causera un changement dans le résultat obtenu, et l’on obtiendra les six résultats de façon
à peu près équiprobables (des expériences récentes ont montré que le résultat n’était pas
rigoureusement équiprobable, même pour un dé équilibré, si le dé est toujours lancé avec
la même orientation initiale).

Pour un ordinateur, par construction un système déterministe, la tâche est plus ardue.
On peut toujours créer un dispositif contrôlé par l’ordinateur lançant un dé physique
et utilisant une caméra pour visualiser le résultat (ce qui, comme tout projet farfelu, a
évidemment été fait : http://gamesbyemail.com/News/DiceOMatic ) mais outre le fait
que cela ne garantira pas une équiprobabilité rigoureuse des résultats, chose qui peut être
importante pour des simulations numériques, un tel dispositif est très peu pratique.

Il a donc fallu trouver des sources d’entropie, l’équivalent microscopique d’un lancer de

dé. Certains ordinateurs sont équippés d’un dispositif électronique créant un bruit d’ori-
gine quantique, qui peut être utilisé pour obtenir des bits aléatoires. Plus généralement, on
se sert de l’environnement de l’ordinateur, imprévisible, pour obtenir de tels bits aléatoires.
Par exemple, les mouvements de la souris (si vous déplacez votre souris deux fois, il est
peu probable que vous soyez capable de faire le même mouvement au micromètre près et
à la microseconde près).

Seulement, ces sources d’entropie ne permettent généralement pas de produire plus
d’une poignée de valeurs aléatoires par seconde. Pour une application qui en a besoin
d’une grande quantité, comme celles que nous allons étudier, on préfère en général utiliser
des générateurs pseudo-aléatoires.

Ce sont des algorithmes qui fournissent des séquences de valeurs (entiers, flottants...) de
façon déterministe, mais ayant l’apparence du hasard. Il s’agit toujours de la même suite
de valeurs, mais elle est tellement longue (219937 −1 valeurs pour l’un des plus populaires,
utilisé par le module random de Python, le Mersenne Twister) qu’on ne s’apercevra pas,
dans la pratique, de sa périodicité. Il suffit alors de choisir un point de départ au hasard
dans cette séquence (ce point de départ est appelé graine, ou seed en anglais).

Le langage C fourni notamment un générateur pseudo-aléatoire au travers de la fonction
rand qui retourne un entier entre 0 et RAND_MAX (inclus). Il ne garantit cependant pas
grand-chose sur sa qualité, si ce n’est que sa période doit être au moins égale à 232.

2 Générateurs pseudo-aléatoires

Puisque les générateurs pseudo-aléatoires génèrent une suite de valeurs (un) ∈N, beau-
coup utilisent une relation un+1 = f (un) pour calculer les différents un . La difficulté est de
choisir correctement la fonction f .

Une fonction très utilisée, utilisée pour les générateurs de Lehmer (ou générateurs de
Park-Miller), est la fonction f (un+1) = (a ×un + c) mod m où a, c et m sont des entiers
naturels, et l’opérateur mod calcule le reste de la division entière (ici par le diviseur m).
De façon évidente, on obtient des valeurs dans �0 . . m−1�. La valeur initiale u0 correspond
à la graine choisie pour la séquence. De très nombreuses possibilités ont été proposées
pour les valeurs de a, c et m. Parmi celles-ci, citons :

nom a c m

RANDU 65539 0 231

Knuth 1664525 1013904223 232

Standard Minimal 16807 0 231 −1

Dans un premier temps, on souhaite écrire des fonctions permettant de générer les

1



valeurs u1 à un pour chacun des trois générateurs précédents. Ces valeurs seront rangées
dans un tableau de n entiers non-signés 32 bits fourni à cet usage.

1. Compléter les fonctions gen_XXX(uint32_t seed, uint32_t tab[], int n) pour
implémenter chacun des trois générateurs pseudo-aléatoires. On réfléchira à la meilleure
façon d’utiliser les opérations bit-à-bit du langage et les propriétés des non-signés pour
implémenter certaines opérations.

On rappelle que les types uint16_t, uint32_t et uint64_t représentent des entiers non
signés sur respectivement 16, 32 et 64 bits, que les calculs sur les entiers non signés sont
effectués en arithmétique modulaire et qu’un « et » et un « ou » logiques sur les bits de
deux entiers peuvent être obtenus avec les opérateurs « & » et « | ».

On fournit une fonction disp prenant en argument une fonction génératrice de valeurs
pseudo-aléatoires, une graine et un nombre de valeurs à déterminer, et génère puis affiche
ces nombres pseudo-aléatoires.

2. Afficher les dix premières valeurs pour chacun de ces trois générateurs pour la graine
42, et vérifier le bon fonctionnement des trois fonctions.

RANDU : 2752638, 16515450, 74318958, 297274698, 1114777566, 1865709466, 1161258702, 913585258,
1472634174, 613537722

Knuth : 1083814273, 378494188, 2479403867, 955863294, 1613448261, 110225632, 1921058495,
508781842, 3753001289, 4271921684

Standard Minimal : 705894, 1126542223, 1579310009, 565444343, 807934826, 421520601, 2095673201,

1100194760, 1139130650, 552121545

Il vous est également fourni, dans le fichier random.c, un générateur pseudo-aléatoire
d’un principe différent : il s’agit d’une version simplifiée d’un Mersenne Twister (appeée
TinyMT32), qui n’est pas lui-même sans défaut mais qui pourra servir de point de compa-
raison pour les tests.

3 Premiers tests

3.1 Introduction

Tous les générateurs pseudo-aléatoires ne sont donc pas de bonne qualité. Il nous faut
des outils permettant de les comparer. L’ennui, c’est qu’il est impossible de déterminer
si une séquence de valeurs a les caractéristiques d’une séquence « aléatoire » : pour un
générateur parfaitement aléatoire, la probabilité pour qu’il retourne successivement mille
ou un million de fois la valeur 1 est certes très faible, mais pas nulle.

Les premiers générateurs pseudo-aléatoires proposés en informatique n’étaient pas très
bons. Cela a une conséquence importante : si un ordinateur a vérifié une propriété ou
calculé quelque chose avec un corpus qui n’était pas aussi aléatoire qu’il l’aurait dû, le
résultat obtenu peut être remis en cause.

Il a donc dû falloir développer des outils statistiques qui permettent de déterminer si
un générateur pseudo-aléatoire est « bon » ou pas. Il existe de nombreuses suites de tests
permettant d’évaluer la qualité d’un générateur aléatoire, nous allons étudier quelques
critères qu’un générateur pseudo-aléatoire devrait vérifier la plupart du temps pour que
l’on puisse le considérer comme un générateur de qualité raisonnable.

3.2 Fréquences

On peut déjà souhaiter que chacune des valeurs apparaissent, et qu’il n’y ait pas de
valeurs indûment favorisées par rapport à d’autres. Comme les générateurs fournissent
des entiers entre 1 et m, il faudrait générer une énorme quantité de nombres afin de
pouvoir voir s’ils sont tous présents, avec des fréquences d’apparition compatibles avec
une équiprobabilité de leur sortie.

Pour réduire les besoins, nous allons étudier les fréquences des restes des nombres
générés par une division entière par 256 (en d’autres termes, nous allons étudier les
fréquences d’apparitions pour chacun des 256 octets de poids faible des nombres générés).

3. Compléter la fonction stats qui prend en argument une fonction générant des
nombres aléatoires, une graîne, un nombre n de tirages et un nom de fichier ppm pour
ranger le résultat, alloue un tableau de n entiers non-signés 32 bits, le fait remplir par la
fonction fournie en paramètre, calcule dans un tableau count le nombre d’apparitions de
chacun des restes par une division entière par 256, et construit une image représentant un
histogramme (cette dernière partie est déjà programmée).

4. Tracer et étudier les histogrammes pour n = 10000 pour chacun des quatre géné-
rateurs, avec une graine 17. Quel(s) est (sont) celui (ceux) qui passe(nt) le test de façon
satisfaisante?

En fait, les résultats décevants de certains générateurs ne sont pas nécessairement
rédhibitoires. Pour obtenir de bons résultats, mieux vaut que m soit un premier, ce qui
n’est pas le cas bien évidemment pour deux de nos générateurs. Lorsque m n’est pas
premier, les bits de poids faibles sont de mauvaise qualité aléatoire, mais les bits de poids
fort peuvent être de qualité.

5. Proposer une fonction uint32_t extrait(uint32 n, int i, int p) prenant en
argument un entier non-signé sur 32 bits n = a31a30 . . . a1a0 et construisant et retournant
un entier non-signé sur 32 bits n′ = b31b30 . . .b1b0 de la façon suivante :

• pour j < p, b j = ai+ j ;
• pour j Ê p, b j = 0.

Cela revient en pratique à écrire n′ =
⌊

n

2i

⌋
mod 2p .

Cependant, on cherchera à construire le résultat avec des opérations bit à bit (telles que
>>, << ou &) et éventuellement une addition ou une soustraction, mais sans division ou
utilisation de l’opérateur %.

2



6. Modifier la fonction stats pour qu’elle prennent en compte les bits 23 à 30 (inclus)
des entiers générés plutôt que les bits 0 à 7 (inclus) comme précédemment.

7. Tester à nouveau les quatre générateurs. Les résultats sont-ils meilleurs?

3.3 Génération de nombres flottants

Dans la suite de nos tests, nous aimerions pouvoir générer des flottants dans l’intervalle
[0,1[, avec une distribution « uniforme » sur cet intervalle 1

Pour ce faire, on va générer des valeurs entre 0 et 231 avec un de nos générateurs pseudo-
aléatoire (on laissera tomber le bit de poids fort pour le générateur de Knuth, et on négligera
le fait que le générateur standard minimal ne peut pas retourner 231 −1), et on divisera les
résultats par 231 dans un calcul en double précision.

8. Génère-t-on de cette façon bien des flottants entre 0 et 1 (exclu)? Tous les flottants
entre 0 et 1 peuvent-ils être obtenus ?

9. Compléter la fonction gen_double qui prend en argument un générateur pseudo-
aléatoire, une graîne, un tableau avec assez de place pour n flottants en double précision
et un entier n, et remplit le tableau avec des flottants aléatoire.

3.4 Valeurs successives

Même si toutes les valeurs apparaissent de façon équiprobable, cela ne suffit pas pour
qu’un générateur pseudo-périodique soit de qualité. Il est nécessaire d’avoir une certaine
indépendance entre un tirage et celui qui le suit.

Pour le vérifier, on va générer 40000 nombres flottants aléatoires, les considérer deux
par deux comme deux flottants x et y , et tracer 20000 de points de coordonnées

(
x, y

)
. Les

points, dont les coordonnées en x et y seront comprises entre 0 et 1, seront placés dans
une image de taille 500×500, le point (0,0) devant être le pixel en bas à gauche de l’image,
le point (1,1) le point en haut à droite (on choisira n’importe quelle règle d’arrondi pour
obtenir des coordonnées entières, cela n’a pas d’importance).

10. Compléter la fonction draw2D pour qu’elle effectue ce travail, et tester les différents
générateurs. Est-ce satisfaisant?

3.5 Et les séries de trois?

Malheureusement, les faiblesses des générateurs peuvent passer inaperçues pendant
très longtemps. Et c’est ce qui est arrivé avec l’un des générateurs étudiés ici, qui a été
utilisé pendant plusieurs décennies de façon quasi-universelle avant qu’on ne lui découvre
un énorme défaut. Nous allons essayer à présent de le mettre en évidence.

1. Uniforme n’est pas un terme correct, car il n’y a qu’un nombre fini de réels dans cet intervalle.

Pour ce faire, on va générer 60000 flottants, les prendre trois par trois, et les considérer
comme autant de points

(
x, y, z

)
dans l’espace. En théorie, si le générateur est de bonne

qualité, ces points devraient être répartis, sans structure visible, dans un cube de côté 1.

Comme il est délicat de tracer des images en trois dimensions, nous allons projeter ce
nuage dans le plan, en considérant les points du plan

(
0.6x +0.4

(
1− y

)
, z

)
.

11. Que devrait-on logiquement obtenir si l’on trace le nuage de points ? La répartition
théorique tend-elle vers un résultat homogène ou non?

12. Compléter la fonction draw3D pour qu’elle trace le nuage de points dans le plan.

13. Utiliser cette fonction avec chacun des générateurs. Lequel est le coupable ?

4 Plus loin avec DieHard

Ce regrettable accident a montré que tester les générateurs n’était pas une question
simple, mais qu’elle était cruciale. Afin de mettre à l’épreuve de façon plus exhaustive les
qualités d’un générateur pseudo-aléatoire, G. Marsaglia a proposé en 1995 un ensemble
de tests statistiques appelée DieHard 2. Un générateur pseudo-aléatoire de bonne qualité
devrait passer avec succès tous les tests.

Réussir un test est toutefois une notion assez complexe, dans la mesure où, encore une
fois, il y a une probabilité non nulle qu’un générateur réellement aléatoire propose une
séquence de n zéros consécutifs. Les statistiques derrière étant relativement complexes,
on n’en touchera dans cette séance que la surface.

Précisons tout de suite que ces tests sont conçus pour poser problème à des générateurs
pseudo-aléatoires de bonne qualité. Il n’est donc pas étonnant si nos générateurs de
Lehmer (ou le Mersenne Twister simplifié) ne donnent pas des résultats très probants sur
ces tests !

4.1 OPSO

Dans le test OPSO, on génère 221 +1 entiers sur au moins 31 bits. On extrait les 10 bits
de poids faible de chacun de ces entiers, ce qui donne 221 +1 valeurs, que l’on considère
comme des « lettres ». Il y a donc 210 lettres possibles. On considère ensuite les 221 paires
consécutives de lettres (avec recouvrement, donc), ce qui nous donne 221 « mots » de deux
lettres.

Il y a, en théorie, 220 mots de deux lettres différents possibles. On compte alors, parmi les
221 mots générés, combien de ces mots n’apparaissent pas. Ce nombre ne doit pas être trop
grand (le générateur aléatoire doit en théorie les générer tous si on produit suffisamment
de « lettres ») ni trop petit. La théorie indique que le nombre de mots absent devrait suivre
une loi normale de moyenne 141909 et d’écart-type 290.

2. Un ensemble plus complet et plus difficile de tests, appelé DieHarder, l’a désormais remplacé.

3



14. Écrire une fonction test_OPSO effectuant la tâche décrite et affichant le nombre
de mots absents. Vérifier dans quelle mesure ce nombre de mots ne s’écarte pas trop de
141909 (quelques écarts-types au plus) de la valeur théorique pour chacun des générateurs
aléatoires.

Il nous faut aller un peu plus loin qu’un vague contrôle de ce genre. On va donc effectuer
au total 22 fois ce dénombrement, avec la même série de 221 +1 nombres aléatoires, mais
en prenant successivement les bits i à i +9 pour i variant de 0 à 21.

On obtient donc 21 valeurs qui devraient toutes être proches de 141909 et avoir une
distribution normale.

Pour le vérifier, trier les valeurs par ordre croissant (pas besoin de le faire faire par
la machine) et reporter celles-ci sur le papier millimétré spécial. Si la distribution est
compatible avec une loi normale, elles devraient apparaître alignées, et si c’est le cas, la
droite obtenue vous permet d’obtenir une estimation de la moyenne et de l’écart-type.

15. Vérifier le comportement d’un ou deux générateurs parmi ceux proposés (partagez-
vous la tâche entre vous !)

Note : il existe deux autres tests similaires dans la série DieHard :
• OQSO, où l’on construit des mots de quatres lettres, chaque lettre utilisant cinq bits

d’un nombre pseudo-aléatoire généré ;
• ADN, où l’on construit des mots de dix lettres, chaque lettre utilisant deux bits d’un

nombre pseudo-aléatoire généré (le nom venant du fait que l’on a quatre lettres dans
notre alphabet, comme dans le cas de l’ADN).

4.2 Test du parking

Dans ce second test, on commencera par générer 528000 flottants aléatoires dans [0,1[.
On va tenter de « garer » des « voitures » dans un parking. Pour ce faire, on considère les
24000 premiers flottants comme autant de couples

(
x, y

)
correspondant à un emplacement

auquel on essaie de garer un véhicule.

Chaque véhicule est un carré de côté 0.01 centré en (x, y), et orienté selon les axes du
repère. Pour chaque véhicule, pris dans l’ordre, s’il est possible de le placer sans qu’il y
ait recouvrement avec un autre véhicule, on le fait, sinon la tentative échoue et on passe
simplement au véhicule suivant.

La question est de savoir combien on va parvenir à garer de véhicules dans le parking.
En théorie, après 12000 tentatives, ce nombre devrait suivre approximativement 3 une loi
normale de moyenne 3523 d’écart-type 21.9.

16. Proposer une fonction test_parking déterminant le nombre de véhicules que l’on
parvient à garer avec 12000 tentatives, effectuées avec les 24000 premiers flottants générés,
et regarder avec les générateurs proposés si on est effectivement proche de la moyenne

3. Le résultat est expérimental, on ne dispose pas d’une théorie mathématique pour l’affirmer.

attendue.

17. Modifier la fonction pour qu’elle produise une image de taille 500×500 où un point
correspond à la position où on a pu garer un véhicule.

Note : la génération de positions aléatoire dans un carré telles qu’il n’y ait pas deux points
trop proches est un problème algorithmique très important avec d’innombrables applica-
tions pratiques. Pour citer un exemple concret parmi d’autres, pour modéliser une forêt
naturelle, par exemple, il faut choisir des positions pour les arbres qui ne doivent pas être
trop proches, mais n’ont aucune raison d’être régulières.

18. Modifier la fonction pour qu’elle effectue le traitement en prenant en compte les
24000 premiers flottants, puis les 24000 suivants, et ainsi de suite, 22 fois 4, et retourne les
22 nombres de véhicules placés à chaque tentative.

19. Vérifier, par lecture graphique sur le papier fourni, en choisissant un des générateurs,
s’il passe le test avec succès.

4.3 Test du rang

Dans ce test, on va considérer des matrices de taille 31×31 dont les éléments sont dans
l’ensemble {0,1}, et on va calculer leur rang dans Z/2Z.

Ce rang peut être déterminé par la méthode du pivot de Gauss. Le fait de se trouver dans
Z/2Z simplifie cependant quelque peu les choses :

• il n’y aura pas besoin d’effectuer de dilatations (multiplications) ;
• les additions et soustractions sont simplement effectuées avec un « ou exclusif »

logique, c’est-à-dire avec l’opérateur ^.

Pour simplifier, on représente une matrice comme un tableau de 31 entiers sur 31 bits,
chaque entier correspondant à une ligne de la matrice, chaque bit à un élément. Par
simplicité, l’algorithme du pivot se fera de la droite vers la gauche, des poids faibles vers
les poids forts. On procède de la sorte :

• on initialise un compteur qui contiendra le rang à 0
• 31 fois, on effectue la démarche suivante :

— si tous les entiers sont pairs, on les divise tous par deux, et on passe à l’itération
suivante

— sinon, on incrémente le compteur, puis on choisit un des entiers impair, que l’on
note p ; on l’élimine de la liste des entiers et on effectue un « ou exclusif » entre cet
entier p et tous les entiers impairs (ce sont les transvexions du pivot de Gauss), et
on divise tous les entiers (dorénavant tous pairs) par deux.

On remarquera qu’à tout instant, le nombre d’entiers restant à considérer est égal à 31
moins le contenu du compteur. On pourra s’arranger, en procédant avec des échanges,
pour que ces entiers soient toujours ceux qui se trouvent au début du tableau.

4. Dans le test original, ce n’est pas 22, mais cela permet d’utiliser le même papier millimétré que pour le test
précédent, ce qui simplifie les choses.

4



20. Compléter la fonction rang.

Pour le test, nous allons donc générer un tableau de 1240000 entiers sur 31 bits (si on
génère des entiers sur 32 bits, ce n’est pas bien grave, car notre fonction calculant le rang,
telle que décrite précédemment, va simplement ignorer le bit de poids fort), que l’on va
considérer comme 40000 matrices de taille 31×31, dont on va déterminer le rang.

21. Compléter la fonction test_rang pour qu’elle calcule le rang de chacune des ma-
trices, et qu’elle détermine le nombre de matrices de rang 31, le nombre de matrices de
rang 30, le nombre de matrices de rang 29, et le nombre de matrices de rang inférieur ou
égal à 28.

22. Afficher ces nombres pour chacun des générateurs aléatoires. Les valeurs théoriques
devraient être proches respectivement de 11551.5, 23103, 5134 et 211.5.

En théorie, il conviendrait d’évaluer la quantité 1−e
−∑ ei −ri

2ri pour tenter de conclure :
• si la valeur est proche de 1, on est « anormalement loin » de la répartition théorique ,
• si la valeur est proche de 0, on est au contraire « anormalement près » de la distribu-

tion théorique, ce qui n’est pas une bonne chose non plus.

Cela étant dit, accidentellement, il est possible d’être trop près ou trop loin de la distribu-
tion théorique. On fera donc en principe plusieurs essais, et on regardera si ces événements
sont bien « extraordinaires » (autrement dit n’arrivent pas trop souvent, ce qui là aussi est
difficile à quantifier.

5


	Introduction
	Récupération des fichiers
	Buts de l'étude

	Générateurs pseudo-aléatoires
	Premiers tests
	Introduction
	Fréquences
	Génération de nombres flottants
	Valeurs successives
	Et les séries de trois ?

	Plus loin avec DieHard
	OPSO
	Test du parking
	Test du rang


