
1Introduction au langage Caml

1 Présentation

1.1 Le langage Caml

Le langage Caml est un langage créé par l’INRIA en 1985. La version actuelle du langage,
OCaml, activement développée et largement utilisée, est celle imposée par le programme
d’option informatique 1. La documentation officielle du langage peut être obtenue sur le
site de l’INRIA, à l’adresse http://caml.inria.fr/

En principe, Caml est un langage compilé, c’est-à-dire qu’une fois le programme Caml
écrit, on utilise un compilateur qui traduit, une fois pour toute, le code Caml en une suite
d’instructions qui seront directement compréhensibles et exécutables par le processeur.
Toutefois, des environnements de développement tels que WinCaml et MacCaml 2 (res-
pectivement pour Windows et OS-X) permettent de simuler une utilisation interactive du
langage, ce qui permet, si on le souhaite, d’exécuter les commandes une à une et d’étudier
le résultat qu’elles fournissent.

1.2 Philosophie du langage

Il existe différentes façons d’aborder la notion de programmation.

La programmation impérative est basée sur la notion de machine abstraite, constituée
d’une mémoire et d’une suite d’instructions qui modifient l’état de la mémoire 3. La gestion
de la mémoire est, souvent, en grande partie à la charge du programmeur.

La programmation fonctionnelle, quant à elle, repose avant tout sur la définition et
l’évaluation de fonctions, et évite le mécanisme d’affectation. Il n’est donc pas besoin de
se soucier de la façon dont la mémoire est gérée.

Il existe également une programmation dite objet, centrée autour des données que l’on
manipule, auxquelles sont directement associées des méthodes agissant sur ces données.

1. À compter de janvier 2018. Avant cette date, le programme imposait Caml Light, une version antérieure du
langage, dont la syntaxe est quelque peu différente. Gardez cela en tête si vous parcourez des ouvrages ou des
annales se référant à l’ancien langage.

2. Que l’on trouvera à l’adresse http://jean.mouric.pagesperso-orange.fr/. Attention, OCaml et Caml
Light sont tous deux disponibles, il faudra bien choisir le bon langage via le menu CamlTop.

3. C’est le style de programmation que vous avez principalement utilisé en Python.

OCaml, comme la plupart des langages modernes 4 permet d’utiliser les trois styles de
programmation, comme nous le verrons, mais est d’abord un langage fonctionnel. Pour
cette raison, nous étudierons dans un premier temps cet aspect du langage, avant de
revenir sur le style impératif qui vous est plus familier.

2 Premiers pas

2.1 Calculer avec l’interface

L’interface qui nous est proposée est divisée en deux. La partie gauche est un éditeur
de texte dans lequel nous allons taper les différentes commandes. Ces commandes sont
ensuite exécutées dans la partie droite, laquelle fournira la différents résultats. Un rac-
courci clavier (Ctrl-Entrée sous Windows, par exemple) permet d’exécuter la commande
actuellement mise en valeur dans l’éditeur à gauche.

Effectuer un calcul avec Caml est simple. Il suffit d’entrer une expression que l’on termine
par un double point-virgule. Ce double point-virgule indique, en Caml, la terminaison
d’une expression, d’une commande ou d’une définition. le symbole # ne fait pas partie de
l’expression, mais il est indiqué ici pour distinguer les expressions envoyées à Caml des
retours.

# 2 + 3;;
- : int = 5

Intéressons-nous à la réponse de Caml. Il nous indique trois éléments. Au centre est
précisé le type du résultat, ici un entier (int). Le résultat proprement dit se trouve à droite
du signe égal, ici 5. Nous reviendrons plus tard sur l’élément à gauche des deux points.

Pour les calculs sur les entiers, on dispose des opérateurs d’addition (noté +), de soustrac-
tion (noté -), de multiplication (noté *) et de division entière (noté /). Il n’y a en revanche
pas d’opérateur pour l’exponentiation.

Il est également possible de travailler avec des flottants, mais il y a une subtilité spécifique
à Caml. En effet, la solution « naturelle » provoque une erreur :

# 1.41 + 3.14;;

Characters 2-6:
1.41 + 3.14;;
^^^^

Error: This expression has type float but
an expression was expected of type int

4. Dont Python!
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La raison de cette erreur est que Caml utilise des opérateurs différents pour chaque type
qu’il peut manipuler.

Pour les nombres flottants, les quatres opérateurs courants sont suivis d’un point (soit +.
-. *. et /.). On dispose aussi d’un opérateur d’exponentiation, cette fois sans point (**).

# 1.41 +. 3.14 ** 2.0;;
- : float = 11.2696

Naturellement, les priorités habituelles des opérateurs (puissance prioritaire sur la
multiplication et la division, elles-mêmes prioritaires sur l’addition et la soustraction) sont
respectées

# 2 + 3 * 5;;
- : int = 17

Si l’on souhaite effectuer les opérations dans un ordre différent, il est naturellement
possible d’utiliser des parenthèses :

# (2 + 3) * 5;;
- : int = 25

En l’absence de règle de priorités, l’évaluation se fait de gauche à droite, excepté l’expo-
nentiation évaluée de droite à gauche (comme en Python) :

# 5 - 3 - 2;;
- : int = 0

# 2. ** 1. ** 2.;;
- : float = 2.0

2.2 Typage fort

Si l’utilisation d’opérateurs différents en fonction du type peut paraître contraignante,
ce choix a été fait pour permettre à Caml de déterminer automatiquement, aussi souvent
que possible, les types des opérandes.

Par exemple, lorsque l’on écrit x + y, Caml peut en déduire que les identifiants x et y
sont à des entiers.

Par ailleurs, Caml utilise ce que l’on appelle un typage fort, c’est-à-dire qu’il n’essaiera
jamais, de lui même, de changer le type d’un objet pour pouvoir réaliser une opération 5.
Ainsi, la somme suivante provoque une erreur :

5. Python a également un typage fort (par exemple, range(2.0) est refusé), mais comme c’est un langage
polymorphe et que les fonctions et opérateurs usuels s’accomodent de types différents, c’est moins évident.

# 3.0 +. 2;;

Characters 9-10:
3.0 +. 2;;

^
Error: This expression has type int but

an expression was expected of type float

En effet, l’opérateur +. attend impérativement des flottants pour chacun de ses deux
opérandes, or 2 est un entier. Ce que laisse clairement comprendre la réponse de Caml
dans l’exemple précédent.

Quand bien même la conversion d’un entier en flottant ne poserait ici aucun problème
particulier, Caml ne le fera jamais de lui-même 6. Il en est de même sur ce second exemple :

# 2 + 3.0;;

Characters 7-10:
2 + 3.0;;

^^^
Error: This expression has type float but

an expression was expected of type int

Il est heureusement possible de convertir un type en un autre, à condition de le faire
explicitement. Ainsi, la fonction float_of_int permet de convertir un entier en flottant :

# 3.0 +. float_of_int 2;;
- : float = 5.0

De même, int_of_float permet d’effectuer la conversion inverse (en tronquant la
valeur réelle si nécessaire) :

# 2 + int_of_float 3.0;;
- : int = 5

# 2 + int_of_float 3.5;;
- : int = 5

Notons ici l’absence de parenthèses encadrant l’argument des fonctions, et qu’en terme
de priorités le calcul de float_of_int 2 ou int_of_float 3.0 ont été effectués avant
l’addition, nous y reviendrons un peu plus tard.

6. Python non plus, mais l’opérateur + en Python accepte une grande quantité de types pour chaque opérande,
et notamment float pour l’opérande de gauche et int pour celui de droite ; le résultat est alors un flottant, le
calcul étant fait sur des flottants en convertissant préalablement l’entier en flottant. La conversion n’est PAS
automatique, c’est l’implémentation de l’opérateur + qui le demande explicitement dans cette situation.
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3 Définitions

3.1 Définitions globales

Il est possible d’associer un nom (un ensemble de chiffres et de lettres, commençant par
une lettre) à une valeur grâce à l’instruction let. C’est une définition.

Cette définition n’est pas modifiable, même s’il est possible de définir à nouveau le nom
pour l’associer à une autre valeur 7.

# let x = 2;;
val x : int = 2

La troisième information que nous retourne Caml, la plus à gauche, correspond donc au
nom auquel est associé le résultat. Si aucun nom n’est défini, on trouvera simplement un
tiret - à gauche.

Une fois le nom défini, il peut être utilisé dans des calculs.

# let x = 2;;
val x : int = 2

# x * 3 + 4;;
- : int = 10

Dans la définition, on peut parfaitement utiliser une expression. Celle-ci est évaluée
immédiatement, et c’est le résultat obtenu qui est associé au nom.

# let x = 2;;
val x : int = 2

# let y = x + 5;;
val y : int = 7

# y;;
- : int = 7

Puisque c’est le résultat qui est associé au nom y, une nouvelle définition de x n’a aucune
incidence sur celle de y :

# let x = 2;; (* On définit ici le nom x *)
val x : int = 2

7. La distinction est subtile, nous y reviendrons un peu plus tard.

# let y = x + 5;; (* On définit à présent le nom y *)
val y : int = 7

# let x = 6;; (* On redéfinit le nom x *)
val x : int = 6

# y;; (* Cela n'a aucune incidence sur y *)
- : int = 7

Il est par ailleurs possible d’effectuer plusieurs définitions d’un seul coup, grâce au
mot-clé and :

# let x = 7 and y = 8;;
val x : int = 7
val y : int = 8

Attention, les définitions sont interprétées simultanément et non successivement,
comme on peut le voir si l’on redéfinit x et y en écrivant :

# let x = 7 and y = 8;;
val x : int = 7
val y : int = 8

# let x = 0 and y = x;; (* Le valeur associée à x dans la seconde *)
val x : int = 0 (* définition est celui de la définition *)
val y : int = 8 (* précédente, c'est-à-dire x=7 et non x=0 *)

Cela permet de redéfinir deux noms en échangeant les valeurs associées :

# let x = 1 and y = 2;;
val x : int = 1
val y : int = 2

# let x = y and y = x;;
val x : int = 2
val y : int = 1

3.2 Définitions locales

Il est également possible de définir un nom qui n’existera que le temps de l’évaluation
d’une expression, grâce au mot-clé in.
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# let a = 1 + 1 in a * 3;;
- : int = 6

On peut vérifier que la définition n’existe que le temps d’évaluer l’expression a + 3 :

# a;;

Characters 2-3:
a;;
^

Error: Unbound value a

On peut également faire des définitions locales multiples :

# let a = 1 and b = 2 in a + b;;
- : int = 3

Il est possible d’utiliser une définition globale d’un nom qui a déjà été défini globalement.
La définition globale n’est pas affectée :

# let x = 0;;
x : int = 4

# let x = 5 in x + 6;;
- : int = 11

# x;;
- : int = 0

Il est possible d’imbriquer les définitions, par exemple

# let x = 7 in let x = x - 8 in x + 9;;
- : int = 8

En fait, on peut décoder cette instruction un peu obscure en identifiant plus clairement
les deux définitions qui interviennent :

# let x = 7 in let xx = x - 8 in xx + 9;;
- : int = 8

4 Les fonctions

4.1 Fonctions avec un unique argument

Il existe de nombreuses façons de définir des fonctions en Caml. Par exemple, on peut
vouloir créer une fonction f définie par 8 :

f

{
R 7−→R

x 7−→ 3x2

La façon la plus simple de procéder est d’écrire

# let f x = 3. *. x ** 2.;;
val f : float -> float = <fun>

La signature obtenue indique que f désigne à présent une fonction (<fun>) qui prend en
argument un flottant et retourne un flottant. L’usage d’un opérateur spécifique pour les
nombres flottants a permi à Caml d’identifier correctement le type attendu pour l’argument
de la fonction.

On utilise ensuite cette fonction de la sorte :

# f 4.0;;
- : float = 48.0

ou bien encore

# let z = 2.5 in f z;;
- : float = 18.75

Il est également possible de définir localement des fonctions, par exemple :

# let g x = x * 3 in g 4;;
- : int = 12

# g;;

Characters 2-3:
g;;
^

Error: Unbound value g

8. La fonction ne sera pas réellement définie sur R mais simplement sur les flottants.
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On remarque que le langage Caml n’utilise pas de parenthèses autour de l’argument lors
de la définition de la fonction. En mettre ne provoquera pas une erreur, mais ce n’est pas
l’usage car elles ne sont pas nécessaires. De la même façon, on n’en utilise pas non plus
lorsque l’on fait appel à la fonction.

Il y a cependant une exception à cette règle, lorsque l’argument est négatif. Il convient
d’écrire

# f (-4.0);;
- : float = 48.0

En effet, ne pas mettre les parenthèses déclenche une erreur :

# f -4.0;;

Characters 2-3:
f -4.0;;
^

Error: This expression has type float -> float
but an expression was expected of type int

Dans ce dernier cas, Caml pense que l’on a essayé de soustraire l’entier 9 4.0 à l’entier
f, et constaté que f était non pas un entier, mais une fonction prenant en argument un
flottant et retournant un flottant, d’où le message d’erreur.

Compte tenu de l’ambiguité, il n’a pas pu reconnaître que le signe moins était l’opérateur
unaire utilisé pour définir les nombres négatifs, et non l’opérateur binaire de soustraction.
L’usage de parenthèses permet de résoudre cette difficulté.

4.2 Le mot-clé « function »

Une autre manière de définir une fonction est d’utiliser le mot-clé function, qui utilise
une syntaxe très proche des mathématiques :

# let f = function x -> 3.0 *. x *. x;;
val f : float -> float = <fun>

La signature obtenue est exactement la même, et sont utilisation est identique :

# f 4.0;;
- : float = 48.0

9. 4.0 n’est évidemment pas un entier, mais pour Caml, les deux éléments à gauche et à droite de l’opérateur -
devraient l’être. S’il n’y avait pas eu une erreur de type pour f, il y aurait eu une erreur de type sur 4.0.

En fait, on retrouve en Caml deux syntaxes similaires à celles qui, en Python, permettent
de définir une fonction, l’approche « classique » :

def f(x) :
return 3.0 * x**2

et celle inspirée des langages fonctionnels utilisant le mot-clé lambda 10

f = lambda x : 3.0 * x**2

Comme lambda en Python, function en Caml permet de définir anonymement une
fonction. Il est ensuite possible d’associer un identifiant à la fonction via let (ou l’opérateur
d’affectation en Python).

4.3 Arguments multiples

Il est possible d’utiliser les constructions précédentes pour définir ce qui s’apparente à
des fonctions à plusieurs variables.

Par exemple, on peut écrire

# let f = function x -> function y -> x + y;;
val f : int -> int -> int = <fun>

En fait, la fonction f est une fonction qui prend en argument un élément de Z et retourne
une fonction de Z à valeur dans Z.

Une telle construction correspond, mathématiquement, à :

f


Z 7−→ (Z 7−→Z)

x 7−→
{

Z 7−→Z

y 7−→ x + y

C’est l’interprétation qu’il faut donner à la signature fournie par Caml. Elle est équiva-
lente à int -> (int -> int), même si l’interpréteur n’indiquera pas, dans ce cas, les
parenthèses, car la signature est lue de gauche à droite.

Si l’on fournit un int à la fonction f, on obtient donc une fonction de signature
int -> int. Ainsi,

# f 2;;
- : int -> int = <fun>

10. Cette seconde syntaxe n’est pas exigible aux concours, et est à utiliser avec parcimonie.
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On peut donner un nom à cette fonction, puis s’en servir :

# let g = f 2;;
val g : int -> int = <fun>

# g 3;;
- : int = 5

Heureusement, il n’est pas nécessaire d’aller si loin pour utiliser la fonction f. Par
exemple, on pourrait envisager de déterminer f 2, puis d’appliquer le résultat à 3, en
imposant cet ordre d’évaluation grâce à des parenthèses :

# (f 2) 3;;
- : int = 5

Plus simplement encore, Caml évaluant les expression de la gauche vers la droite (on
parle d’association à gauche), l’expression f 2 3 est équivalente à (f 2) 3 :

# f 2 3;;
- : int = 5

Utiliser le mot-clé fonction (lequel ne permet de définir que des fonctions avec un
unique argument) de la sorte étant un peu lourd, on dispose d’un autre mot-clé, fun qui
est une sorte de raccourci :

# let f = fun x y -> x + y;;
val f : int -> int -> int = <fun>

# f 2 3;;
- : int = 5

On remarque que la signature est exactement la même, et que f se comporte exactement
de la même façon.

On peut également définir f d’une troisième et dernière façon, encore plus brève :

# let f x y = x + y;;
val f : int -> int -> int = <fun>

# f 2 3;;
- : int = 5

4.4 Signature de la fonction

Comme on a pu le voir sur les exemples précédents, Caml détermine automatiquement
le type des arguments de la fonction, ainsi que le type du résultat. Cela est rendu possible
par le fait que les opérateurs nous renseignent sur la nature des opérandes. Il n’y a par
exemple aucune ambiguité dans les définitions suivantes :

# let f x y = int_of_float x + y;;
val f : float -> int -> int = <fun>

# let g f = f 1 +. 2.;;
val g : (int -> float) -> float = <fun>

Cela permet à Caml de détecter très tôt d’éventuelles erreurs :

# let h x y = int_of_float x +. y;;

Characters 15-29:
let h x y = int_of_float x +. y;;

^^^^^^^^^^^^^^
Error: This expression has type int but

an expression was expected of type float

Il arrive parfois cependant qu’il ne soit pas possible de déterminer le type d’un argument,
comme dans les exemples ci-dessous :

# let premier x y = x;;
val premier : 'a -> 'b -> 'a = <fun>

# let second x y = y;;
val second : 'a -> 'b -> 'b = <fun>

Ce sont des fonctions dites polymorphes. Le type 'a (ou 'b) indique que n’importe quel
type est accepté. Cependant, dans la première fonction par exemple, le type du résultat
sera, tout naturellement, le type du premier argument !

On peut ainsi utiliser les fonctions précédents avec des types différents :

# premier 1 2;;
- : int = 1

# premier 1.0 2.0;;
- : float = 1.0
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Ces fonctions peuvent être réutilisées dans d’autres fonctions, et le mécanisme de déter-
mination des types tâchera toujours de déterminer le type d’un maximum d’arguments et
de résultats :

# let somme x y = premier x y + second x y;;
val somme : int -> int -> int = <fun>

# let somme x y = premier x y + second y x;;
val somme : int -> 'a -> int = <fun>

Dans les deux définitions précédentes, la présence de l’opérateur + impose que les
résultats des appels à premier et second sont tous deux des entiers. Dans le premier cas,
cela impose le type de x et y, mais dans le second cas, cela n’impose que le type de x, d’où
les signatures différentes.

5 Les principaux types manipulés par Caml

5.1 Les entiers

Caml peut, on l’a vu, manipuler des entiers. Ils sont stockés sur 63 bits 11 (le 64e bit est
en fait réservé pour un usage interne), en utilisant la règle du complément à deux pour
représenter les entiers négatifs, ce qui signifie que l’on peut manipuler des entiers compris
entre −262 =−4611686018427387904 et 262 −1 = 4611686018427387903.

En cas de dépassement, il y a un débordement, qui peut avoir des conséquences néfastes
si l’on n’y prend pas garde :

# 4611686018427387903 + 1;;
- : int = -4611686018427387904

# 4611686018427387903 * 2;;
- : int = -2

Le nom max_int désigne le plus grand entier positif représentable (soit 262 − 1), et
min_int est son pendant négatif.

# max_int;;
- : int = 4611686018427387903

On dispose, on l’a vu, des opérateurs d’addition (+), de soustraction (-), de multiplication
(*) et de division (/). Dans ce dernier cas, le résultat étant un entier, c’est le quotient de la

11. Ou bien 31 bits sur une machine 32 bits.

division entière qui est retourné. Pour obtenir le reste de cette division entière, on dispose
de l’opérateur mod.

# 42 / 17;;
- : int = 2

# 42 mod 17;;
- : int = 8

5.2 Les flottants

Il est également possible de manipuler des nombres flottants. Ce sont des nombres
flottants sur 64 bits respectant la norme IEEE 12, avec les limitations inhérentes en terme
de précision et de valeurs représentables.

La lettre « e » permet de définir un exposant (qui doit être entier). En l’absence d’exposant,
le séparateur décimal (un point) est requis pour éviter toute confusion possible avec des
entiers.

Nous avons déjà signalé l’existence des opérateurs courants (+. -. *. /. et **), auxquels
s’ajouent de nombreuses fonctions mathématiques (sqrt, exp, log, sin, cos, tan, asin,
acos, atan...) Précisions que le logarithme fourni à travers la fonction log est le logarithme
népérien et non décimal.

# let pi = 3.14159265359 in tan (pi /. 4.0);;
- : float = 1.0

# log 2.0e4;;
- : float = 9.9034875525361272

# sqrt (exp 1.0);;
- : float = 1.6487212707

5.3 Les caractères et chaînes de caractères

Caml propose un type char pour désigner les caractères. On les représente encadrés du
symbole ' (guillemets droits simples).

# let car = 'f';;
val car : char = 'f'

12. Soit, en particulier, un bit de signe, onze bits pour l’exposant et cinquante-deux bits pour la mantisse.
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Les chaînes de caractères, qui regroupent plusieurs caractères, sont d’un type différent,
string. On les représente entourées de " (guillemets droits supérieurs doubles).

# let ch = "nénuphar";;
val ch : string = "nénuphar"

La concaténation de chaîne est possible grâce à l’opérateur ^ (circonflexe) :

"micro" ^ "mega";;
- : string = "micromega"

La fonction String.length retourne la longueur d’une chaîne fournie en argument :

# String.length;;
- : string -> int = <fun>

String.length ch;;
- : int = 8

Il est possible extraire le ie caractère d’une chaîne de caractères grâce à la fonction
String.get, le résultat étant évidemment un caractère :

# String.get;;
- : string -> int -> char = <fun>

# String.get ch 4;;
- : char = 'p'

Notons que l’indexation commence à 0, comme très souvent en informatique.

Comme c’est une opération courante, il existe une autre manière d’accéder à un caractère
dans une chaîne :

# ch.[4];;
- : char = 'p'

On peut également extraire une sous-chaîne d’une chaîne de caractères en spécifiant l’in-
dice de départ et la longueur de la sous-chaîne souhaitée, grâce à la fonction String.sub :

# String.sub;;
- : string -> int -> int -> string = <fun>

# String.sub ch 4 2;;
- : string = "ph"

De même qu’il est possible de convertir des entiers en flottants et inversement, on
peut convertir des valeurs numériques en chaînes de caractères et inversement avec
les fonctions string_of_int, string_of_float, float_of_string et float_of_int. On
dispose également de char_of_int et int_of_char pour convertir un code ASCII en
caractère et inversement. La bibliothèque standard de Caml fournit encore bien d’autres
fonctions pour manipuler les chaînes de caractères, que vous pourrez retrouver dans la
documentation du langage.

5.4 Le type unit

Il n’est pas rare que certaines fonctions effectuent une opération particulière (modifica-
tion de données, par exemple 13) mais n’aient pas de résultat à retourner. Pour des raisons
de cohérence, Caml impose que toute fonction retourne quelque chose, aussi dispose-t-on
d’un type particulier désignant en fait, en quelque sorte, la notion de « rien ». C’est le type
unit, qui compte () comme seul et unique représentant du type 14.

C’est par exemple le type retourné par les fonctions effectuant des affichages. Il existe
une fonction d’affichage pour tous les types courants :

# print_int 3;;
3- : unit = ()

# print_float 3.14;;
3.14- : unit = ()

# print_string "Blop";;
Blop- : unit = ()

La lecture de la réponse n’est pas facile, ici, car l’affichage demandé se confond avec la
valeur de retour de la fonction. Il ne faut pas oublier que Caml n’est pas, à l’origine, un
langage interactif, et les types et valeurs retournés par les fonctions n’apparaissent pas
lorsqu’on exécute normalement le programme. Seul les affichages produit par les fonctions
print_ sont visibles, d’où leur importance.

Caml n’effectue aucun retour à la ligne, afin de permettre plusieurs affichages sur la
même ligne. La fonction print_newline permet d’obtenir ce retour à la ligne. En principe,
elle ne devrait pas nécessiter d’argument, mais si l’on met uniquement le nom de la
fonction, on obtient simplement sa signature !

# print_newline;;
- : unit -> unit = <fun>

13. On dit qu’elles ont un « effet de bord ».
14. Le type unit correspond au type NoneType de Python, dont le seul représentant est None, et qui existe pour

des raisons similaires.
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Aussi pour faire appel à la fonction, on lui fournit en argument un objet de type unit,
soit nécessairement () :

# print_newline ();;

- : unit = ()

5.5 Les booléens

Caml dispose également d’un type booléen, bool, qui n’a que deux représentants, true
et false (sans majuscule).

On note 15 && l’opérateur logique « et », et || l’opérateur logique « ou ». L’opérateur
unaire not permet d’obtenir la négation d’une valeur booléenne.

L’opérateur not a la plus grande priorité, suivi de && et enfin de || :

# true && true || false && false;;
- : bool = true

# not false || true;;
- : bool = true

Mais on peut naturellement utiliser des parenthèses pour changer cet ordre d’évaluation :

# not (false || true);;
- : bool = false

Caml dispose de différents opérateurs pour comparer deux éléments : on écrira = pour
tester l’égalité, <> pour tester la « non-égalité », et enfin < <= > >= pour ce qui est
des comparaisons. Ces opérateurs ont priorité sur les opérateurs logiques. Ce sont des
opérateurs polymorphes, qui acceptent n’importe quel type :

# 3.14 = 1.41;;
- : bool = false

# 'a' <> 'z';;
- : bool = true

# "toto" <= "blop";;
- : bool = false

15. Signalons que Caml tolère l’utilisation de or à la place de || (mais pas de and, qui est réservé pour des
définitions multiples !), de même que & à la place de && (Mais pas de | ici, réservé pour un usage que nous verrons
un peu plus tard).. Nous éviterons ces notations dans la suite.

On notera que l’égalité s’écrit avec un unique signe égal, et sa négation avec <> 16.

Pour qu’une comparaison soit valide, cependant, il faut que les deux éléments comparés
soient impérativement de même type :

# 3 = 3.0;;

Characters 6-9:
3 = 3.0;;

^^^
Error: This expression has type float but

an expression was expected of type int

Dans le cas des chaînes de caractères, c’est l’ordre lexicographique qui est utilisé. Pour
comparer les caractères entre eux, la relation d’ordre fait référence au code ASCII 17 18.

Signalons enfin que l’évaluation des expressions booléennes est paresseuse, c’est-à-dire
qu’elle cesse dès que l’on a pu déterminer avec certitude le résultat, sans évaluer la totalité
des expressions, comme le montrent ces exemples (l’expression contenant une division
par zéro dans la première expression n’est jamais évaluée) :

# 2 < 3 || (1/0) == 42;;
- : bool = true

# 2 > 3 || (1/0) == 42;;
Exception: Division_by_zero.

Caml définit d’autres fonctions polymorphes liées à la notion de comparaison. Les fonc-
tions max et min acceptent deux arguments de même type, et retournent respectivement le
plus grand et le plus petit des deux 19.

# max;;
- : 'a -> 'a -> 'a = <fun>

# max "toto" "blop";;
- : string = "toto"

16. On aura tôt fait de remarquer que == et != existent, et semblent fonctionner de la même façon, mais ce sont
des opérateurs d’identité et non d’égalité (ils correspondent aux opérateurs is et is not en Python).

17. Ce qui correspond à l’ordre alphabétique, mais uniquement pour comparer des minuscules non accentuées
ou des capitales non accentuées. Une capitale est notamment toujours considérée plus petite qu’une minuscule.

18. Le type string en Caml manipule des caractères sur 8 bits. Même s’il est possible d’utiliser des caractères
accentués, comme on l’a vu, la gestion de caractères non-ASCII en OCaml est compliquée, et nous ne nous y
étendrons pas. Il existe des extensions à OCaml pour supporter plus efficacement les chaînes non-ASCII, et
notamment unicode, tel que le module Rope.

19. En cas d’égalité, min retourne le premier argument et max le second.
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La fonction compare, elle, attend deux arguments x et y de même type et retourne 0 si
x = y, un entier positif si x > y et un entier négatif sinon 20.

# compare;;
- : 'a -> 'a -> int = <fun>

# compare 3 7;;
- : int = -4

# compare 3.2 7.5;;
- : int = -1

6 Plus loin dans les définitions de fonctions

6.1 Filtrage de motif

Supposons que l’on souhaite créer une fonction sinc, définie de R dans R comme le
prolongement par continuité en 0 de x 7→ sin(x)/x, c’est-à-dire :

sinc :


R 7−→R

0 7−→ 1

x 7−→ sin(x)

x

si x ̸= 0

En l’absence du prolongement, nous avons vu que nous pouvions définir la fonction de
cette façon :

# let sinc = function x -> sin(x) /. x;;

val sinc : float -> float = <fun>

Mais cette définition laisse de côté le cas x = 0. Caml nous propose une solution élégante
de définir la fonction sinc, très similaire aux mathématiques :

# let sinc = function
| 0.0 -> 1.0
| x -> sin(x) /. x;;

val sinc : float -> float = <fun>

20. La valeur du résultat, en dehors de son signe, n’est pas spécifiée.

Ce type de structure est appelé filtrage par motif. On associe ainsi un ensemble de motifs
(à gauche des flèches) avec des expressions. Dans cette situation, Caml essaiera d’associer
successivement l’argument de la fonction avec chacun des motifs, et utilisera l’expression
associée au premier motif qui convient.

Ainsi, sinc 0.0 utilisera la première des expressions, tandis que sinc 1.0 utilisera la
seconde, l’identification de 1.0 avec le premier motif ayant échoué. x pouvant représenter
n’importe quelle valeur, l’identification s’est bien passée. Dans l’expression associée, le
nom x est défini localement comme l’argument de la fonction.

Dans le cas où l’argument correspond à plusieurs cas possibles, Caml s’arrête sur le
premier qui convient. Il est donc important de faire figurer le motif 0.0 -> ... avant celui
x -> ... !

Si l’on n’a pas besoin de l’argument dans l’expression, on peut spécifier _ dans le motif,
qui peut être identifié avec n’importe quoi, la valeur étant « perdue » lorsque l’on évalue
l’expression.

# let est_nul = function
| 0 -> true
| _ -> false;;

val est_nul : int -> bool = <fun>

Contrairement à ce que l’on pourrait penser, on ne peut pas se servir des motifs pour
construire simplement une fonction polymorphe :

# let est_nul = function
| 0 -> true
| 0.0 -> true
| _ -> false;;

Characters 49-52:
| 0.0 -> true

^^^
Error: This pattern matches values of type float

but a pattern was expected which matches values of type int

Dès qu’un motif permet de déterminer le type de l’argument (que ce soit explicitement,
à gauche de la flèche, ou en étudiant l’utilisation du motif à droite de cette même flèche),
celui-ci ne peut plus être changé.

Ainsi, dans l’exemple précédent, la première ligne du filtrage a permi de déterminer que
l’argument était un entier. La seconde ligne du filtrage, qui fait référence à un argument
flottant, ne saurait donc convenir.
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6.2 Motifs gardés

Il est possible de définir des conditions dans un motif, grâce au mot-clé when. On parle
de motif gardé :

# let est_positif = function
| x when x >= 0 -> true
| _ -> false;;

est_positif : int -> bool = <fun>

Caml détectera si un motif n’est pas exhaustif :

# let signe = function
| 0 -> "nul"
| x when x<0 -> "strictement négatif";;

Characters 18-85:
............function

| 0 -> "nul"
| x when x<0 -> "strictement négatif"..

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
1

(However, some guarded clause may match this value.)

val signe : int -> string = <fun>

Dans le cas présent, il a raison, le cas de l’entier 1 n’est pas considéré.

On s’efforcera d’éviter, autant que possible, les motifs non-exhaustifs. Mais ce n’est
qu’un avertissement, la fonction est quand même définie (Caml nous a fourni sa signature)
et peut être utilisée, mais déclenchera une erreur 21 si l’on utilise comme argument une
valeur qui ne figure pas parmi les motifs possibles :

# signe 0;;
- : string = "nul"

# signe 1;;
Exception: Match_failure ("//toplevel//", 225, 12).

21. En fait, une exception

Caml n’est pas toujours capable de déterminer l’exhaustivité d’un motif :

# let signe = function
| 0 -> "nul"
| x when x > 0 -> "strictement positif"
| x when x < 0 -> "strictement négatif";;

Characters 18-139:
............function

| 0 -> "nul"
| x when x > 0 -> "strictement positif"
| x when x < 0 -> "strictement négatif"..

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
1

(However, some guarded clause may match this value.)

val signe : int -> string = <fun>

Pour cette raison, on préférera l’écriture suivante, équivalente (car le dernier motif ne
sera considéré que si les précédents ne conviennent pas) :

# let signe = function
| 0 -> "nul"
| x when x > 0 -> "strictement positif"
| _ -> "strictement négatif";;

signe : int -> string = <fun>

Dans certains cas, Caml identifiera l’inutilité d’un motif :

# let double = function
| x -> 2.0 *. x
| 0.0 -> 0.0;;

Characters 50-53:
| 0.0 -> 0.0;;

^^^
Warning 11: this match case is unused.

val double : float -> float = <fun>
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Remarquons que cela n’a pas empêché la définition de la fonction. Sur ce point encore,
Caml n’est cependant pas capable de tout remarquer :

# let parité = function
| x when x mod 2 = 0 -> "pair"
| x when x mod 2 = 1 -> "impair"
| x -> "ni pair ni impair";;

val parité : int -> string = <fun>

Dans ce dernier cas, si l’on retire le dernier motif, inutile, Caml protestera contre un
filtrage non-exhaustif ! Il faudra également réécrire le second motif pour le satisfaire.

Attention, les noms dans les motifs ne désignent jamais de valeur, même si le nom
existe en dehors. Par exemple, dans le cas suivant, le x du premier motif ne désigne pas 0,
comme en témoigne l’avertissement de Caml :

# let nul =
let x = 0 in function

| x -> true
| _ -> false;;

Warning 26: unused variable x.

Characters 68-69:
| _ -> false;;
^

Warning 11: this match case is unused.

val nul : 'a -> bool = <fun>

La signature également peut nous interpeler : si l’on comparait l’argument à zéro, nous
ne devrions pas avoir une fonction polymorphe... Il faudrait plutôt écrire 22

# let nul =
let x = 0 in function

| y when y = x -> true
| _ -> false;;

val nul : int -> bool = <fun>

22. Enfin... il faudrait surtout l’écrire complètement autrement, car c’est une façon très tarabiscotée de vérifier
si l’argument est égal à 0 !

Attention, si function permet le filtrage par motif, ce n’est pas 23 le cas de fun.

Il est possible d’utiliser ce mécanisme hors du cadre d’une fonction, grâce à la structure
match expr with qui peut être employée à tout endroit où l’on peut mettre une expression.
Par exemple, si n est égal à 17, on a :

# let parité n =
let reste = n mod 2 in

match reste with
| 0 -> "pair"
| _ -> "impair";;

val parité : int -> string = <fun>

Cette construction permet par ailleurs de filtrer le résultat d’une expression (ce que ne
permet pas function) :

# let parité n =
match n mod 2 with

| 0 -> "pair"
| _ -> "impair";;

val parité : int -> string = <fun>

6.3 Fonctions récursives

Sans vouloir entrer trop dans les détails (nous consacrerons un chapitre aux fonctions
récursives un peu plus tard), une fonction récursive est, grossièrement, une fonction qui
s’appelle elle-même. Il n’est pas possible de définir une fonction récursive en Caml sans
une petite astuce, car au moment où l’on définit notre fonction f, elle n’existe pas encore,
donc il n’est pas possible de l’utiliser dans la définition. On signale donc à Caml qu’il faut
faire une petite entorse à ses habitudes en ajoutant un « rec » juste après le let.

Par exemple, il est très simple de définir récursivement la fonction fact représentant la
factorielle en mathématiques :

# let rec fact = function
| 0 -> 1
| n -> n * fact (n-1);;

val fact : int -> int = <fun>

23. En OCaml en tout cas, car c’était possible avec le langage Caml Light, et vous risquez de le rencontrer dans
des ouvrages ou des annales.
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Nous verrons un peu plus tard que cette définition, très proche de la définition mathé-
matique, n’est pas la plus efficace, mais nous nous en contenterons bien pour l’instant.

On rappelle que Caml travaille sur des entiers sur 31 bits, donc pour de « grandes » valeurs
de n (plus de... 20), on aura un résultat incorrect (fact 21 est négatif, puis le résultat sera
nul pour n Ê 64).

On peut, de façon similaire, réécrire une fonction déterminant la parité d’un entier 24 :

# let rec est_pair = function
| 0 -> true
| 1 -> false
| n -> est_pair (n-2);;

val est_pair : int -> bool = <fun>

Pour tenir compte un peu plus efficacement des nombres négatifs, on peut ajouter, dans
le filtrage, une condition supplémentaire entre la seconde et la troisième :

# let rec est_pair = function
| 0 -> true
| 1 -> false
| n when n<0 -> est_pair (-n)
| n -> est_pair (n-2);;

val est_pair : int -> bool = <fun>

Une autre façon de déterminer la parité d’un entier serait d’utiliser deux fonction récur-
sives, qu’ils nous faut définir simultanément grâce au mot-clé and :

# let rec est_pair = function
| 0 -> true
| n when n<0 -> est_pair (-n)
| n -> est_impair (n-1)

and est_impair = function
| 0 -> false
| n when n<0 -> est_impair (-n)
| n -> est_pair (n-1);;

val est_pair : int -> bool = <fun>
val est_impair : int -> bool = <fun>

24. En principe positif, mais dans le cas d’un nombre négatif, on aura un débordement et la fonction marcherait
quand même en théorie, après plusieurs miliards de milliards d’appels récursifs.

� Exercices

Ex. 1.1 – Calculs

Déterminer les résultats des calculs suivants, effectués à l’aide de Caml :

1 + 2 * 3;;

4 - 3 * 5 / 2;;

1e2 /. 0.5e1 -. 150e-1;;

3.0 *. 2.0 ** 1.0 ** 2.0 /. 3.0;;

log ( exp( 4.0 ) ** 2.0 );;

Ex. 1.2 – Définitions

Déterminer les réponses de Caml aux définitions suivantes :

let a = 1;;

let f n = 3 * n - 1;;

let a = 2 in f a;;

let a = f a in f a;;

let a = f a and b = f a in f b;;

let x =
let x = 5 and y = 2 in
let x = x+y and y = x-y in

2 * x / y;;

Ex. 1.3 – Composition

On définit deux fonctions f et g de la façon suivante :

let f n = n + 2 and g n = 3 * n;;

On souhaite définir une fonction h comme la composition de ces deux fonctions, soit
h = g ◦ f , et calculer h(5). Parmi les définitions suivantes, lesquelles sont correctes ?
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let h = g f in h 5;;

let h n = g f n in h 5;;

let h n = (g f) n in h 5;;

let h n = g (f n) in h 5;;

let h n = g(f) (n) in h 5;;

let h n = g (f (n)) in h 5;;

Ex. 1.4 – Typage

Proposer des expressions Caml qui ont pu donner les signatures suivantes :

val f : int -> int -> int = <fun>

val g : (int -> int) -> int = <fun>

val h : int -> (int -> int) -> int = <fun>

Déterminer le type des expressions suivantes :

fun f x y -> f x y;;

fun f g x -> g (f x);;

fun f g x -> (f x) + (g x);;

Même chose avec ces expressions, où les noms sont moins révélateurs :

fun x y z -> (x y) z;;

fun x y z -> x y z;;

fun x y z -> x (y z x);;

fun x y z -> (x y) (z x);;

Ex. 1.5 – Différences finies

On suppose qu’une suite (un)n∈N d’éléments de R est définie en Caml par une fonction
u qui, à tout entier n positif, associe le terme un ∈R. Par exemple :

# let u = function n ->
let fl_n = float_of_int n in

3.2 *. fl_n *. (1.0 -. fl_n);;

val u : int -> float = <fun>

Écrire une fonction delta qui, à une suite (un)n∈N associe la suite (un+1 −un)n∈N.

Quelle est sa signature?

Ex. 1.6 – Logique

Écrire une fonction Caml prenant en argument deux booléens et retournant le booléen
associé à l’opérateur logique ⇒ dont la table de vérité est rappelée ci-dessous :

a b a ⇒ b
0 0 1
0 1 1
1 0 0
1 1 1

On considère l’expression logique suivante, définie pour quatre booléens a, b, c et d :

« b et (a et d ou non a et non d) ou d et (a et non b ou b et non a) »

Remplir le tableau logique ci-dessous et en déduire une fonction Caml aussi simple que
possible retournant l’expression logique demandée.

c c c c

d d d d

a b

a b

a b

a b

Ex. 1.7 – Cherchez l’erreur

On souhaite écrire une fonction qui prend en argument un entier strictement positif p et
un entier relatif n, et retourne l’entier n' compris entre 0 et p-1 vérifiant n′−n = k ×p où
k est un entier (pour n et p positif, il s’agit donc du reste de la division entière).
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On propose la fonction suivante :

let modulo p n = fun
| n when 0 <= n and n < p -> n
| n when n < 0 -> modulo p n+p
| n when n >= p -> modulo p n-p;;

Saurez-vous retrouver les erreurs et modifier la fonction pour qu’elle soit juste?

Ex. 1.8 – Fonction mystérieuse

Déterminer la signature et le résultat de la fonction suivante :

let f = function
| 0 -> "0"
| x -> let rec g = function

| 0 -> ""
| x when x mod 2 = 1 -> g (x/2) ^ "1"
| x -> g (x/2) ^ "0"

in g x;;

Ex. 1.9 – Facteurs premiers

Un entier positif est un nombre de Hamming si et seulement s’il s’écrit sous la forme
2n ×3p ×5q où n, p et q sont des entiers positifs ou nuls.

Écrire une fonction récursive hamming de signature int -> bool prenant en argument
un entier positif et retournant un booléen indiquant si l’argument est un nombre de
Hamming.

Proposer une fonction récursive divisible de signature int -> int -> bool prenant
deux arguments entiers strictement positifs n et d et retournant un booléen qui indique si
n est divisible par un entier compris entre d et

p
n.

En déduire une fonction premier de signature int -> bool qui indique si l’entier stric-
tement positif passsé en argument est un nombre premier.
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2Structures de données complexes

Dans ce second chapitre, nous verrons comment créer, en fonction des besoins, de
nouveaux types, et comment il est possible de définir de la sorte des listes chaînées. Puis
nous verrons comment utiliser le type 'a list que nous fournit le langage Caml. Enfin,
nous introduirons le concept d’arbre et nous verrons comment les représenter en Caml.

1 Les couples

1.1 Principe

Il est parfois utile de pouvoir « regrouper » plusieurs éléments. Ceci est possible à travers
des « tuples » où les différents éléments sont regroupés entre parenthèses 1 et séparés par
des virgules.

Par exemple, on peut considérer une paire d’entiers telle que :

# ( 2, 3 );;
- : int * int = (2, 3)

Il est possible de grouper ainsi un nombre quelconque d’éléments, qu’ils aient ou non le
même type. Le type de l’objet ainsi construit correspond au produit cartésien des types
des différents éléments, et est noté *.

L’exemple suivant regroupe par exemple un flottant, une chaîne de caractères, et une
fonction :

# ( 3.14, "pi", function x -> x**2. );;
- : float * string * (float -> float) = (3.14, "pi", <fun>)

On peut utiliser une définition pour associer un nom à un tel couple, telle que

# let grp = ( 3.14, "pi", function x -> x**2. );;
val grp : float * string * (float -> float) = (3.14, "pi", <fun>)

Dans l’exemple précédent, le nom grp désigne donc le groupe des trois éléments.

1. Comme en Python, les parenthèses ne sont en fait pas requises s’il n’y a pas d’ambiguïté.

De tels groupes peuvent être utilisés comme arguments d’une fonction. On peut par
exemple écrire une fonction effectuant la somme de deux entiers ainsi :

# let somme (x,y) = x + y;;
val somme : int * int -> int = <fun>

# let somme = function (x,y) -> x + y;;
val somme : int * int -> int = <fun>

Ces deux déclarations sont équivalentes. On peut voir qu’un groupe est bien considéré
comme un seul et unique élément, ce qui permet d’utiliser function. Dans le second cas,
on utilise en fait un filtrage par motif.

On aurait pu écrire (sans que cela soit très pertinent, mais pour illustrer le principe) :

# let somme = function
| (0,0) -> 0
| (x,y) -> x+y;;

somme : int * int -> int = <fun>

Pour utiliser ces fonctions, on utilise un unique argument, un couple :

# somme (2,3);;
- : int = 5

La présence de parenthèses, et de virgules séparant chaque élément, rend la syntaxe très
proche de ce qui est utilisé dans d’autres langages. Toutefois, on a affaire à un objet un peu
différent des fonctions présentées dans le premier chapitre, que l’on avait définies avec
l’une des variantes (toutes trois équivalentes) suivantes :

# let somme_cur x y = x + y;;
val somme : int -> int -> int = <fun>

# let somme_cur = fun x y -> x + y;;
val somme : int -> int -> int = <fun>

# let somme_cur = function x -> function y -> x + y;;
val somme : int -> int -> int = <fun>

Les formes proposées dans le premier chapitre sont dite « currifiées 2 ». On remarquera

2. Du nom du mathématicien et logicien Haskell Brook Curry, qui a popularisé cette notation, même s’il
semblerait qu’elle ait été initialement proposée par Moses Shönfinkel. Trois languages de programmation ont été
nommés en son honneur, Haskell, Brook et Curry, le premier des trois restant une référence dans le domaine de
la programmation fonctionnelle.
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en particulier la différence de signature entre les deux approches, que l’on peut résumer
ainsi (formes currifiées à gauche) :

somme_cur


Z 7−→ (Z 7−→Z)

x 7−→
{

Z 7−→Z

y 7−→ x + y

somme

{
Z×Z 7−→Z

(x, y) 7−→ x + y

En fait, la currification est l’opération qui consiste à transformer une fonction à plusieurs
variables (par exemple ici définie sur Z×Z à valeur dans Z) en une fonction à une unique
variable retournant une fonction sur le reste des arguments (par exemple ici une fonction
définie sur Q à valeur dans l’espace des fonctions Z 7→Z).

La forme currifiée, plus souple, est davantage utilisée en Caml. Il est en effet par exemple
plus aisé de créer une application partielle, c’est-à-dire une fonction annexe où le premier
des paramètres est fixé, avec la forme currifiée d’une fonction :

# let ajoute_1 = somme_cur 1;;
val ajoute_1 : int -> int = <fun>

Même s’il reste possible de créer une application partielle avec une fonction non curri-
fiée :

# let ajoute_1 = function x -> somme (1,x);;
val ajoute_1 : int -> int = <fun>

Pour extraire un élément d’un groupe, on peut créer une fonction :

# let premier_parmi_trois (a,b,c) = a;;
val premier_parmi_trois : 'a * 'b * 'c -> 'a = <fun>

# let deuxième_parmi_trois (a,b,c) = b;;
val deuxième_parmi_trois : 'a * 'b * 'c -> 'b = <fun>

# let troisième_parmi_trois (a,b,c) = c;;
val troisième_parmi_trois : 'a * 'b * 'c -> 'c = <fun>

On peut alors écrire :

# premier_parmi_trois grp;;
- : float = 3.14

# troisième_parmi_trois grp (premier_parmi_trois grp);;
- : float = 9.8596

Pour des paires (des groupes de deux éléments), il existe déjà deux fonctions fournies
par le langage, fst et snd, qui effectuent exactement ce travail :

# fst;;
- : 'a * 'b -> 'a = <fun>

# snd;;
- : 'a * 'b -> 'b = <fun>

# let paire = (2, 3);;
paire : int * int = 2, 3

# snd paire;;
- : int = 3

Il n’existe en revanche pas de solution toute prête dans le langage pour un nombre
d’éléments supérieur à deux.

1.2 Couples et filtrages

Si l’on préfère en général les formes curryfiées, il est parfois pratique d’utiliser un couple
(ou un tuple) comme argument si on souhaite effectuer un filtrage. En effet, seul le mot-clé
function permet d’effectuer un filtrage par motif, fun ne le permet pas.

Par exemple, pour calculer le PGCD de deux nombres par l’algorithme d’Euclide, on ne
peut pas écrire :

# let rec pgcd = fun
| a 0 -> a
| a b -> pgcd b (a mod b);;

Characters 23-24:
| a 0 -> a
^

Error: Syntax error

On peut en revanche écrire :

# let rec pgcd = function
| (a, 0) -> a
| (a, b) -> pgcd (b, a mod b);;

val pgcd : int * int -> int = <fun>
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Pour obtenir une fonction currifiée, on peut utiliser une fonction auxilliaire :

# let pgcd a b =
let rec pgcd_aux = function

| (a, 0) -> a
| (a, b) -> pgcd_aux (b, a mod b)

in pgcd_aux (a, b);;

val pgcd : int -> int -> int = <fun>

Remarquons qu’ici, on peut en fait se passer de cette pirouette 3, car il suffit de filtrer le
second paramètre de la fonction :

# let pgcd a = function
| 0 -> a
| b -> pgcd b (a mod b);;

val pgcd : int -> int -> int = <fun>

2 Les types construits

Il est possible de définir ses propres types en Caml, grâce au mot-clé type. Ce sont des
assemblages de différents types existants et/ou de constantes. Les possibilités offertes,
comme nous allons le voir, sont assez importantes.

2.1 Type « union » (ou type « somme »)

On peut tout d’abord définir un type comme un choix entre plusieurs « constantes »
que l’on précise. Ces constantes sont des identifiants commençant par une majuscule. Le
« pipe » | joue le rôle de « ou » logique pour séparer plusieurs valeurs possibles.

Par exemple, on peut définir un type direction représentant les quatre points cardinaux
par 4 5 :

# type direction = Nord | Est | Sud | Ouest;;

3. Il est en fait bien évidemment toujours possible de filtrer argument par argument, mais l’écriture peut
devenir assez lourde.

4. La réponse de Caml pour une déclaration de type, lorsqu’elle est syntaxiquement correcte, consiste juste à
afficher le type nouvellement défini ; on omettra donc les réponses de Caml pour les déclarations de type.

5. Le type booléen de Caml aurait ainsi pu être défini par type bool = true false|, si ce n’est que les
constantes ne commencent pas ici par une majuscule.

Dorénavant, Nord, Est, Sud et Ouest sont des constantes de type direction :

# let dir = Ouest;;
val dir : direction = Ouest

On peut également concevoir une direction comme un angle en degrés (0.0 correspon-
dant au nord, 90.0 à l’est, 180.0 au sud et ainsi de suite) :

# type direction = Nord | Est | Sud | Ouest | Angle of float;;

Pour utiliser ensuite à cette possibilité, on utilise l’étiquette « Angle » qui a été définie
dans le type, ce qui permet à Caml d’identifier le type correctement :

# let dir = Angle 45.0;;
val dir : direction = Angle 45.

En fait, Angle est un « constructeur » qui se comporte comme une fonction, prenant en
argument un flottant et retournant un object de type direction.

Attention toutefois, Caml ne peut bien évidemment pas deviner nos intentions :

# Sud = Angle 180.0;;
- : bool = false

Les déclarations de types peuvent être récursives, par exemple :

# type direction = Nord | Est | Sud | Ouest | Angle of float
| Mediane of direction * direction;;

On considérera que la médiane de deux directions, dans la définition précédente, est
la direction « médiane » de l’angle inférieur à 180 ° formé par les deux directions 6. Ce qui
permet de définir très librement d’autres directions à partir des quatres points cardinaux 7 :

# let sudEst = Mediane (Sud, Est);;
val sudEst : direction = Mediane (Sud, Est)

# let sudSudEst = Mediane (Angle 180.0, sudEst);;
val sudSudEst : direction = Mediane (Angle 180., Mediane (Sud, Est))

Là encore, Caml a défini ici, en même temps que le type, un constructeur Mediane qui
prend cette fois un couple de deux objets de type direction et retourne un objet de type
direction.

6. On supposera que ces deux directions ne sont pas opposées.
7. Les noms de ces nouvelles directions commencent par des minuscules, car il ne s’agit pas de constructeurs

ou de valeurs déclarés à l’intérieur d’une définition de type.
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2.2 Type « enregistrement » (ou type « produit »)

Une coordonnée GPS est constituée de deux éléments : une latitude et une longitude.

Pour représenter un élément de ce genre, on peut créer un type regroupant des types
existants. La déclaration se fait au moyen d’accolades, en donnant un nom (souvent appelé
étiquette) à chacun des éléments du groupe, afin de pouvoir y référer ultérieurement.

On peut par exemple définir une position (définie donc par sa latitude nord/sud et sa
longitude est/ouest) en écrivant :

# type position = { n_s : float;
e_o : float };;

type position = { n_s : float; e_o : float; }

Le type position est donc constitué de deux flottants, ces deux flottants étant désignés
par les étiquettes n_s et e_o.

Pour créer un objet de ce type, on renseigne les différents « champs », en utilisant le
signe « = » cette fois pour séparer l’étiquette et la valeur qui lui est associée :

# let pos = { e_o = 4.5;
n_s = 10.2 };;

val pos : position = {n_s = 10.2; e_o = 4.5}

Il est à noter que l’ordre n’a pas d’importance 8 :

# let pos = { n_s = 10.2;
e_o = 4.5 };;

val pos : position = {n_s = 10.2; e_o = 4.5}

Mais il faut impérativement renseigner tous les champs :

# let pos = { e_o = 4.5; };;

Characters 12-25:
let pos = { e_o = 4.5; };;

^^^^^^^^^^^^^
Error: Some record field labels are undefined: n_s

On a défini en fait un type très similaire au type float * float, à ceci près que l’ordre,
utilisé dans la paire pour identifier les deux éléments, est remplacé dans le cas du type
position par des étiquettes.

8. Il n’est pas non plus nécessaire d’aller à la ligne entre chaque champ, on le fait ici uniquement dans un but
de lisibilité.

Cela facilite la récupération des données, il suffit de faire suivre le nom désignant un
objet de type position par un point suivi du nom d’une l’étiquette :

# pos.e_o;;
- : float = 4.5

À présent, on peut essayer de convertir la donnée d’une distance dans une direction en
une position.

Dans un premier temps, nous allons écrire une fonction permettant de « ramener » un
angle dans l’intervale ]−180.0,180.0] :

# let rec modulo = function
| x when x > 180. -> modulo (x -. 360.)
| x when x <= -180. -> modulo (x +. 360.)
| x -> x;;

val modulo : float -> float = <fun>

Puis grâce à un filtrage pour analyser les différentes situations possibles, on détermine
l’angle qu’une direction quelconque (plus précisément un élément de type direction)
fait avec le nord 9 :

# let rec calcAngle = function
| Angle a -> a
| Nord -> 0.0
| Est -> 90.0
| Sud -> 180.0
| Ouest -> 270.0
| Mediane (dir1, dir2) ->

let angle1 = calcAngle dir1
and angle2 = calcAngle dir2

in match modulo (angle2 -. angle1) with
| 180.0 -> failwith "Directions opposées"
| diff -> angle1 +. diff /. 2.;;

val calcAngle : direction -> float = <fun>

Ce qui permet par exemple de calculer l’angle avec le nord de la direction sud_sud_est :

calcAngle sudSudEst;;
- : float = 157.5

9. On remarquera le failwith "Directions opposées" qui déclenchera une erreur si l’on tente de calculer
la médiane de deux directions opposées.
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Puis on crée la fonction qui nous intéresse :

# let calcPosition dist dir =
let pi = 3.1415926535897932 in
let angle = (calcAngle dir) *. pi /. 180.

in { n_s = dist *. cos(angle);
e_o = dist *. sin(angle) };;

val calcPosition : float -> direction -> position = <fun>

Ainsi, un déplacement de 50 m vers le sud-sud-est

# calcPosition 50.0 sudSudEst;;
- : position = {n_s = -46.193976625564339; e_o = 19.134171618254495}

correspond donc à un déplacement d’environ 46 m vers le sud et 19 m vers l’est !

3 Créer une liste chaînée

Supposons que l’on souhaite créer une liste d’entiers. Une liste est une suite ordonnée
d’éléments. On peut donc considérer qu’une liste est constituée de « cellules » contenant
une valeur entière, et un moyen d’accéder à la cellule suivante dans la liste.

ma_liste 3 1 4 1 • • •

Ce qui suit un élément dans la liste d’entier est une liste d’entiers. On peut donc envisager
de décrire une liste d’entiers par le type suivant :

# type liste_int = { valeur : int; suivant : liste_int };;

L’ennui avec la définition précédente est que les listes n’ont pas de fin! On doit pouvoir
avoir un « bouchon » qui indique la fin de la liste. Suivant doit donc désigner, au choix, soit
une cellule 10 constituée d’un entier et d’un suivant, soit le « bouchon ».

ma_liste 3 1 4 1 Fin

On peut donc définir notre liste de la façon suivante :

# type liste_int =
Fin | Cellule of { valeur : int ; suivant : liste_int };;

10. Dans la définition, le cellule sans majuscule désigne un type, le Cellule est une étiquette permettant
d’identifier à quel « cas » du type union on a affaire.

On peut ensuite définir une liste :

# let ma_liste = Cellule { valeur = 3 ; suivant =
Cellule { valeur = 1 ; suivant =

Cellule { valeur = 4 ; suivant =
Cellule { valeur = 1 ; suivant = Fin } } } };;

val ma_liste : liste_int =
Cellule
{valeur = 3;
suivant =
Cellule
{valeur = 1;
suivant =
Cellule {valeur = 4;
suivant = Cellule {valeur = 1; suivant = Fin}}}}

Ce n’est pas une façon très pratique de définir la liste. On préférera enfiler les éléments
un par un comme des perles sur un fil. On peut aisément définir une fonction qui ajoute
un élément à gauche de la liste :

# let ajouteGauche liste elem =
Cellule { valeur = elem ; suivant = liste };;

val ajouteGauche : liste_int -> int -> liste_int = <fun>

Il ne reste ensuite qu’à insérer les éléments un à un, en partant de la fin :

# let ma_liste = Fin;;
val ma_liste : liste_int = Fin

# let ma_liste = ajouteGauche ma_liste 1;;
val ma_liste : liste_int = Cellule {valeur = 1; suivant = Fin}

# let ma_liste = ajouteGauche ma_liste 4;;
val ma_liste : liste_int =
Cellule {valeur = 4; suivant = Cellule {valeur = 1; suivant = Fin}}

# let ma_liste = ajouteGauche ma_liste 1;;
val ma_liste : liste_int = ...

# let ma_liste = ajouteGauche ma_liste 3;;
val ma_liste : liste_int = ...
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On peut ensuite vouloir écrire des fonctions qui agissent sur la liste. On travaille alors
par filtrage. Il faut toutefois prendre garde à la possibilité que la liste soit vide. Un nom
désignant une liste peut désigner deux choses, d’après le type liste_int :

• Une cellule, désignée par Cellule, contenant une valeur (de type int) et un
suivant (de type liste_int) ;

• La constante Fin, indiquant la terminaison de la liste.

Les fonctions agissant sur des objets liste_int vont donc généralement utiliser un
filtrage correspondant aux deux cas du dessus. Par exemple, le seul élément directement
accessible est l’élément en tête de liste, et il est aisé de l’obtenir.

# let têteListe = function
| Cellule { valeur = v ; suivant = _ } -> v
| Fin -> failwith "Liste vide !";;

val têteListe : liste_int -> int = <fun>

On remarquera la façon dont le filtrage nous permet d’accéder aux différents éléments
du type enregistrement.

On pourrait également écrire 11 :

# let têteListe = function
| Cellule c -> c.valeur
| Fin -> failwith "Liste vide !";;

val têteListe : liste_int -> int = <fun>

Pour obtenir une liste privée du premier élément, c’est également assez simple :

# let queueListe = function
| Cellule { valeur = _ ; suivant = s } -> s
| Fin -> failwith "Liste vide !";;

val queueListe : liste_int -> liste_int = <fun>

Ou bien, de façon équivalente :

# let queueListe = function
| Cellule c -> c.suivant
| Fin -> failwith "Liste vide !";;

val queueListe : liste_int -> liste_int = <fun>

11. C’est essentiellement un choix de style, vous pouvez choisir celui avec lequel vous êtes le plus à l’aise.

Obtenir le dernier élément de la liste est un peu plus difficile, mais ce n’est pas insur-
montable en utilisant la récursion :

# let rec dernierListe = function
| Cellule { valeur = v ; suivant = Fin } -> v
| Cellule { valeur = _ ; suivant = s } -> dernierListe s
| Fin -> failwith "Liste vide !";;

val dernierListe : liste_int -> int = <fun>

Ou bien encore :

# let rec dernierListe = function
| Cellule c when c.suivant = Fin -> c.valeur
| Cellule c -> dernierListe c.suivant
| Fin -> failwith "Liste vide !";;

val dernierListe : liste_int -> int = <fun>

De la même façon, on peut obtenir la longueur de la liste :

# let rec longueurListe = function
| Cellule { valeur = _ ; suivant = s } -> longueurListe s + 1
| Fin -> 0;;

val longueurListe : liste_int -> int = <fun>

Ou bien

# let rec longueurListe = function
| Cellule c -> longueurListe c.suivant + 1
| Fin -> 0;;

val longueurListe : liste_int -> int = <fun>

L’un des inconvénients de notre type liste est qu’il ne peut contenir que des entiers. On
peut faire un peu mieux, et définir une liste polymorphe, contenant des éléments certes
tous de même type, mais d’un type que l’on choisira, en écrivant :

# type 'a liste =
Fin | Cellule of { valeur : 'a ; suivant : 'a liste };;

Toutes les fonctions définies précédemment restent correctes, sous réserve de les définir
après la définition du type 'a liste, mais leur type va bien évidemment changer !
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À commencer par la liste ma_liste, qui, quelle que soit la façon dont on la crée, aura un
type différent :

ma_liste : int liste = Cellule {valeur = 3; suivant = ...

Et il est, à présent, possible d’y glisser des flottants à la place des entiers, sans changer
la définition du type (mais la liste doit toujours contenir des éléments qui sont tous du
même type) :

ma_liste : float liste = Cellule {valeur = 3.0; suivant = ...

Et les signatures de nos différentes fonctions ont également évolué, par exemple :

val ajouteGauche : 'a liste -> 'a -> 'a liste = <fun>

4 Les listes Caml

4.1 Création et manipulation

Nous n’irons pas plus loin dans cette direction car... Caml a son propre type 'a list
pour décrire des listes d’éléments, et dans la suite, nous utiliserons le type proposé par
Caml. Toutefois, l’implémentées des listes Caml est similaire à celles que nous venons de
construire, ce qui aidera à mieux comprendre ce qui se passe.

Les listes en Caml sont des conteneurs immutables pouvant contenir un nombre quel-
conque d’éléments, dont le type peut être librement choisi (les éléments peuvent d’ailleurs
être des listes). Elles sont représentées entre crochets, les éléments étant séparés par des
points-virgules 12 :

# let ma_liste = [ 1; 2; 3; 4 ];;
val ma_liste : int list = [1; 2; 3; 4]

# let ma_liste = [ "Hello"; "World" ];;
val ma_liste : string list = ["Hello"; "World"]

# let ma_liste = [ [ 1.41; 3.14 ]; [ 1.0; 2.0; 3.0 ]; [] ];;
val ma_liste : float list list = [[1.41; 3.14]; [1.; 2.; 3.]; []]

# let ma_liste = [ sin; cos ];;
val ma_liste : (float -> float) list = [<fun>; <fun>]

12. Attention, la liste [ 1, 2, 3 ] est une liste à un seul élément, un tuple (de type int * int * int).

Il est impératif que tous les éléments d’une liste soient du même type :

# let ma_liste = [ 1; 2.3; 5 ];;

Characters 22-25:
let ma_liste = [ 1; 2.3; 5 ];;

^^^
Error: This expression has type float

but an expression was expected of type int

On dispose d’un nouvel opérateur, appelé « conse », noté « :: », qui permet de construire
une liste constituée d’un nouvel élément accroché à gauche d’une liste :

# 1 :: [ 2; 3; 4; 5 ];;
- : int list = [1; 2; 3; 4; 5]

Il n’y a pas d’insertion à droite, car Caml implémente les listes comme des listes chaînées
très semblables à celles que nous avons nous-même définies. L’opérateur conse attend
donc un élément d’un certain type à gauche, et une liste d’éléments de même type (ou une
liste vide) à droite. Il est donc incorrect d’écrire :

# [ 2; 3; 4; 5 ] :: 6;;

Characters 20-21:
[ 2; 3; 4; 5 ] :: 6;;

^
Error: This expression has type int

but an expression was expected of type int list list

De même, on dispose d’un opérateur de concaténation de deux listes (contenant des
éléments de même type), noté « @ » :

# [ 1; 2; 3 ] @ [ 5; 6 ];;
- : int list = [1; 2; 3; 5; 6]

La liste vide est simplement désignée par [] et son type, faute d’élément, est 'a list.
C’est la seule liste qui accepte, via l’opérateur ::, un élément de n’importe quel type :

# let ma_liste = [];;
val ma_liste : 'a list = []

# let ma_liste = 1 :: ma_liste;;
val ma_liste : int list = [1]
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La fonction 13 List.hd permet d’obtenir le premier élément d’une liste :

# List.hd;;
- : 'a list -> 'a = <fun>

# List.hd [ 1; 2; 3; 4 ];;
- : int = 1

De même, la fonction List.tl retourne la liste privée de son premier élément 14 :

# List.tl;;
- : 'a list -> 'a list = <fun>

# List.tl [ 1; 2; 3; 4 ];;
- : int list = [2; 3; 4]

Notons que la « queue » d’une liste d’entiers sera toujours une liste d’entiers, même si
elle est vide. On ne pourra pas insérer autre chose qu’un entier dans une telle liste.

# let ma_liste = [];;
val ma_liste : 'a list = []

# let ma_liste = 1 :: lst;;
val ma_liste : int list = [1]

# let ma_liste = List.tl ma_liste;;
val ma_liste : int list = []

# 3.14 :: ma_liste;;

Characters 9-12:
3.14 :: ma_liste;;

^^^
Error: This expression has type int list

but an expression was expected of type float list

4.2 Immutabilité des listes

Il convient de bien garder en tête que les listes étant des objets immutables, l’utilisation
de l’opérateur conse « :: » ou de la fonction List.tl produisent de nouveaux objets sans

13. Les noms hd et tl sont des abbréviations des termes anglais « head » et « tail », désignant respectivement la
tête et la queue.

14. Aucun élément n’a été « enlevé », il s’agit bien d’une partie de la liste passée en argument.

toucher à la liste passée en paramètre.

Cependant, les listes (allogée ou raccourcie) qui en résultent sont créées sans que les
éléments qui les constituent ne soient recopiés. Plusieurs listes peuvent partager les mêmes
éléments, ce qui ne peut se comprendre qu’en interprétant les choses en terme de listes
chaînées.

Par exemple, considérons la séquence d’instructions suivante :

# let liste = [ 3; 1; 4; 1 ];;
val liste : int list = [3; 1; 4; 1]

# let liste_2 = List.tl liste;;
val liste_2 : int list = [1; 4; 1]

# let liste_3 = 4 :: liste_2;;
val liste_3 : int list = [4; 1; 4; 1]

Le résultat, en mémoire, est quelque chose qui s’apparente à cette construction :

liste 3

liste_2

liste_3 4

1 4 1 Fin

On remarquera en particulier que les listes ont une partie de leurs éléments en commun.

Conjugué avec le let rec, on peut même obtenir des listes « sans fin ». Par exemple,

# let rec liste = 1::4::1::liste;;
val liste : int list = [1; 4; 1; <cycle>]

# let liste_2 = 3::liste;;
val liste_2 : int list = [3; 1; 4; 1; <cycle>]

Ces définitions correspondent à la situation suivante :

liste

liste_2 3 1 4 1

On remarquera que Caml détecte la boucle dans la liste et indique <cycle> plutôt qu’une
infinité de termes, même s’il ne précise pas quels sont les termes qui sont répêtés.
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4.3 Autres fonctions sur les listes

La fonction List.length permet d’obtenir le nombre d’éléments qu’elle contient :

# List.length;;
- : 'a list -> int = <fun>

# List.length [ 1; 2; 3; 4 ];;
- : int = 4

La fonction List.nth permet d’obtenir le ne élément de la liste :

# List.nth;;
- : 'a list -> int -> 'a = <fun>

# List.nth [ 1; 2; 3; 4 ] 3;;
- : int = 4

Attention, cette opération peut être couteuse, car elle implique de parcourir la liste
jusqu’à l’élément souhaité (comme c’était le cas pour nos listes chaînées) !

La fonction List.mem permet de tester l’appartenance 15 d’un élément dans une liste :

# List.mem;;
- : 'a -> 'a list -> bool = <fun>

# List.mem 42 [ 1; 2; 3; 4 ];;
- : bool = false

Enfin, la fonction List.rev permet d’obtenir une nouvelle liste contenant les mêmes
éléments que la liste passée en argument, mais dans l’ordre inverse :

# List.rev;;
- : 'a list -> 'a list = <fun>

# List.rev [ 1; 2; 3; 4 ];;
- : int list = [4; 3; 2; 1]

4.4 Écrire des fonctions sur les listes

Créer une fonction sur une liste est très similaire avec ce que nous avons écrit avec nos
propres listes chaînées. On utilisera ainsi largement le filtrage par motif.

15. Ou, pour être plus précis, l’égalité entre un élément de la liste et l’élément fourni en paramètre.

L’opérateur 16 :: permet d’extraire aisément les éléments pertinents. En effet, le motif
t::q est reconnu par n’importe quelle liste non-vide, t désignant ensuite l’élément en tête
de liste, et q le reste de la liste.

Par exemple, la fonction List.hd, retournant le premier élément d’une liste peut s’im-
plémenter de la sorte :

# let tete = function
| [] -> failwith "Liste vide"
| t::_ -> t;;

val tete : 'a list -> 'a = <fun>

De même, pour obtenir la liste privée de son premier élément :

# let queue = function
| [] -> failwith "Liste vide"
| t::q -> q;;

val queue : 'a list -> 'a list = <fun>

On peut utiliser plusieurs « conse » dans un filtrage. Par exemple, la fonction suivante
permet d’obtenir le deuxième élément d’une liste :

# let deuxieme = function
| t1::t2::q -> t2
| _ -> failwith "Liste trop courte";;

val deuxieme : 'a list -> 'a = <fun>

Une liste contenant un seul élément peut être reconnue de différente façons, par exemple
t::[]. On peut ainsi écrire une fonction extrayant le dernier élément d’une liste :

# let rec dernier = function
| t::[] -> t
| t::q -> dernier q
| [] -> failwith "Liste vide";;

val dernier : 'a list -> 'a = <fun>

On aurait pu également écrire le premier motif t::[] de la sorte :

| [t] -> t

16. Il ne s’agit pas en fait d’un opérateur dans cette situation.
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On peut de la même façon écrire une fonction retournant la longueur d’une liste :

# let rec longueur = function

val longueur : 'a list -> int = <fun>

Une fonction retournant le ne élément d’une liste :

# let rec nieme = function

val nieme : 'a list -> int -> 'a = <fun>

On peut également définir une fonction membre indiquant si le premier élément est
présent dans la liste correspondant au second argument :

# let rec membre x = function
| [] -> false
| t::_ when t=x -> true
| _::q -> membre x q;;

val membre : 'a -> 'a list -> bool = <fun>

C’est l’occasion de revenir sur quelques points concernant le filtrage. Tout d’abord, un
nom ne peut pas faire référence à une valeur dans un motif, aussi ne peut-on écrire :

# let rec membre x = function
| [] -> false
| x::q -> true (* <- Attention, incorrect ! *)
| _::q -> membre x q;;

Ou plus précisément, on « peut » l’écrire, mais cela ne correspond pas à ce que l’on
pourrait espérer, comme en témoignent l’avertissement et la signature de la fonction :

Characters 86-90:
| _::q -> membre x q;;
^^^^

Warning 11: this match case is unused.

val membre : 'a -> 'b list -> bool = <fun>

En effet, le nom « x » qui apparaît dans le motif filtrage est distinct du nom x qui identifie
le premier paramètre (un nom apparaîssant dans un motif de filtrage est un nom qui
n’existe que le temps du motif et de sa conséquence, et qui masquera tout autre nom
identique).

Enfin, pour une fonction qui concatène deux listes :

# let rec concat lst1 lst2 =
match lst1 with
| [] -> lst2
| t::q -> t::(concat q lst2);;

val concat : 'a list -> 'a list -> 'a list = <fun>

4.5 Coût en temps des opérations sur les listes

L’une des questions que l’on se posera souvent à l’avenir est le « coût », notamment en
temps de calcul, d’une fonction.

Prenons par exemple le cas de la fonction List.mem (ou notre équivalent, membre). Dans
le pire des cas, elle devra examiner les éléments de la liste un par un pour les comparer à
l’élément recherché, aussi le temps de calcul, dans une telle situation, sera proportionnel
à la longueur de la liste.

Il en est de même pour la fonction List.length (ou notre équivalent, longueur), déter-
minant la taille d’une liste. Dans tous les cas, cette fois, il faudra parcourir la totalité de la
liste pour connaître sa longueur.

Les fonctions List.hd et List.tl, elles demandent un temps constant, que la liste
contienne dix, cent ou cent mille éléments. En effet, les valeurs qu’elles retournent sont
directement accessibles dans la première « cellule » de la liste.

En revanche, accéder à un élément au milieu (ou à la fin) de la liste avec List.nth est,
comme on l’a déjà dit, d’autant plus coûteux qu’il est loin 17.

Il existe un ensemble de notations pour qualifier et manipuler plus facilement les coûts
(en terme de temps de calcul, mais pas simplement), d’une fonction, d’un algorithme ou
d’un programme.

On dira qu’une fonction travaillant sur un ensemble de n données a une complexité
maximale en n en temps de calcul (et on notera cette complexité O(n)) si et seulement s’il
existe n0 ∈N et a ∈R+∗ tels que, pour tout n ≥ n0, le temps t (n) d’exécution de la fonction
vérifie t (n) É a ×n quelles que puissent être les n données à traiter.

17. Ce qui est très différent des listes en Python, pour lesquelles accéder à un élément est immédiat quelle que
soit sa position (obtenir la taille d’une liste est également immédiat, sans besoin de la parcourir)... Dans d’autres
situations, la méthode choisie par Caml pour représenter une liste conduira à des opérations plus efficaces, il y a
donc des choix à faire en fonction des situations.
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Cette notation pour majorer le coût fonctionne exactement comme la notation identique
que vous avez peut-être déjà croisée en mathématiques. O(n) n’est bien évidemment pas
le seul majorant possible, les plus courants étant :

• O(n) (ou linéaire) : le temps de calcul peut être majoré (pour n assez grand) par
une fonction proportionnelle à la quantité de données à traiter ; c’est par exemple le
cas de la recherche d’un maximum ou d’un minimum dans une liste, puisque l’on
considère chacun des termes un à un

• O(n2) (ou quadratique) : le temps de calcul peut être majoré (pour n assez grand)
par une fonction proportionnelle au carré du nombre d’éléments constituant les
données ; par exemple dans le cas du tri sélection

• O(1) (ou constant) : le temps de calcul peut être majoré par une constante qui ne
dépend pas de la quantité de données à traiter ; c’est un cas assez rare, mais une
fonction qui retourne le premier élément d’une liste a par exemple une complexité
en O(1)

• O(log(n)) (ou logarithmique) : le temps de calcul peut être majoré (pour n assez
grand) par une fonction proportionnelle au logarithme du nombre de données à
traiter ; c’est le cas de la recherche dichotomique dans une liste triée qui a été étudiée
l’an dernier

• O(n × log(n)) : le temps de calcul peut être majoré par une fonction proportionnelle
au produit du nombre de données à traiter par le logarithme de ce même nombre;
c’est un cas relativement courant, et nous allons en voir de suite un exemple

• O(kn) : le temps de calcul peut être majoré (pour n assez grand) par une fonction
proportionnelle à kn (k étant une constante donnée, fréquemment égale à 2)

Ce n’est pas une liste exhaustive, seulement les situations les plus courantes que l’on
rencontre. Précisons qu’une fonction dont la complexité en temps est en O(n) a, de facto,
aussi une complexité en O(n2), puisque de façon évidente n É n2. Lorsque l’on précise la
complexité, on choisit le plus « petit » majorant possible. Parmi celles citées précédemment,
ordonnées de la meilleure (algorithme le plus rapide pour de grands n) à la moins bonne,
on trouve :

O(1) ⪯ O(ln(n)) ⪯ O(n) ⪯ O(n ln(n)) ⪯ O(n2) ⪯ O(kn)

Attention toutefois, la complexité d’un algorithme peut changer d’un langage à l’autre,
ou d’une machine à l’autre. Comme on a déjà eu l’occasion de le souligner, obtenir la
longueur d’une liste, accéder à son dernier élément, ou insérer un élément dans une liste
n’a pas du tout le même coût en Caml et, par exemple, en Python.

De façon générale, pour déterminer la complexité d’un algorithme, il suffit d’estimer,
en fonction de n, le nombre de fois qu’est effectué l’instruction qui est exécutée le plus
souvent par le programme (par exemple, dans le cas présent, une comparaison) et de ne
conserver que le terme d’ordre le plus élevé (en prenant garde cependant que certaines
opérations ne nécessitent pas, elles-mêmes, un temps constant).

Prenons par exemple le cas de la concaténation des lists [ 1; 2; 3 ] et [ 4; 5 ] avec
notre fonction Concat. Si l’on décompose les appels, les choses se passent de la façon
suivante :

concat [ 1; 2; 3 ] [ 4; 5 ]
1 :: ( concat [ 2; 3 ] [ 4; 5 ] )
1 :: ( 2 :: ( concat [ 3 ] [ 4; 5 ] ) )
1 :: ( 2 :: ( 3 :: concat ( [ ] [ 4; 5 ] ) ) )
1 :: ( 2 :: ( 3 :: [ 4; 5 ] ) )
1 :: ( 2 :: [ 3; 4; 5 ] )
1 :: [ 2; 3; 4; 5 ]
[1; 2; 3; 4; 5]

On utilise trois fois le motif de filtrage pour extraire les trois éléments de la liste utilisée
comme premier argument, avant d’utiliser le second motif de notre fonction Concat, puis
on utilise trois fois également l’opérateur :: pour recoller chacun des éléments à la liste
utilisée comme second argument. On effectue également quatre appels à concat, et autant
de filtrages.

Le coût en terme de calcul de cette fonction est donc une fonction affine de la longueur
de la liste de gauche. Si l’on note n le nombre d’éléments de cette liste, on dira que la
fonction a un coût en O(n).

Parfois, on peut faire mieux que simplement majorer le temps de calcul, et l’encadrer.
S’il existe n0 ∈N et deux réels strictement positifs a et b tels que pour tout ensemble de
n données avec n > n0, le temps de calcul est compris entre a ×n et b ×n, on dira que la
complexité est en Θ(n).

Si l’on reprend les fonctions que l’on a déjà présentées sur les listes, en notant n le
nombre d’éléments dans la liste :

• List.hd et List.tl ont une complexité en temps en Θ(1) ;
• List.length a une complexité en temps en Θ(n) ;
• List.rev a une complexité en temps en Θ(n) ;
• List.mem a une complexité en temps en O(n) (on n’a pas besoin de parcourir toute

la liste si on trouve l’élément recherché parmi les premiers) ;
• List.nth a une complexité en temps enΘ(k) où k est l’indice de l’élément recherché ;
• l’opérateur :: a une complexité en temps en Θ(1) ;
• l’opérateur @ a une complexité en temps en Θ(n) où n est le nombre d’éléments de la

liste de gauche.

4.6 Fonctionnelles agissant sur les listes

Outre le filtrage, un certain nombre de mécanismes permettent d’écrire plus simplement
des opérations sur des listes, en appliquant, de diverses façons, une fonction donnée à
tous les éléments d’une liste.
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Il convient de s’en servir avec parcimonie, car si ces écritures peuvent régulièrement
simplifier les expressions, elles peuvent tout aussi bien les rendre illisibles, surtout sans un
mot d’explication!

La fonction List.iter

Le mécanisme le plus simple est fourni par la fonction List.iter, qui prend en argu-
ment une fonction et une liste, la fonction devant accepter des éléments de même type
que ceux présents dans la liste. Cette fonction est alors appliquée à tous les éléments de la
liste, de gauche à droite :

# let ma_liste = [ 1; 2; 3; 4; 5 ];;
val ma_liste : int list = [1; 2; 3; 4; 5]

# List.iter print_int ma_liste;;
12345- : unit = ()

Puisqu’une fonction ne peut retourner qu’un seul élément, la fonction List.iter prend
en paramètre des fonctions retournant un type unit (comme print_int) :

# List.iter;;
- : ('a -> unit) -> 'a list -> unit = <fun>

Bien évidemment, la fonction List.iter n’a d’intérêt que si la fonction passée en argu-
ment a un effet de bord sur l’environnement, comme par exemple un affichage !

La fonction List.map

Si la fonction que l’on veut utiliser sur tous les éléments de la liste retourne un résultat,
on peut vouloir récupérer les résultats de l’application de la fonction à tous les éléments
de la liste. Pour ce faire, on dispose de la fonction List.map qui attend une fonction et une
liste :

# List.map;;
- : ('a -> 'b) -> 'a list -> 'b list = <fun>

# let f n = float_of_int n ** 2.0;;
val f : int -> float = <fun>

# List.map f [ 1; 2; 3; 4; 5 ];;
- : float list = [1.; 4.; 9.; 16.; 25.]

À la liste [a1, a2, ...an], on associe donc la liste [ f (a1), f (a2), ... f (an)].

Afin de mieux comprendre le fonctionnement de List.map, remarquons que l’on peut
considérer l’expression Asin(ωt +φ) sous une forme arborescente :

×

sin

+

×

A

ω t

ϕ

Ainsi, pour calculer Asin(ωt +φ), on calcule le produit de ω avec t , puis on ajoute φ ; on
prend le sinus du résultat, et on multiplie enfin le tout par A. De la même façon, une liste
est simplement le résultat d’utilisations successives de :: sur une liste vide [], insérant un
par un les éléments par la gauche. Ainsi, une liste [a1, a2, ...an] peut être représentée par :

::

::

::

::

a1

a2

an−1

an []

L’utilisation de List.map correspond donc à la transformation ci-dessous, dans laquelle
on a inséré la fonction f entre chacun des éléments de la liste et les « conse » :

::

::

::

::

a1

a2

an−1

an []

List.map

::

::

::

::

f

f

f

f

a1

a2

an−1

an

[]
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Tout se passe comme si la fonction List.map était définie de la sorte :

# let rec map f = function
| [] -> []
| t::q -> (f t)::(map f q);;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

La fonction List.fold_right

La fonction List.fold_right, quant à elle, prend en argument une fonction f attendant
deux arguments de types différents, une liste [a1, a2, ...an] d’éléments du premier type et
un élément b du second, et retourne f

(
a1, f

(
a2, f

(
...

(
an −1, f (an ,b)

)
...

)))
.

Elle effectue donc la transformation suivante :

::

::

::

::

a1

a2

an−1

an []

List.fold_right

f

f

f

f

a1

a2

an−1

an b

Sa signature est la suivante (on remarquera au passage que les ai et l’élément b ne sont
pas nécessairemement de même type) :

# List.fold_right;;
- : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

Cette fonction pourrait être implémentée en Caml de la façon suivante :

let rec fold_right f lst b =
match lst with

| [] -> b
| t::q -> f t (fold_right f q b);;

val plie_droite : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

La fonction List.fold_right, utilisée à bon escient, permet de simplifier l’écriture de
nombreux algorithmes opérant sur des listes. On évite ainsi la nécessité d’écrire explicite-
ment une récursion (ou, on le verra, une boucle).

On pourra, par exemple, obtenir la somme des éléments d’une liste L d’entiers avec :

# let somme a b = a+b
in List.fold_right somme [ 1; 2; 3; 4; 5 ] 0;;

- : int = 15

Pour déterminer la longueur d’une liste L, on peut écrire :

# let compte a b = b+1
in List.fold_right compte [ 1; 2; 3; 4; 5 ] 0;;

- : int = 5

Pourquoi « compte a b = b+1 » ? Simplement parce que, pour chaque élément ai de la
liste, sa longueur (initialisée à 0 pour []) augmente de 1, et cela quelle que soit la valeur
de ai . En d’autres termes, la transformation réalisée ici peut être résumée par le schéma
suivant :

::

::

::

::

a1

a2

an−1

an []

+

+

+

+

1

1

1

1 0

On peut s’en servir pour définir des fonctions, par exemple somme_liste :

# let somme_liste lst =
List.fold_right (fun a b -> a+b) lst 0;;

val somme_liste : int list -> int = <fun>

Ou bien encore longueur :

# let longueur lst =
List.fold_right (fun a b -> b+1) lst 0;;

val longueur : 'a list -> int = <fun>

Si l’on veut obtenir le plus grand élément d’une liste, le choix du troisième argument de
List.fold_right est un peu plus délicat.
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Habituellement, en programmation impérative, pour déterminer le plus grand élément
d’une liste, il est d’usage de partir d’un élément quelconque de la liste. On peut de la même
façon prendre ici la tête de la liste comme « élément b » (et n’appliquer List.fold_right
qu’à la queue de la liste puisque le premier élément a déjà été pris en compte).

On définira donc maximum_liste ainsi :

# let maximum_liste lst =
List.fold_right max (List.tl lst) (List.hd lst);;

val maximum_liste : 'a list -> 'a = <fun>

Débuter le « repliement » par un élément de la liste permettra par ailleurs de conserver le
caractère polymorphe de la fonction max, et il est possible d’obtenir le plus grand élément
de listes contenant n’importe quel type d’éléments (entiers, flottants, caractères, chaînes
de caractères, etc.).

La transformation que l’on a effectué est donc :

::

::

::

::

a1

a2

an−1

an []

mx

mx

mx

mx

a2

a3

an−1

an a1

Signalons enfin que si le type de b est une liste, on peut parfaitement utiliser
List.fold_right pour obtenir une liste. Par exemple, il est possible de redéfinir
List.map :

# let rec map f lst =
List.fold_right (fun a b -> (f a)::b) lst [];;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

La fonction List.fold_left

La fonction List.fold_right a un pendant, List.fold_left, qui réalise une transfor-
mation très similaire, mais associe à la liste [a1, a2, ...an] et un élément b le résultat de
f
(

f
(
...

(
f (b, a1),

)
, a2, ...

)
, an

)
. Elle est équivalente à la fonction suivante :

let rec fold_left f b = function
| [] -> b
| t::q -> fold_left f (f b t) q;;

val plie_gauche : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>

Attention, l’ordre des paramètres n’est pas le même que List.fold_right, la liste vient
cette fois en troisième et dernier paramètre. De la même façon, la fonction passée en
paramètre doit prendre en second argument les éléments ai de la liste (et en premier
argument, des éléments du type de b).

On prendra également garde au fait que, du fait de cette inversion, dans la signature, les
ai sont donc de type 'b et b est de type 'a :

# List.fold_left;;
- : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>

Cette fonction effectue donc la transformation suivante :

::

::

::

::

a1

a2

an−1

an []

List.fold_left

f

f

f

f

an

an−1

a2

a1b

Le fait que la liste se trouve en dernier paramètre permet de définir encore plus simple-
ment une fonction sommant les éléments :

# let somme_liste =
List.fold_left (fun b a -> b+a) 0;;

val somme_liste : int list -> int = <fun>
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Ou calculant la longueur de la liste 18 :

# let longueur =
List.fold_left (fun b a -> b+1) 0;;

val longueur : '_a list -> int = <fun>

Nous verrons un peu plus tard que la fonction List.fold_left est un peu plus perfor-
mante que List.fold_right.

Les deux fonctions existent car elles ne répondent pas tout à fait aux mêmes besoins. Il
est un peu délicat d’écrire une fonction List.map à partir de List.fold_left alors que
la chose était facile avec List.fold_right. La raison en est que l’opérateur :: ajoute les
éléments à gauche, or List.fold_left tend à retourner la liste.

List.fold_left permet en revanche aisément de retourner une liste :

# let retourne =
List.fold_left (fun lst e -> e::lst) [];;

val retourne : '_a list -> '_a list = <fun>

Ce retournement serait plus difficile à obtenir avec List.fold_right.

À propos des langages fonctionnels

Les fonctions List.map, List.fold_left et List.fold_right sont présentes dans la
quasi-totalité des langages fonctionnels. Parfois, seul un équivalent de List.fold_left
est disponible (appelé reduce en Clojure, Ruby, D, fold en F#, etc.) et on se sert d’un
renversement de liste pour obtenir l’alternative.

C’est d’ailleurs le cas en Python, qui, bien que n’étant pas à l’origine un langage fonction-
nel, dispose néanmoins d’une fonction map (quoi qu’elle fasse double emploi avec le mé-
canisme de compréhension de liste, plus puissant) et d’une fonction functools.reduce
qui se comporte comme List.fold_left.

18. On remarquera une bizarrerie dans la signature (parfois, on verra également '_weak1 en lieu et place de
'_a, ce qui est équivalent), sur laquelle nous reviendrons quelque peu ultérieurement : la fonction obtenue n’est
pas totalement polymorphe, elle accepte des listes contenant un type quelconque, mais la première utilisation
« fixera » ce type. Par exemple, après avoir calculé longueur [ 1; 2 ], longueur sera de type int list -> int.
Il n’est pas possible de définir une fonction polymorphe à partir d’une application partielle. Pour éviter ce
problème, on fera explicitement apparaître le troisième argument dans la définition de la fonction. Les raisons de
cette subtilité dépassent grandement le cadre de ce cours.

5 Les arbres

5.1 Présentation

Outre les listes, une autre structure de données est très utile en informatique : les arbres.
Un arbre est formellement défini comme un graphe connexe, acyclique et orienté (la
définition précise de ces termes sera abordée en seconde année). Sans entrer dans ces
termes techniques pour le moment, un arbre comme une structure telle que la suivante,
similaire à celles que l’on a déjà manipulées :

A

B C

D E F G

H I J K L

M

Une partie du vocabulaire pour décrire ces structures est emprunté aux arbres généa-
logiques : chacun des éléments de l’arbre, à l’exception de l’un d’entre eux, a un unique
parent (ou père, antécédent). Ils peuvent avoir un ou plusieurs enfants (ou fils). C’est
l’orientation des arêtes reliant les éléments qui compte ici, indépendamment du sens de
représentation de l’arbre, même si généralement les arêtes sont toutes dirigées dans le
même sens, vers le bas. Enfin, on appelle descendants d’un élément l’ensemble de ses fils,
des fils de ses fils, et ainsi de suite. Et ascendants l’ensemble de son père, du père de son
père, et ainsi de suite.

D’autres termes sont empruntés à la botanique. L’élément orphelin à partir duquel on
peut accéder à tous les autres (ici A) est appelé racine, quand bien même il se trouve
souvent en haut au mépris de toutes les règles de la botanique. Les éléments dépourvus
d’enfants (ici H, M, E, J, K et L) sont appelés feuilles (ou parfois nœuds extérieurs). Les
autres éléments sont qualifiés de nœuds (ou nœuds internes). Enfin, un chemin de proche
en proche dans un arbre en suivant les arêtes orienté est appelé une branche.

Le nombre de descendants d’un nœud est appelé arité du nœud. On remarquera en-
fin que n’importe quel nœud est la racine d’un arbre constitué de lui-même et de ses
descendants. On qualifiera cet arbre de sous-arbre de l’arbre initial.

Les arbres sont utiles car ils permettent de décrire de très nombreux objets. Par exemple,
comme nous l’avons déjà vu, des expressions mathématiques telles que Asin(ωt +φ), ou
une liste [ 1; 3; 5; 4; 2 ] (qui correspond en fait à 1::3::5::4::2::[] ).

31



5.2 Représenter un arbre

Compte tenu des structures très différentes que peuvent avoir les arbres, par exemple en
terme d’arité des nœ]uds, que l’on aura à manipuler, il n’existe pas de structure toute prête
en Caml pour représenter un arbre. Il n’est cependant pas bien difficile de créer de telles
structures.

Comme une liste chaînée est décrite comme un élément auquel est éventuellement
accroché la suite de la liste, un arbre peut être considéré comme un élément auquel est
associé un ensemble, éventuellement vide, de sous-arbres.

On peut par exemple définir le type suivant pour représenter un arbre :

type 'a arbre = { element : 'a ;
fils : 'a arbre list };;

On remarquera que tous les éléments de l’arbre, dans le cas présent, sont nécessairement
de même type.

L’arbre pris précédemment en exemple peut alors être décrit par :

# let ex = { element="A"; fils=[
{ element="B"; fils=[

{ element="D"; fils=[
{ element="H"; fils=[] } ;
{ element="I"; fils=[

{ element="M"; fils=[] } ]} ]} ;
{ element="E"; fils=[] };
{ element="F"; fils=[

{ element="J"; fils=[] } ]} ]} ;
{ element="C"; fils=[

{ element="G"; fils=[
{ element="K"; fils=[] } ;
{ element="L"; fils=[] } ]} ]} ]};;

Comme pour les listes chaînées, on préférera rapidement écrire des fonctions permettant
de construire, étape par étape, un arbre (en créant d’abord des sous-arbres et en les
regroupant, nœud par nœud, jusque la racine), plutot que le définir de la sorte !

Souvent, on préférera utiliser un couple plutôt qu’un type produit pour associer l’élément
et ses enfants (car cela raccourcit quelque peu les écritures, quand bien même il convient
alors de se souvenir de ce à quoi correspondent chacun des éléments du couple), en
écrivant par exemple :

# type 'a arbre = Noeud of 'a * 'a arbre list;;

La déclaration de l’arbre devient alors :

# let ex = Noeud ("A", [
Noeud ("B", [

Noeud ("D", [
Noeud ("H", [] ) ;
Noeud ("I", [

Noeud ("M", [] ) ] ) ] ) ;
Noeud ("E", [] ) ;

Noeud ("F", [
Noeud ("J", [] ) ] ) ] ) ;

Noeud ( "C", [
Noeud ("G", [

Noeud ("K", [] ) ;
Noeud ("L", [] ) ]) ]) ]);;

5.3 Propriétés d’un arbre

Définition. La taille d’un arbre est le nombre d’éléments qu’il contient (nœuds internes
et feuilles). La hauteur d’un arbre est la longueur de sa plus grande branche, c’est-à-dire
le nombre de liens de filiation que celle-ci contient.

En combinant beaucoup de choses vues dans le présent chapitre, on peut facilement
calculer la taille d’un arbre, en s’efforçant de rester lisible :

# let rec taille = function
Noeud(_, lst)

-> let somme_liste = List.fold_left (fun a b -> a+b) 0
in 1 + somme_liste (List.map taille lst);;

val taille : 'a arbre -> int = <fun>

De même que sa hauteur :

# let rec hauteur = function
| Noeud(_, []) -> 0
| Noeud(_, lst)

-> let max_liste l = List.fold_left max (List.hd l) (List.tl l)
in 1 + max_liste (List.map hauteur lst);;

val hauteur : 'a arbre -> int = <fun>
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5.4 Arbres binaires stricts

Définitions

Dans la suite, on se limitera à certains arbres bien particuliers, les arbres binaires, où
chaque nœud (interne) a, au plus, deux fils.

On peut utiliser les types précédents pour représenter de tels arbres, mais il est plus utile
de créer un type spécifique, à la fois pour éviter de construire par erreur des arbres qui ne
sont pas binaires, et pour faciliter l’accès aux enfants d’un nœud.

On s’intéresse dans un premier temps aux arbres binaires stricts, où chaque nœud
(interne) a exactement deux nœuds. On peut donc remplacer la liste des enfants précédente
par un couple 19 d’enfants, en définissant le type par

# type 'a arbre =
| Noeud of 'a * 'a arbre * 'a arbre
| Feuille of 'a;;

Comme tous les nœuds ont deux fils (deux sous-arbres), ils ne peuvent convenir pour
les feuilles, aussi est-il indispensable d’ajouter spécifiquement un cas pour les feuilles.

Il est à noter que, comme les feuilles sont traitées différemment des nœuds, on peut
choisir des types différents pour les objets stockés dans les feuilles et ceux stockés dans les
nœuds :

# type ('a, 'b) arbre =
| Noeud of 'a * ('a, 'b) arbre * ('a, 'b) arbre
| Feuille of 'b;;

C’est très utile pour un arbre représentant une expression mathématique, par exemple,
où les nœuds contiennent des opérateurs, et les feuilles des valeurs.

Attention, il n’est pas rare de voir les arbres binaires stricts définis, de façon équivalente,
par

# type ('a, 'b) arbre =
| Noeud of ('a, 'b) arbre * 'a * ('a, 'b) arbre
| Feuille of 'b;;

les éléments constituant les données d’un nœud ayant été réordonnées pour mieux faire
apparaître la position de chacun des sous-arbres par rapport au nœud.

19. Un enregistrement, tel que Noeud of \{ element: 'a ; filsg: 'a arbre ; filsd: 'a arbre\},
conviendrait également.

Utilisation

Pour manipuler les arbres binaires, on utilise à nouveau le filtrage. La fonction Hauteur
déterminant la hauteur de l’arbre pourra s’écrire, pour un arbre binaire strict, de la façon
suivante :

# let rec hauteur = function
| Noeud (_, filsg, filsd) -> 1 + max (hauteur filsg) (hauteur filsd)
| Feuille _ -> 0;;

val hauteur : ('a, 'b) arbre -> int = <fun>

Pour obtenir la taille de l’arbre, on aurait :

# let rec taille = function
| Noeud (_, filsg, filsd) -> 1 + taille filsg + taille filsd
| Feuille _ -> 1;;

val taille : ('a, 'b) arbre -> int = <fun>

Pour obtenir le nombre de feuilles, on aurait :

# let rec nbFeuilles = function
| Noeud (_, filsg, filsd) -> nbFeuilles filsg + nbFeuilles filsd
| Feuille _ -> 1;;

val nbFeuilles : ('a, 'b) arbre -> int = <fun>

Pour le nombre de nœuds internes :

# let rec nbNoeuds = function
| Noeud (_, filsg, filsd) -> 1 + (nbNoeuds filsg) + (nbNoeuds filsd)
| Feuille _ -> 0;;

val nbNoeuds : ('a, 'b) arbre -> int = <fun>

5.5 Arbres binaires

Définitions

Dans un arbre binaire, les nœuds ont au plus deux fils, et non nécessairement exactement
deux. Il est souvent utile de conserver la distinction entre « fils gauche » et « fils droit »,
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et les types que nous définirons dans la suite le feront, mais ce n’est pas toujours le cas.
Auquel cas, les types seront quelque peu différents.

On l’aura compris, il y a de très nombreuses façons de représenter un arbre, selon le
problème rencontré. On pourrait envisager d’ajouter deux cas supplémentaires :

# type ('a, 'b) arbre =
| Noeud of 'a * ('a, 'b) arbre * ('a, 'b) arbre
| Noeud_G of 'a * ('a, 'b) arbre (* Seulement un fils à gauche *)
| Noeud_D of 'a * ('a, 'b) arbre (* Seulement un fils à droite *)
| Feuille of 'b;;

Une autre possibilité consiste à conserver uniquement des nœuds avec deux fils, et de
définir une étiquette « Nil » qui, comme le « Fin » de notre liste chaînée, indiquerait « il n’y
a plus rien par là 20 », et on pourrait vouloir écrire :

# type ('a, 'b) arbre = (* mauvaise définition *)
| Noeud of 'a * ('a, 'b) arbre * ('a, 'b) arbre
| Feuille of 'b
| Nil;;

Un nœud avec seulement un fils à droite, par exemple, correspondrait donc à un élément
de type Noeud (val, Nil, filsd).

Seulement, il y a cependant un souci avec la définition précédente. Les Shadoks disaient
qu’il y avaient trois types de casseroles : celles avec un manche à gauche, celles avec un
manche à droite, et celles sans manche, qu’on appelle communément des autobus.

Dans la définition de notre type, on a des nœuds avec uniquement un fils gauche, des
nœuds avec uniquement un fils droit, des nœuds avec deux fils... et des nœuds sans aucun
fils, qui se trouvent donc être des feuilles !

Comme il est difficile d’empêcher ce dernier cas, c’est le cas Feuille que nous allons
supprimer, une feuille devenant simplement un Noeud dont les deux fils sont Nil.

# type 'a arbre =
| Noeud of 'a * 'a arbre * 'a arbre
| Nil;;

Principal inconvénient de cette représentation, on perd la possibilité d’avoir un type
différent pour les feuilles et les nœuds.

Dans la suite de ce cours, c’est cette représentation que nous utiliserons.

20. Bien que Caml ne lui donne pas de sens particulier, Nil est, en informatique, plus ou moins le terme
consacré pour indiquer la terminaison d’une branche ou d’une liste.

Utilisation

Un tel arbre s’utilise avec un filtrage comme ci-dessous, en prenant garde à l’ordre des
motifs : le cas de la feuille doit se trouver en premier, et celui du nœud avec deux fils en
dernier, car celui-ci accepte n’importe quel objet Noeud pour n’importe quels fils, Nil
compris 21.

let foo = function
| Noeud (val, Nil, Nil) -> ... (* Cas d'une feuille *)
| Noeud (val, filsg, Nil) -> ... (* Seulement un fils à gauche *)
| Noeud (val, Nil, filsd) -> ... (* Seulement un fils à droite *)
| Noeud (val, filsg, filsd) -> ... (* Noeud avec deux fils *)
| Nil -> ... (* Arbre "vide" *)

Il n’est généralement pas besoin de traiter les nœuds avec un seul fils à part :

# let rec nbFeuilles = function
| Nil -> 0
| Noeud (_, Nil, Nil) -> 1 (* Cas d'une feuille *)
| Noeud (_, filsg, filsd) -> (nbFeuilles filsd)

+ (nbFeuilles filsg);;

val nbFeuilles : 'a arbre -> int = <fun>

# let rec nbNoeudsInternes = function
| Nil -> 0
| Noeud (_, Nil, Nil) -> 0 (* Cas d'une feuille *)
| Noeud (_, filsg, filsd) -> 1 + (nbNoeudsInternes filsd)

+ (nbNoeudsInternes filsg);;

val nbNoeuds : 'a arbre -> int = <fun>

# let rec taille = function
| Nil -> 0
| Noeud (_, Nil, Nil) -> 1 (* Cas d'une feuille *)
| Noeud (_, filsg, filsd) -> 1 + (taille filsd) + (taille filsg);;

val taille : 'a arbre -> int = <fun>

Dans certaines situations, et notamment ce dernier cas, il n’est même pas besoin de
distinguer le cas des feuilles et des nœuds. Le second motif de filtrage de la fonction taille
peut tout à fait être supprimé !

21. Sauf évidemment à préciser filsg <> Nil et filsd <> Nil.
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Dans le cas du calcul de la hauteur d’un arbre, la hauteur d’un arbre vide (Nil) n’est pas
aisée à définir. Mais il est fréquent que l’on choisisse −1 comme hauteur d’un arbre vide,
car cela permet d’écrire très simplement :

# let rec hauteur = function
| Nil -> -1
| Noeud (_, filsg, filsd) -> 1 + max (hauteur filsd)

(hauteur filsg);;

val hauteur : 'a arbre -> int = <fun>

Quelques propriétés des arbres binaires

Théorème 1.
• si un arbre binaire a une hauteur h, alors il possède au plus 2h feuilles, et au plus 2h −1

nœuds (internes) ;
• si un arbre binaire strict possède n nœuds et f feuilles, alors f = n +1.

De telles propriétés peuvent être démontrées par exemple en utilisant le principe de
récurrence sur la hauteur de l’arbre. Pour ce qui est de la première propriété :

Démonstration. Supposons qu’elle soit vraie pour toute hauteur comprise entre 0 et h
(nous aurons besoin ici d’une récurrence forte).

Un arbre de taille h +1 est constitué d’un nœud, d’un sous-arbre de hauteur égale à h et
éventuellement d’un sous-arbre de hauteur h′ inférieure ou égale à h.

L’arbre de taille h +1 compte donc, au plus,
(
2h

)+ (
2h′)

feuilles, soit au plus 2h+1 feuilles

puisque h′ É h.

De même, il compte au plus 1+ (
2h −1

)+ (
2h′ −1

)
nœuds, soit au plus 2h+1 −1 nœuds

puisque h′ É h.

Par ailleurs, la propriété est vraie pour un arbre de hauteur h = 0, ne contenant aucun
nœud et une seule feuille. D’après le principe de récurrence forte, la propriété est donc
vraie pour un arbre de hauteur quelconque.

Le raisonnement est similaire pour la seconde propriété, qui n’est cependant vérifiée
que pour des arbres binaires stricts (il est aisé de trouver un contre-exemple pour un arbre
binaire qui ne l’est pas, par exemple un arbre avec un seul nœud et une seule feuille).

Démonstration. Supposons qu’elle soit correcte pour n’importe quel arbre binaire strict
de hauteur comprise entre 0 et h, et considérons un arbre binaire strict de taille h +1.

Le sous-arbre de gauche, de taille au plus h, contient fg feuilles et ng nœuds, avec
fg = ng +1. Le sous-arbre de droite, de taille également au plus h, contient fd feuilles et

nd nœuds, avec fd = nd +1. On a ici besoin que l’arbre binaire soit strict car cela garantit
que l’on ait bien un arbre, éventuellement réduit à une simple feuille, de chaque côté.

Notre arbre de hauteur h +1 contient donc 1+ng +nd nœuds, et fg + fd feuilles, avec
fg + fd = (

ng +1
)+ (nd +1) = (

ng +nd +1
)+1, ce qui correspond à la propriété pour une

hauteur h +1.

Un arbre de hauteur 0 contient une feuille et aucun nœud, donc par application du
principe de récurrence forte, la propriété est vraie pour toute hauteur h !

5.6 Parcours possibles d’un arbre

Parcours en profondeur

Terminons ce tour d’horizon des arbres binaires en parlant un peu de parcours des
arbres : pour une fonction explorant l’arbre dans son ensemble, comme les fonctions
précédentes, dans quel ordre les nœuds sont-ils visités?

Si l’on y regarde de plus près, dans les cas présentés dans ce chapitre, on a un parcours
de l’arbre dit en profondeur 22. C’est-à-dire que l’on explore complètement une branche
de l’arbre, jusqu’à la feuille, avant de remonter et d’explorer une autre branche.

En effet, dans le cas de la fonction hauteur, par exemple, on évalue tout d’abord la taille
du sous-arbre de gauche, ce qui nécessite de le parcourir intégralement, avant de s’intéres-
ser, dans un second temps, au sous-arbre de droite (et enfin de calculer le maximum et
d’ajouter un).

Dans un tel parcours en profondeur, tout se passe comme si l’on explorait l’arbre en
suivant ses « contours », comme ci-dessous :

A

B C

D E F

G H I J K

L

Pour tout traitement des nœuds de l’arbre en O (1), l’exploration d’un arbre nécessite
naturellement un temps proportionnel à sa taille. Les fonctions récursives sur les arbres

22. On parle de « depth-first » en anglais
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s’appellant sur chacun des fils auront en général une complexité correspondant à la
complexité du traitement d’un nœud multipliée par la taille de l’arbre.

On peut aisément voir que, dans un parcours en profondeur, chaque feuille est visitée
une unique fois. Les nœuds internes, en revanche, sont généralement visités plusieurs fois.

Dans le cas d’un arbre binaire strict, par exemple, ces nœuds internes sont visités trois
fois : une première fois avant d’explorer le sous-arbre de gauche, une seconde fois entre
l’exploration des deux sous-arbres, et une troisième fois après l’exploration du sous-arbre
droit.

Variantes des parcours en profondeur

Dans le cas d’un arbre binaire strict, quand on s’intéresse précisément au moment où
sont traités les nœuds internes, on distingue parfois plusieurs variantes de parcours en
profondeur :

• le parcours en profondeur dit suffixe, où l’on traite d’abord les deux fils, puis le nœud
lui-même ;

• le parcours en profondeur dit préfixe, où l’on traite d’abord le nœud, puis chacun des
deux fils ;

• le parcours en profondeur dit infixe, où l’on traite d’abord le fils gauche, puis le nœud,
puis le fils droit.

La plupart des fonctions que l’on écrira sur les arbres se trouvent être des parcours
suffixes (pour la taille de l’arbre, par exemple, la somme est nécessairement effectuée après
l’estimation de la taille des deux sous-arbres ! Il peut cependant arriver que l’on effectue
des traitements lors de deux ou lors des trois visites des nœuds internes.

Cette distinction est particulièrement importante si la visite des nœuds a un effet im-
médiat. C’est par exemple le cas lorsque l’on écrit une fonction affichant l’ensemble des
étiquettes de l’arbre.

Dans le cas d’un parcours suffixe, les deux appels affichent toutes les étiquettes des deux
sous-arbres, et l’affichage de la racine est effectué en dernier :

# let rec parcoursSuffixe = function
| Nil -> ()
| Noeud (v, filsg, filsd) -> parcoursSuffixe filsg;

parcoursSuffixe filsd;
print_string v;;

val parcoursSuffixe : string arbre -> unit = <fun>

# parcoursSuffixe arbre
GLHDIEBJKFCA- : unit = ()

Dans le cas d’un parcours préffixe, la racine est traitée en premier :

# let rec parcoursPréfixe = function
| Nil -> ()
| Noeud (v, filsg, filsd) -> print_string v;

parcoursPréfixe filsg;
parcoursPréfixe filsd;;

val parcoursPréfixe : string arbre -> unit = <fun>

# parcoursPrefixe arbre
ABDGHLEICFJK- : unit = ()

Dans le cas d’un parcours infixe, tout se passe comme si on avait « compressé » l’arbre
verticalement :

let rec parcoursInfixe = function
| Nil -> ()
| Noeud (v, filsg, filsd) -> parcoursInfixe filsg;

print_string v;
parcoursInfixe filsd;;

val parcoursInfixe : string arbre -> unit = <fun>

# parcoursInfixe arbre
GDLHBEIACJFK- : unit = ()

Ces situations ne sont pas mutuellement exclusives, il n’est pas inhabituel que l’on ait,
pour un nœud interne, à la fois un traitement préfixe et un traitement suffixe.

Parcours en largeur

Un autre parcours possible d’un arbre est le parcours hiérarchique (ou en largeur) 23, qui
consiste à traiter les éléments de l’arbre « étage par étage ». Le plus souvent de la racine
vers les feuilles, autrement dit dans l’ordre ABCDEFGHIJKL.

Ce parcours peut être programmé, mais il nécessite l’utilisation d’une structure de
donnée appelée file que nous introduirons un peu plus tard. Nous reviendrons à cette
occasion sur le principe du parcours hiérarchique d’un arbre.

23. « broadth-first » en anglais.
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� Exercices

Ex. 2.1 – Gérer les éléments d’une liste

1. Sur le modèle de la fonction dernier, écrire une fonction avantDernier prenant en
argument une liste Caml et retournant son avant-dernier élément. On déclenchera une
erreur (avec failwith) si la liste contient moins de deux éléments.

2. Écrire une fonction retire prenant en argument une liste et un entier n, et retourne
une liste identique à la liste fournie, mais privée du ne élément. On déclenchera une erreur
si la liste est trop courte.

3. Écrire une fonction insère prenant en argument une liste, un entier n et un élément,
et retourne une liste identique à la liste fournie, mais dans laquelle on a inséré l’élément
fourni juste avant le ne élément de la liste passée en argument.

4. Déterminer la complexité (en temps) de chacune de ces fonctions. Comparer ces
complexités avec les équivalents de ces fonctions en Python.

Ex. 2.2 – Réordonner les éléments d’une liste

1. Écrire une fonction rotG de complexité linéaire prenant en argument une liste et
retourne une liste dans laquelle est éléments ont subi une permutation circulaire vers la
gauche. Par exemple, rotG [ 1; 2; 3; 4 ] doit donner [ 2; 3; 4; 1 ].

2. Écrire une fonction rotD de complexité linéaire prenant en argument une liste et
retourne une liste dans laquelle est éléments ont subi une permutation circulaire vers la
droite. Par exemple, rotD [ 1; 2; 3; 4 ] doit donner [ 4; 1; 2; 3 ].

Ex. 2.3 – Préfixes et suffixes

1. Proposer une fonction suffixes prenant en argument une liste d’éléments (de type
quelconque) et retournant la liste de ses suffixes. Par exemple, suffixes [ 1; 2; 3 ]
doit retourner par exemple [ [ 1; 2; 3 ] ; [ 2; 3 ] ; [ 3 ] ] (l’ordre des listes
dans la liste fourni comme résultat n’a pas d’importance).

2. Un peu plus difficile, proposer une fonction prefixes prenant en ar-
gument une liste d’éléments (de type quelconque) et retournant la liste de
ses préfixes. Par exemple, prefixes [ 1; 2; 3 ] doit retourner par exemple
[ [ 1 ] ; [ 1; 2 ] ; [ 1; 2; 3 ] ] (l’ordre des listes dans la liste fourni comme
résultat n’a pas d’importance).

3. Quelle est la complexité de ces deux fonctions ?

Ex. 2.4 – Suppression de doublons

1. Quelle est la signature de la fonction suivante, et que fait-elle?

let rec foo f = function
| t::q when f t -> t::(foo f q)
| t::q -> foo f q
| _ -> [];;

2. En déduire une fonction prenant en argument une liste et retournant une liste dans
laquelle on a retiré les éléments n’apparaissant pas pour la dernière fois. Le résultat de
la fonction sur la liste [ 1; 2; 3; 2; 4; 5; 4 ] devra être la liste [ 1; 3; 2; 5; 4 ].
Quelle est sa complexité?

Ex. 2.5 – Factorielle

1. Proposer une fonction multiplie qui prend en argument une liste d’entiers et re-
tourne le produit de ses éléments (ou 1 si la liste est vide). On pourra réfléchir à une version
utilisant le filtrage, et une version utilisant List.fold_left.

2. Écrire une fonction prenant un entier n et retournant la liste des entiers de n à 2
(inclus, rangés par ordre décroissants) si n Ê 2 et une liste vide sinon.

3. En déduire une fonction fact prenant en argument un entier n et retournant sa
factorielle.

Ex. 2.6 – Booléens et listes

Caml fournit deux fonctions de signature ('a -> bool) -> 'a list -> bool, nom-
mées List.exists et List.for_all, prenant donc en argument une fonction et une liste,
et retournant un booléen indiquant

• si la fonction retourne true pour au moins un élément de la liste dans le cas de la
fonction List.exists 24 ;

• si la fonction retourne true pour tous les éléments de la liste dans le cas de la fonction
List.for_all 25.

1. Proposer des fonctions Caml réalisant ces deux fonctions, en procédant dans un
premier temps par filtrage, puis en utilisant List.fold_left.

2. Écrire une fonction de signature ('a -> bool) -> 'a list -> 'a retournant le
premier élément de la liste vérifiant la propriété (définie par la fonction utilisée comme
premier paramètre).

3. Écrire une fonction de signature ('a -> bool) -> 'a list -> int -> 'a retour-
nant le ne élément de la liste vérifiant la propriété.

4. Écrire une fonction de signature ('a -> bool) -> 'a list -> 'a retournant le
dernier élément de la liste vérifiant la propriété.

24. L’équivalent en Python serait any(fun(x) for x in liste).
25. L’équivalent en Python serait all(fun(x) for x in liste).
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Ex. 2.7 – Produit cartésien

Proposer une fonction de signature 'a list -> 'b list -> 'a * 'b list prenant
en argument deux listes et retournant une liste de couples résultat du produit cartésien
des deux listes fournies en argument (les couples se trouvant dans un ordre quelconque).
produit [ 'a'; 'b'; 'c' ] [ 1; 2; 3 ] retournera ainsi par exemple :

- : (int * char) list = [(1, 'a'); (1, 'b'); (1, 'c');
(2, 'a'); (2, 'b'); (2, 'c'); (3, 'a'); (3, 'b'); (3, 'c')]

Ex. 2.8 – Fonctionelle List.iter

Pour écrire une fonction réalisant la même tâche que List.iter, est-il plus simple
d’utiliser List.fold_left ou List.fold_right? Proposer une telle fonction.

Ex. 2.9 – Maxima dans un arbre

On considère un arbre binaire strict, dont les noeuds et feuilles contiennent des éléments
'a pouvant être comparés, et dont le type est

type 'a arbre =
| Feuille of 'a
| Noeud of 'a * 'a arbre * 'a arbre

1. Proposer une fonction maxFeuille de signature 'a arbre -> 'a prenant un arbre
en paramètre et retournant le plus grande feuille de l’arbre.

2. Créer de même une fonction maxArbre de signature 'a arbre -> 'a prenant un
arbre en paramètre et retournant le plus grand élément de l’arbre.

Ex. 2.10 – Élagage d’un arbre

On considère des arbres binaire sans étiquettes définis par le type

type arbre = Nil | Noeud of arbre * arbre

Écrire une fonction prenant en argument un tel arbre et un entier n, et retournant un
arbre dont les branches ont été coupées à la longueur n (les nœuds à la profondeur n
devenant des feuilles, les éléments situés plus loin de la racine étant ignorés).

Ex. 2.11 – Symétrie et arbres

On considère des arbre binaire sans étiquettes, définis par le type

type arbre = Nil | Noeud of arbre * arbre

1. Écrire une fonction identiques prenant en argument deux arbres et retournant true
si les deux arbres sont identiques (on s’intéresse ici à leur forme).

2. Écrire une fonction miroirs prenant en argument deux arbres et retournant true si
les deux arbres sont image l’un de l’autre par une symétrie verticale.

3. Écrire une fonction symetrique prenant en argument un arbres et indiquant si l’arbre
admet une symétrie verticale.

Ex. 2.12 – Numérotation d’un arbre

La numérotation des nœuds d’un arbre binaire strict de Sosa-Stradonitz vise à associer à
chaque nœud de l’arbre un entier unique strictement positif, de façon à pouvoir identifier
sans ambiguité ledit nœud. Elle fonctionne de la façon suivante :

• on associe 1 à la racine de l’arbre ;
• si un nœud est numéroté n, alors son fils gauche est numéroté 2n et son fils droit

2n +1.
On suppose le type arbre défini de la façon suivante :

type 'a arbre = Feuille of 'a | Noeud of 'a * 'a arbre * 'a arbre

1. Proposer une fonction numeroteArbre dont la signature Caml serait
'a arbre -> (int * 'a) arbre qui crée un nouvel arbre dans lequel, à chaque
élément (nœud ou feuille) de l’arbre fourni en paramètre, on adjoint son numéro.

2. Justifier que n’importe quel entier positif correspond potentiellement à un nœu dans
un arbre, et écrire une fonction chemin prenant en argument un entier et retournant une
liste de caractères indiquant le chemin de la racine au nœud correspondant, en utilisant
'g' pour indiquer un passage au fils gauche, et 'd' pour le fils droit. Par exemple, chemin 5
retournera [ 'g'; 'd' ].

38



3Programmation impérative

Durant les deux premiers chapitres, nous nous sommes intéressés à des exemples de pro-
grammation dite fonctionnelle, mettant en avant la définition et l’évaluation de fonctions.
C’est le cœur des langages de la famille ML, donc Caml fait partie.

Toutefois, au contraire de langages fonctionnels purs comme Haskell, Caml (et les lan-
gages ML) ne sont pas limités à la seule programmetion fonctionnelle, et il est possible
d’utiliser également une programmation impérative, ce qui sera le sujet de ce chapitre.

1 Programmation impérative

La programmation impérative repose sur l’idée que Von Neumann se faisait de l’architec-
ture d’un ordinateur : une mémoire contenant les données et les instructions constituant
le programme, les instructions étant exécutées tour à tour, sous la direction d’un contrôleur
d’exécution par une unité de calcul, et ont pour effet des modifications du contenu de la
mémoire 1. On adjoint généralement à cette architecture des entrées-sorties qui permettent
à l’ordinateur de communiquer avec l’extérieur.

Unité arithmétique
et logique (ALU)

Accumulateur(s)

Contrôleur
d’exécution

Mémoire

Entrées

Sorties

Dans la suite de ce cours, nous introduirons les principales structures couramment
rencontrées en programmation impérative (séquences d’instructions, boucles, boucles
conditionnelles) ainsi que des objets mutables qui seront indispensable, nous le verrons,
pour rendre compte du caractère « évolutif » du contenu de la mémoire dans ce type de
programmation.

1. Modifications des données ou bien du programme lui-même!

2 Outils de programmation impérative

2.1 Séquences d’instructions

Dans une programmation de style impératif, les instructions se succèdent les unes aux
autres. Il est donc nécessaire de pouvoir exécuter plusieurs instructions à la suite.

En Caml, les instructions sont séparées par des points-virgules (même si un retour à la
ligne sépare les deux instructions).

# let foo x =
print_string "Le carré de "; print_int x;
print_string " est "; print_int (x * x);
print_string ".";
print_newline ();;

val foo : int -> unit = <fun>

On remarquera qu’il n’est pas besoin de ne mettre qu’une instruction par ligne, tant
qu’elles sont séparées par des points virgules, même si l’on tend à le faire pour faciliter la
lecture des fonctions 2.

Le résultat de la dernière expression est celui qui sera retourné par la fonction :

# let foo x =
print_string "Calcul du carré de ";
print_int x;
print_newline ();
x * x;;

val foo : int -> int = <fun>

Dans cette dernière fonction, on procède d’abord à un affichage, puis la fonction calcule
et retourne le carré de son argument (entier).

# foo 2;;
Calcul du carré de 2
- : int = 4

Bien évidemment, comme une fonction ne retourne qu’un seul argument, chacune des
instructions excepté la dernière devrait retourner l’élément () de type unit !

2. Il en est d’ailleurs de même en Python, il est théoriquement possible de mettre plusieurs instructions sur
une même ligne en les séparant par des point-virgules, mais cette pratique est très forcement déconseillée.
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Ce n’est pas rigoureusement requis (si ce n’est pas le cas, les calculs intermédiaires sont
simplement perdus), quoique Caml fournira un avertissement :

# let foo x =
x * x * x;
x * x;;

Characters 18-27:
x * x * x;
^^^^^^^^^

Warning 10: this expression should have type unit.
val foo : int -> int = <fun>

C’est un simple avertissement, la fonction est définie quand même, mais elle ne renvoie
que le carré de l’argument (la première instruction, ici, ne sert à rien!)

Pour que les instructions, la dernière excepté, aient un intérêt, il faut impérativement
qu’elles aient un effet (affichage à l’écran, modification de la mémoire...). C’est la rai-
son pour laquelle on n’a guère eu besoin d’utiliser des séquences d’instructions jusqu’à
présent 3.

2.2 Instructions conditionnelles

Une instruction conditionnelle est une instruction dont le comportement dépend d’une
condition, généralement le résultat d’une expression booléenne. Elle s’écrit en Caml avec
la structure

if condition then expression_1 else expression_2

Si condition est vraie, alors expression_1 est évaluée et retournée, sinon c’est
expression_2 qui le sera.

On peut ainsi réécrire notre fonction fact calculant la factorielle d’un entier positif :

# let rec fact n =
if n <= 1 then 1 else n * fact (n-1);;

val fact : int -> int = <fun>

Il n’y a pas de différence pratique entre la forme précédente de la fonction fact et celle
que l’on a vu dans le premier chapitre utilisant un filtrage : selon la valeur de n, on retourne
l’une ou l’autre des expressions (1 ou n * fact (n-1)).

3. Excepté dans le précédent chapitre pour afficher les différents parcours d’un arbre, où l’on faisait précisé-
ment des affichages à l’écran.

En Caml, il est possible d’utiliser cette structure conditionnelle partout où on attend une
expression, y compris à l’intérieur d’une expression. Par exemple, dans cette fonction :

# let foo n =
n + (if n mod 2 = 1 then 1 else -1);;

val foo : int -> int = <fun>

Attention, une expression en Caml doit toujours renvoyer un objet de même type, aussi
le else n’est, la très grande majorité du temps, pas facultatif :

# let foo n =
if n mod 2 = 1 then n+1;;

Characters 42-45:
if n mod 2 = 1 then n+1;;

^^^
Error: This expression has type int

but an expression was expected of type unit

Il n’existe qu’une exception à cette règle, une expression de type unit, auquel cas Caml
ajoutera un « else () » automatiquement, ce qui permet donc d’écrire :

let foo n =
if n mod 2 = 1 then print_int n;;

# val foo : int -> unit = <fun>

2.3 Blocs

Il n’est pas possible de mettre une séquence d’instructions entre le then et le else :

# let foo n =
if n mod 2 = 1 then

print_string "impair"; print_newline ()
else

print_string "pair"; rint_newline ();;

Characters 95-99:
else
^^^^

Error: Syntax error
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Il est nécessaire de « grouper » la séquence d’instructions dans un « bloc » qui se com-
portera comme une expression unique, grâce aux mots-clés begin et end :

# let foo n =
if n mod 2 = 1 then

begin
print_string "impair"; print_newline ();

end
else

begin
print_string "pair"; print_newline ();

end;;

val foo : int -> unit = <fun>

C’est également indispensable pour l’expression associée au else ici, car sinon le se-
cond print_newline ne ferait pas partie de la conséquence de l’échec de la condition
n mod 2 = 1, mais serait exécuté quelle que soit la valeur de n, puisque le else ne prendra
que l’expression qui le suit immédiatement.

Il est possible d’utiliser des parenthèses à la place de begin ... end dans la plupart des
situations, même si en terme de lisibilité, le bloc apparaît de façon moins évidente :

# let foo n =
if n mod 2 = 1 then

(print_string "impair"; print_newline ())
else

(print_string "pair"; print_newline ())

val foo : int -> unit = <fun>

Ce type de bloc est également utile lorsque l’on a des filtrages imbriqués, afin de préciser
à quel filtrage appartient chacun des motifs !

Considérons par exemple le cas suivant, où les m1...m4 seraient des motifs :

match expr1 with
| m1 -> match expr2 with

| m2 -> ...
| m3 -> ...

| m4 -> ...

Contrairement à ce que l’on a pu vouloir écrire (ou que l’on peut comprendre en première
lecture), le motif m4 est un motif pour le second filtrage (on rappelle que Caml n’est pas
sensible à l’indentation).

Si m4 est bien un motif pour le premier filtrage, comme l’indentation le laisse supposer, il
conviendrait d’écrire :

match expr1 with
| m1 -> begin

match expr2 with
| m2 -> ...
| m3 -> ...

end
| m4 -> ...

ou bien :

match expr1 with
| m1 -> (match expr2 with

| m2 -> ...
| m3 -> ... )

| m4 -> ...

2.4 Boucles inconditionnelles (for)

Pour effectuer un nombre déterminé de fois une série d’instructions, on écrira

for nom = expression_1 to expression_2 do sequence done

expression_1 et expression_2 doivent donner un résultat entier.

Le nom est alors associé successivement à tous les entiers entre expression_1 et
expression_2 (inclus), et la séquence d’instructions sequence est évaluée pour chacun
de ces entiers (notons que par la présence de do et done, il n’est pas besoin de définir
nous-même un bloc d’instructions ici s’il faut plus d’une instruction dans la boucle.

Ainsi, l’expression

for i = 1 to 3 do expression done

est équivalente à la séquence d’instructions suivante :

let i = 1 in expression;
let i = 2 in expression;
let i = 3 in expression;

Précisons que, dans le cas où expression_1 donne un résultat strictement supérieur à
expression_2, il ne se passera rien.
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On peut ainsi, par exemple, avec une boucle inconditionnelle, écrire une fonction qui
imprime une table de multiplication 4 :

# let table n =
for i = 1 to 10 do

print_int n;
print_string " fois ";
print_int i;
print_string " égale ";
print_int (n*i);
print_newline ();

done;;

val table : int -> unit = <fun>

Les expressions dans la boucle devraient retourner un () de type unit, car le résultat de
ces expressions sera « jeté » par Caml après chaque itération 5. Ainsi, la fonction

# let foo n =
for i = 1 to 10 do

i * n;
done;;

Characters 40-46:
i * n;
^^^^^^

Warning 10: this expression should have type unit.
val foo : int -> unit = <fun>

est acceptée, mais ne renvoie rien, ce qui n’est probablement pas ce que l’on souhaite !

Cette fois encore, si l’expression dans la boucle n’a pas d’effet (affichage, modification
de la mémoire...), cette structure de contrôle n’a guère d’intérêt.

Il n’existe pas de structure permettant de choisir le pas lors de l’itération, ou d’itérer sur
autre chose que des entiers. On dispose cependant du mot-clé downto afin de décompter
au lieu de compter :

for nom = expression_1 downto expression_2 do sequence done

4. Bien évidemment, rien n’empêche de le faire avec une écriture purement fonctionnelle et une récursion,
nous y reviendrons. On dispose simplement ici d’une autre manière d’exprimer une telle opération.

5. Y compris la dernière, une boucle for retourne bien toujours () et non le résultat de l’expression de la
dernière itération!

2.5 Boucles conditionnelles (while)

Parfois, le nombre d’itérations à effectuer n’est pas connu à l’avance, et l’on souhaite
effectuer une tâche tant qu’une expression est vraie. Pour ce faire, on dispose de la structure
de contrôle suivante :

while expression do sequence done

Avec cette structure, sequence sera évaluée autant de fois que nécessaire, tant que
expression sera vraie. Par exemple :

while read_line () <> "Au revoir" do
print_string "Dites m'en plus !";
print_newline ();

done;;

Encore plus que dans les exemples précédents, on a besoin ici que quelque chose se
passe pour que expression change après un certain nombre d’itérations, sinon on sera
bloqués dans une boucle infinie ! Il devient vraiment indispensable que sequence puisse
agir sur le contenu de la mémoire.

Il n’est en effet pas possible d’utiliser une définition let ... = ... à l’intérieur de la
boucle. Tout au plus peut on utiliser une définition locale let ... = ... in ..., mais
cette définition sera oubliée dès la fin de l’itération dans laquelle elle apparaît.

3 Références

3.1 Les références

On l’a vu, la programmation impérative n’a de sens que si l’on est capable d’agir sur le
contenu de la mémoire, ce qui ne peut être fait avec des définitions. Plutôt que d’associer
un nom à un objet (valeur, chaîne, arbre...), il est possible, grâce au mot-clé ref, de créer
une référence vers un objet.

En écrivant par exemple

# let a = ref 2.2;;
val a : float ref = {contents = 2.2}

on demande à Caml d’associer le nom « a » à une référence vers un flottant (ainsi que
l’indique le float du type « float ref »), ce flottant étant initialement 2.2.

Dans un premier temps 6, on peut imaginer le nom associé à une « boîte » contenant

6. Nous verrons un peu plus tard que cette image peut poser quelques soucis dans certains cas.
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l’entier. D’ailleurs, la réponse de Caml suggère bien que l’on manipule une « boîte » avec
un contenu. Les noms sont ainsi associés aux « boîtes » plutôt qu’à leur contenu.

La définition let a = ref 2.2 conduit donc à une situation de la sorte, où l’on voit
que le nom a est bien associé (de façon permanente) à la boîte et non au flottant qu’elle
contient :

a 2.2

On ne peut utiliser directement une référence comme s’il s’agissait de l’objet qu’elle
contient :

# a *. 2.0;;

Characters 2-3:
a *. 2.0;;
^

Error: This expression has type float ref
but an expression was expected of type float

Il faut donc préalablement extraire le flottant. Pour ce faire, on fait précéder le nom d’un
point d’exclamation :

# !a;;
- : float = 2.2

# !a *. 2.0;;
- : float = 4.4

Pour modifier le contenu de la case mémoire, on utilise l’opérateur « := » :

# a := 3.7;;
- : unit = ()

# !a;;
- : float = 3.7

# a;;
- : float ref = {contents = 3.7}

Le contenu de la case mémoire a bien été changé, mais pas la définition de a.

3.2 Utilisation

Les références permettent, entre autres choses, de créer des accumulateurs et des comp-
teurs, des objets que l’on retrouve trèès fréquemment dans la programmation impérative.
Il est par exemple très simple d’écrire, en style impératif, une fonction factorielle :

# let fact n =
let res = ref 1 in
for i=2 to n do

res := !res * i
done;
!res;;

val fact : int -> int = <fun>

Pour incrémenter l’entier désigné par une référence x, il suffit en principe d’écrire

x := !x + 1

Toutefois, comme il s’agit d’une opération courante en programmation impérative, on
dispose d’une fonction incr qui prend en argument une référence vers un entier et réalise
la même opération d’incrémentation. « incr x » est donc équivalent à « x := !x + 1 ».
De la même façon, on dispose de la fonction decr qui décrémente d’une unité le contenu
d’une référence vers un entier.

Il est possible de créer des références vers des objets de n’importe quel type. Ainsi, dans
la fonction suivante, qui compte le nombre de zéros d’une liste d’entiers, on utilise ainsi
deux références, l’une, reste, recueillant la liste des données restant à traiter, la seconde,
nombre, le nombre de zéros déjà identifiés dans la liste :

let compte_zeros lst =
let nombre = ref 0 (* un compteur de zéros *)
and reste = ref lst in (* éléments restant à examiner *)
while !reste <> [] do
if List.hd !reste = 0
then incr nombre; (* else () implicite *)

reste := List.tl !reste (* le premier élément est traité *)
done;
!nombre;; (* on retourne le contenu *)

La fonction précédente illustre la façon dont on traite généralement les listes dans un
style impératif. Rappelons que List.tl ne crée pas une copie de la liste, et est bien une
opération en O (1), donc cette fonction n’est pas inefficace.

De même, on peut très bien avoir des références de fonctions, par exemple ici des
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fonctions des entiers vers les entiers :

# let funct = ref abs;;
val foo : (int -> int) ref = {contents = <fun>}

# !funct (-37);;
- : int = 37

On peut alors y associer tout objet de type 7 int -> int :

# funct := fun x -> x*x*x;;
- : unit = ()

# funct := min 0;;
- : unit = ()

Une référence peut même contenir une référence :

# let b = ref (ref 37);;
val b : int ref ref = {contents = {contents = 0}}

Pour accéder à l’entier, il faut alors utiliser deux fois un déréférencement :

# ! !b;;
- : int = 37

Les références sont en revanche toujours associées à un type bien particulier, et il n’est
pas possible de leur associer un objet d’un autre type :

# let a = ref 2;;
val a : int ref = {contents = 2}

# a := 4.0;;

Characters 6-9:
a := 4.0;;

^^^
Error: This expression has type float

but an expression was expected of type int

7. En fait, il est même possible d’y associer des fonctions de signature int -> 'a, 'a -> 'a, etc. Cependant,
l’objet qui se retrouvera référencé sera un objet de type int -> int, qui le restera une fois déréférencé, et qui
donc ne correspondra plus à l’objet « original ».

3.3 Égalité, identité

Deux noms peuvent aussi bien désigner la même « boîte », comme b et c dans l’exemple
ci-dessous :

# let a = ref 2.2 and b = ref 2.2;;
val a : float ref = {contents = 2.2}
val b : float ref = {contents = 2.2}

# let c = b;;
val c : float ref = {contents = 2.2}

2.2

2.2

a

b

c

Modifier le contenu de la « boîte » désignée par b aura donc des conséquences sur c mais
pas sur a :

# b := 3.7;;
- : unit = ()

# a;;
- : float ref = {contents = 2.2}

# c;;
- : float ref = {contents = 3.7}

Il est dès lors naturel de se poser, dans ce genre de situation, la question du fonction-
nement de l’opérateur d’égalité 8 =. En Caml, celui-ci teste une égalité de valeurs (parfois
qualifiée d’égalité structurelle), autrement dit l’opérateur regarde si les contenus sont
égaux :

# a = b;;
- : bool = true

# b = c;;
- : bool = true

8. qui n’est pas sans rappeler des difficultés similaires concernant l’égalité/l’identité de deux listes en Python
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Notons qu’il n’est, naturellement, possible que de comparer deux éléments de même
type, et qu’une référence vers un flottant n’est pas comparable à un flottant :

# a = 3.7;;
Characters 6-9:

a = 3.7;;
^^^

Error: This expression has type float
but an expression was expected of type float ref

Pour tester l’identité (ou égalité physique), on utilisera l’opérateur == :

# a == b;;
- : bool = false

# b == c;;
- : bool = true

L’opérateur != teste lui la « non-identité » 9.

# a != b;;
- : bool = true

# b != c;;
- : bool = false

Les opérateurs == et != font référence à la manière dont les objets sont rangés en mé-
moire, et leur usage est à réserver aux objets mutables. Leur comportement sur des objets
immutables peut être imprévisible (et varier d’un compilateur à l’autre) :

# 2.5 == 2.5;;
- : bool = false

3.4 Une dernière remarque pour clore

Précisons pour terminer que si cette image de « boîte » est généralement suffisante, elle
peut montrer ses limites. En effet, il est possible de créer des références distinctes vers
un même objet (qui se trouverait alors simultanément dans deux « boîtes » !), comme
ci-dessous :

# let a = ref 2.2 and b = ref 2.2
# let c = ref !b

9. On rappelle que c’est l’opérateur <> qui teste si deux valeurs ne sont pas égales.

Une meilleure image serait de considérer que l’on place dans chaque boîte non pas
les objets eux-même, mais une étiquette permettant de les retrouver, comme illustré
ci-dessous :

a

b

c

2.2

2.2

Toutefois, tant que les objets auxquels on fait référence sont immutables, et ce sera le
cas dans la très grande majorité des situations, cette distinction n’a pas d’importance.

4 Objets Caml avec mutabilité

4.1 Cas du type « enregistrement »

Supposons que l’on souhaite manipuler un annuaire en Caml, regroupant le nom et le
numéro de téléphone de différentes personnes.

On peut par exemple écrire un type « enregistrement » associant un nom et un numéro
de téléphone 10 :

type coord = { nom: string ; numéro: string };;

On peut ensuite définir un annuaire comme une liste de tels éléments 11 :

let annuaire = [ { nom = "Dupont" ; numéro = "0123456789" } ;
{ nom = "Durand" ; numéro = "0246813579" } ;
{ nom = "Martin" ; numéro = "0918273645" } ];;

L’ennui, c’est qu’il n’est pas possible de modifier un numéro si la personne en change,
sans modifier la liste de façon à retirer l’élément devenu incorrect pour le remplacer par
un nouveau.

10. On aurait pu mémoriser le numéro sous la forme d’un entier, mais si la version de Caml utilise des entiers
32bits, ils ne permettront pas de mémoriser n’importe quel numéro à dix chiffres, et on perdrait les 0 de tête.

11. Nous verrons dans le chapitre suivant une meilleure solution pour définir un annuaire.
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Ce que l’on pourrait écrire, dans un style fonctionnel, par 12 :

# let rec modifie nom nouv_numero = function
| (t::q) when t.nom = nom
-> { nom = nom ; numéro = nouv_numero }

:: modifie nom nouv_numero q
| (t::q) -> t :: modifie nom nouv_numero q
| [] -> [];;

val modifie : string -> string -> coord list -> coord list = <fun>

Cela crée un nouvel annuaire, intégrant la correction. L’argument n’est lui pas modifié.

On peut donc par exemple utiliser la fonction modifie de la sorte :

# let nouvel_annuaire = modifie "Durand" "0000012345" annuaire ;;
val nouvel_annuaire : coord list =
[{nom = "Dupont"; numéro = "0123456789"};
{nom = "Durand"; numéro = "0000012345"};
{nom = "Martin"; numéro = "0918273645"}]

On peut préférer modifier un annuaire existant, et pour ce faire utiliser des références
pour le numéro, au prix d’un changement dans la déclaration de l’annuaire :

type coord = { nom: string ; numéro: string ref };;

let annuaire = [ { nom = "Dupont" ; numéro = ref "0123456789" } ;
{ nom = "Durand" ; numéro = ref "0246813579" } ;
{ nom = "Martin" ; numéro = ref "0918273645" } ];;

La fonction de modification peut alors s’écrire :

# let rec modifie nom nouv_numero = function
| (t::q) when t.nom = nom
-> t.numéro := nouv_numero;

modifie nom nouv_numero q
| (t::q) -> modifie nom nouv_numero q
| [] -> ();;

val modifie : string -> string -> coord list -> unit = <fun>

12. Notons que si l’on trouve le nom recherché dans l’annuaire, on poursuit la recherche, et si le nom apparaît
plusieurs fois dans l’annuaire, tous les numéros seront mis à jour.

Le résultat de la fonction est à présent de type unit, car on ne construit plus un nouvel
annuaire, on se contente de modifier l’existant, en écrivant :

# modifie "Durand" "0000056789" annuaire;;
- : unit = ()

# annuaire;;
- : coord list =
[{nom = "Dupont"; numéro = {contents = "0123456789"}};
{nom = "Durand"; numéro = {contents = "0000056789"}};
{nom = "Martin"; numéro = {contents = "0918273645"}}]

On peut aussi adopter un style plus impératif :

# let modifie nom nouv_numero annuaire =
let reste = ref annuaire in
while !reste <> [] do

let coord = List.hd !reste in
if coord.nom = nom
then coord.numero := nouv_numero;

reste := List.tl !reste
done;;

val modifie : string -> string -> coord list -> unit = <fun>

L’inconvénient de cette approche est que cela change la façon de déclarer l’annuaire
(avec des ref) et de l’utiliser (avec des !), ce qui peut être parfois génant. Il existe cependant
une autre façon de procéder : Caml nous offre la possibilité de déclarer un champ du type
enregistrement comme étant mutable :

type coord = { nom: string ; mutable numéro: string };;

let annuaire = [ { nom = "Dupont" ; numéro = "0123456789" } ;
{ nom = "Durand" ; numéro = "0246813579" } ;
{ nom = "Martin" ; numéro = "0918273645" } ];;

On peut alors modifier l’élément mutable avec l’opérateur <- :

# (List.hd annuaire).numéro <- "9876543210";;
- : unit = ()

# List.hd annuaire;;
- : coord = {nom = "Dupont"; numéro = "9876543210"}

46



On écrit alors notre fonction de modification par exemple de la façon suivante :

# let rec modifie nom nouv_numero = function
| (t::q) when t.nom = nom
-> t.numéro <- nouv_numero;

modifie nom nouv_numero q
| (t::q) -> modifie nom nouv_numero q
| [] -> ();;

val modifie : string -> string -> coord list -> unit = <fun>

Pour ceux qui se demanderaient pourquoi l’on a créé un opérateur supplémentaire <-
au lieu d’utiliser :=, dans le cas où l’on définit un objet de la sorte

type foo = { mutable elem = int ref };;

il fallait bien pouvoir distinguer les deux opérations qui sont toutes les deux possibles ici !

4.2 Un autre objet mutable : les tableaux ('a array)

Certains types proposés par Caml sont « naturellement » mutables. Les chaînes de
caractères l’ont été (il était possible de « muter » un caractère d’une chaîne), mais ne le
sont plus 13 dans les dernières versions de OCaml.

Les listes sont immutables, ce qui rend, on l’a vu, leur utilisation dans un style impératif
délicat. On dispse donc d’un autre conteneur, mutable, que l’on utilisera souvent dans un
style impératif : les tableaux (de type 'a array). Ce sont des objets qui peuvent contenir
un nombre prédéterminé d’éléments de même type. On peut les définir explicitement en
plaçant différents éléments (impérativement tous de même type), séparés par des points
virgules, entre [| et |] :

# let tableau = [| 1.2; 2.3; 3.4 |];;
val tableau : float array = [|1.2; 2.3; 3.4|]

On peut également créer un tableau grâce à la fonction Array.make, en précisant la taille
et l’élément à placer dans chaque case :

# Array.make 6 0.0;;
- : float array = [|0.; 0.; 0.; 0.; 0.; 0.|]

# Array.make 3 "Hello";;
- : string array = [|"Hello"; "Hello"; "Hello"|]

13. Il existe un type bytes, très semblable aux chaînes de caractères, qui lui est mutable.

On peut obtenir la taille d’un tableau avec Array.length, et accéder à un élément en
indiquant, entre parenthèses précédées d’un point, l’indice de l’élément souhaité :

# Array.length tableau;;
- : int = 3

# tableau.(1);;
- : float = 2.3

Au contraire de ce qui se passe avec les listes, ces opérations sont toutes deux effectuées
en temps constant (O (1)).

Par ailleurs, les tableaux étant des objets mutables, il est possible de modifier un élément
du tableau avec <- :

# tableau.(1) <- 10.23;;
- : unit = ()

# tableau;;
- : float array = [|1.2; 10.23; 3.4|]

Il existe de nombreuses fonctions destinées à la manipulation de tableaux
(dont Array.copy, Array.sub, Array.iter, Array.map, Array.mem, Array.to_list,
Array.of_list, Array.sort...) dont la liste et le fonctionnement sont résumés dans la
documentation du langage, et que nous découvrirons en fonction de nos besoins.

Les listes et les tableaux répondent à des besoins différents, comme nous le verrons. Il
est très facile d’obtenir une liste résultant de l’ajout ou de la suppression d’un élément en
tête d’une liste existante (en O(1)), mais le coût pour accéder à un élément au milieu de
la liste est élevé (en O(n)). Par ailleurs, le contenu d’une liste est immutable. À l’inverse,
les tableaux sont des objets mutables, mais ont une taille fixe (la changer nécessite de
recopier le tableau, avec un coût en O(n)). Ainsi, en fonction des besoins de l’algorithme,
on préférera donc l’une ou l’autre de ces structures.

4.3 Tableaux bidimensionnels

Pour représenter un tableau en deux dimensions, il n’existe pas de type particulier, mais
comme on peut définir des tableaux de n’importe quel type, on peut définir des tableaux
de tableaux. Attention toutefois, si l’on souhaite construire une matrice nulle de trois lignes
et deux colonnes, on ne peut écrire :

# let matrice = Array.make 3 (Array.make 2 0.0);; (* incorrect *)
- : float array array = [|[|0.; 0.|]; [|0.; 0.|]; [|0.; 0.|]|]
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Même si le résultat semble satisfaisant, on a créé ici un tableau qui contient trois fois la
même ligne 14 ! Modifier un élément sur une ligne quelconque aurait un effet sur toutes les
autres, ce qui n’est a priori pas ce que l’on cherche...

Pour définir une matrice nulle de trois lignes et deux colonnes, on pourra en revanche
écrire :

# let matrice = Array.make 3 [| |];;
val matrice : '_a array array = [|[||]; [||]; [||]|]

# for i=0 to 2 do matrice.(i) <- Array.make 2 0.0 done;;
- : unit = ()

# matrice;;
- : float array array = [|[|0.; 0.|]; [|0.; 0.|]; [|0.; 0.|]|]

Caml fournit cependant fort obligeamment un raccourci pour effectuer cette construc-
tion, Array.make_matrix :

# Array.make_matrix 3 2 0.0;;
- : float array array = [|[|0.; 0.|]; [|0.; 0.|]; [|0.; 0.|]|]

On fait référence la ligne d’indice i par :

# matrice.(1);;
- : float array = [|0.; 0.|]

Et donc à l’élément situé sur la ligne d’indice i dans la colonne d’indice j par :

# matrice.(1).(0);;
- : float = 0.

Remarquons enfin que rien ne garantit, lorsque l’on a un 'a array array, que cha-
cune des « lignes » ait la même taille, et qu’il peut très bien ne pas s’agir d’un tableau
bidimensionnel dans le sens usuel du terme !

14. Il s’agit exactement du même problème que lorsque l’on écrit [ [0.0] * 2 ] * 3 en Python.

� Exercices

Ex. 3.1 – Fonction mystérieuse

Déterminer ce que fait la fonction suivante :

let foo x y =
x := !x + !y ;
y := !x - !y ;
x := !x - !y ;;

Ex. 3.2 – Parité d’un coefficient binomial

On peut montrer (théorème de Lucas) que le coefficient binomial
(n

k

)
est impair si et

seulement si, à tout 0 dans l’écriture binaire de n correspond un 0 dans l’écriture de k (à la
même position).

Proposer une fonction estImpair de signature int -> int -> bool prenant en argu-
ment les entiers n et k et retournant la parité de

(n
k

)
.

Ex. 3.3 – Liste de couples

Proposer une fonction couples de signature int -> (int * int) list prenant en
argument un entier n > 0 et retournant la liste de tous les couples d’entiers

(
x, y

)
vérifiant

1 É x É y É n.

Ex. 3.4 – Permutations

Proposer une fonction estPermutation de signature int array -> bool indiquant
si un tableau de longueur n, passé en argument, est une permutation de l’ensemble
�0 . . n −1�.

Ex. 3.5 – Indicatrice d’Euler

1. Proposer une fonction pgcd non-récursive de signature int -> int -> int détermi-
nant le PGCD de deux entiers a et b.

2. En déduire une fonction non-récursive phi de signature int -> int correspondant à
la fonction indicatrice d’Euler ϕ (φ(n) correspond au nombre d’entiers inférieurs ou égaux
à n premiers avec n).

Ex. 3.6 – Codage

1. Proposer une fonction char_cesar de signature char -> int -> char prenant en
argument un caractère et un entier n et retournant :
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• le même caractère s’il ne s’agit pas d’une minuscule ;
• la minuscule encodée grâce au code de César dans le cas contraire, à savoir la mi-

nuscule se trouvant n rangs plus loin dans l’alphabet (en revenant au début si l’on
dépasse la fin de l’alphabet) ; par exemple, pour n = 4, on décale les lettres de 4 rangs :
a devient e, b devient f... et z devient d.

On rappelle que l’on dispose des fonctions int_of_char et char_of_int permettant de
transformer un caractère en son code ASCII et inversement, et que les minuscules ont des
codes ASCII consécutifs.

2. En déduire une fonction cesar de signature string -> int -> string prenant
en argument une chaîne de caractères et un entier n et retournant la chaîne résultat de
l’utilisation du code de César sur chacun de ses caractères.

Pour éviter d’utiliser de nombreuses concaténations de chaînes qui pourraient conduire
à une complexité quadratique de la fonction, on pourra utiliser la fonction String.concat
de signature string -> string list -> string qui prend en argument une chaîne et
une liste de chaîne et retourne, en un temps linéaire vis-à-vis de la taille de la chaîne
retournée, la concaténation de toutes les chaînes de la liste, en insérant entre chacune la
chaîne passée en premier argument.

Plus simplement, String.concat "" lst retourne la concaténation de toutes les
chaînes dans la liste lst.

3. Sur le même modèle, construire une fonction vigenere de signature
string -> string -> string prenant en argument une chaîne de caractères et
un seconde chaîne de caractères (ne contenant que des minuscules entre a et z) et encode
les minuscules de la première chaîne de caractère grâce au code de Vigenere.

Le code de Vigenere est une variante du code de César, dans lequel le décalage est
différent pour chaque caractère, et défini par la seconde chaîne (la clé) : si la clé contient
p caractères, le i e caractère de la première chaîne est encodé avec un décalage tel que le
caractère a serait transformé en le i mod pe caractère de la clé.

Par exemple, la chaîne "hello", codée avec la clé "abz", donnera la chaine "hfklp".
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4Piles, files, dictionnaires

Dans ce quatrième chapitre, nous allons étudier quelques conteneurs très utiles pour
l’écriture de nombreux algorithmes, les piles, les files et les dictionnaires, des structures
de données mutables pouvant contenir un nombre variable de données (de même type),
différant dans la façon dont les données sont introduites et extraites.

1 Les piles

1.1 Principe

Imaginons un instant une pile de livres posée sur une table. Il est possible d’ajouter un
livre à la pile en le plaçant au-dessus de la pile, ou bien de retirer le livre au sommet de la
pile. Le seul livre qu’il soit possible de consulter est celui qui se trouve au sommet de la pile.
Une pile, en informatique, reprend très exactement ce principe : c’est un conteneur qui
regroupe un ensemble d’éléments mais ne permet d’effectuer que certaines opérations.

Tout d’abord, on peut ajouter un élément au sommet de la pile. Cette opération d’empi-
lement est généralement appelée « push ».

17 42

17

54

42

17

54

42

17

On peut, de la même façon, reprendre l’élément au sommet de la pile. Le terme généra-
lement associé à cette opération de dépilage est « pop ».
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42

17

54

42

17

42

17

17

Il est fréquent qu’il soit permi de consulter l’objet situé au sommet de la pile sans avoir
besoin de le retirer. En revanche, il n’est pas rare qu’il ne soit pas possible d’accéder aux
éléments situés en-dessous dans la pile sans retirer chacun des éléments qui les recouvrent.
Sauf mention contraire, lorsque l’on parlera de piles, on supposera que seul l’élément au
sommet est directement accessible.

Pour pouvoir manipuler des piles, il nous faut également disposer d’une fonction per-
mettant de créer une pile vide, ainsi qu’un moyen de tester si une pile est vide ou non.

1.2 Le module Stack

Le module OCaml « stack » fournit de quoi manipuler des piles. Il propose notamment
trois fonctions pour les manipuler :

• Stack.create (unit -> 'a Stack.t), qui crée une nouvelle pile ;
• Stack.push ('a -> 'a Stack.t -> unit), qui ajoute un élément au sommet de la

pile ;
• Stack.pop ('a Stack.t -> 'a), qui extrait et retourne l’élément situé au sommet

de la pile ;
• Stack.top ('a Stack.t -> 'a), qui fournit l’élément situé en haut de la pile sans le

retirer 1 ;
• Stack.is_empty ('a Stack.t -> bool), qui indique si la pile est vide.

On notera qu’une pile est un objet de type 'a Stack.t. Comme pour les listes, les
piles ne peuvent contenir que des objets de même type, même si ce type peut être un
quelconque type que Caml puisse manipuler.

Le fonctionnement est donc très simple. On commence par créer la pile :

# let pile = Stack.create ();;
val pile : '_a Stack.t = <abstr>

Initialement, on ne connaît pas le type d’objets que contiendra la pile, d’où le '_a. On
peut ensuite placer des objets dans la pile :

# Stack.push 17 pile;;
- : unit = ()

# Stack.push 42 pile;;
- : unit = ()

# Stack.push 54 pile;;
- : unit = ()

1. Il ne s’agit pas d’une copie de l’objet, ce que retourne la fonction désigne réellement l’objet en haut de la
pile, et toute opération affectant l’objet retiré affecte également l’objet en haut de la pile.
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L’ajout d’entiers dans la pile a eu pour conséquence de fixer le contenu des objets
pouvant se trouver dans la pile : ce sera des entiers, comme en témoigne dorénavant le
type de pile.

# pile;;
- : int Stack.t = <abstr>

Une tentative d’insertion d’autre chose qu’un entier va échouer :

# Stack.push 10.23 pile;;
Characters 19-23:

Stack.push 10.23 pile;;
^^^^

Error: This expression has type int Stack.t
but an expression was expected of type float Stack.t

On peut ensuite retirer les objets placés dans la pile avec Stack.pop :

# Stack.pop pile;;
- : int = 54

# Stack.pop pile;;
- : int = 42

La fonction Stack.top permet également d’obtenir l’élément au sommet de la pile, mais
sans le retirer :

# Stack.top pile;;
- : int = 17

# Stack.pop pile;;
- : int = 17

En fait, on aurait pu écrire la fonction Stack.top simplement avec les fonctions
Stack.pop et Stack.push. Il suffit en effet de retirer l’élément au sommet de la pile, puis
de le remettre avant de le retourner :

# let top pile =
let elem = Stack.pop pile

in Stack.push elem pile; elem;;

val top : 'a Stack.t -> 'a = <fun>

Cette fonction retournera naturellement une erreur si la pile est vide (comme le ferait
également la fonction Stack.top).

La fonction Stack.is_empty enfin permet de savoir si une pile est vide ou non :

# Stack.is_empty pile;;
- : bool = true

# Stack.push 17 pile;;
- : unit = ()

# Stack.is_empty pile;;
- : bool = false

1.3 Les exceptions

Bien évidemment, lorsque la pile est vide, une tentative de retirer un élément provoque
une erreur :

# Stack.pop pile;;
Exception: Stack.Empty.

En fait, il s’agit d’une exception. Dans beaucoup de langages, une exception est une
information indiquant que quelque chose s’est mal passé. Si l’on ne fait rien, le programme
va s’arrêter. Mais il est possible d’agir lorsque le programme rencontre une exception, et
d’essayer de résoudre le problème (on parle de rattraper l’exception). Pour ce faire, on
dispose d’une construction try ... with ...

Si la série d’instruction entre les mots-clés try et with déclenche une exception, celle-ci
est comparée avec les exceptions pour lesquelles on dispose d’une solution, indiquées
après le with. La syntaxe est très similaire à celle d’un filtrage par motif.

Ainsi, par exemple, pour savoir si une pile est vide, plutôt que d’utiliser Stack.is_empty,
on peut procéder différemment : on retire l’élément en haut de la pile et on le remet. Si
tout se passe bien, la pile n’était pas vide. Si en revanche l’exception Stack.Empty survient
(lors de l’appel à Stack.pop), c’est que la pile était vide !

Ainsi, on peut écrire une fonction is_empty de la sorte :

# let isEmpty pile =
try

let elem = Stack.pop pile in Stack.push elem pile; false
with

| Stack.Empty -> true;;

val isEmpty : 'a Stack.t -> bool = <fun>
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Ce qui suit le mot clé with est donc un filtrage de l’exception : ici, on ne traite que le cas
de l’exception Stack.Empty qui, si elle est levée entre le try et le with, fait retourner à la
fonction true au lieu du false retourné si les appels à pop puis push se déroulent sans
problème (on remarquera ici que l’on n’attache pas d’importance à l’élément retiré, on
veut seulement savoir si tout se passe bien si l’on y fait appel).

Si l’exception est identifiée par le filtrage, on dit qu’elle est rattrapée, et elle ne provoquera
pas l’arrêt du programme. Après l’exécution de l’instruction ou de la séquence d’instruction
spécifiée dans le with, l’exécution se poursuit après le try ... with. Ce qui suit l’endroit
du programme qui a déclenché l’exception n’est donc pas exécuté.

Une exception rompt donc le cours normal de l’exécution d’un programme, ce qui peut
être à la fois un danger et une opportunité, lorsque c’est utilisé à bon escient.

Stack.Empty est une exception définie dans le module Stack, et levée lorsque l’on tente
d’accédér à un élément d’une pile vide, mais il en existe bien d’autres, parmi lesquelles
Out_of_memory, Divison_by_zero, Match_failure...

Ces exceptions sont levées lorsque l’on exécute une opération illégale. Mais on peut aussi
lever soi-même une exception dans un programme, il suffit d’utiliser le mot-clé raise
suivi du nom de l’exception à lever 2.

On peut définir ses propres exceptions (identifiées par un nom débutant par une majus-
cule) de la même façon que l’on peut définir ses types, en écrivant

# exception MonException;;

Ainsi, s’il n’existe pas de break dans une boucle for en Caml, on peut néanmoins avoir
un comportement similaire grâce aux exceptions, comme dans cette fonction, qui retourne
un booléen indiquant si un élément se trouve dans un tableau :

# exception Found;;

# let contient elem tab =
try
for i = 0 to Array.length tab - 1 do

if tab.(i) = elem then raise Found
done;
false (* Retourne false à l'issue de la boucle *)

with
| Found -> true;; (* retourne true si on trouve *)

val contient : 'a -> 'a array -> bool = <fun>

2. L’utilisation des exceptions n’est en principe pas une compétence exigible pour les concours, aussi peut-on,
en particulier en première lecture, ignorer la suite de cette section et passer directement à la suivante (interfaces
de programmation).

Une exception peut par ailleurs « transporter » un élément, par exemple un entier, en la
déclarant de la sorte :

# exception MonException of int;;

On écrira par exemple « MonException 42 » pour obtenir une exception MonException
associée à l’entier 42. L’élément associé à l’exception peut apporter des informations
supplémentaires sur la situation qui a causé l’exception. C’est par exemple le cas de
l’exception Invalid_argument que l’on rencontre souvent en Caml : elle est accompagnée
d’une chaîne de caractères qui en dit davantage sur l’erreur. Ainsi, la chaîne sera par
exemple "index out of bounds" si l’on tente d’accéder à un emplacement invalide dans
une chaîne ou dans un tableau (index négatif ou trop grand).

Les éléments associés à une exception peuvent être récupérés par le filtrage. Par exemple,
on peut modifier la fonction précédente pour qu’elle retourne la position de l’élément (et
-1 s’il n’est pas présent, puisque le type retourné doit toujours être le même).

# exception Position of int;;

# let position elem tab =
try
for i = 0 to Array.length tab - 1 do

if tab.(i) = elem then raise (Position i);
done;
-1 (* L'élément n'est pas présent dans tab *)

with
| Position k -> k;; (* Retourne la position *)

val position : 'a -> 'a array -> int = <fun>

Notons que ces exemples sont proposés à titre d’illustration, ce n’est pas nécessairement
la façon la plus lisible de procédeer dans un tel cas, mais c’est une approche qui est
régulièrement utilisée par les développeurs. Le tout est de s’en servir à bon escient (et en
commentant la démarche).

Nous avons en fait déjà levé volontairement de telles exceptions grâce à la fonction
failwith qui prend en argument une chaîne et provoque la levée d’une exception Failure
qui contient la chaîne 3. Si une exception a été levée par « failwith "Message" », elle
peut donc être rattrapée par un filtrage « Failure "Message" -> » suivant une structure
try ... with.

Nous aurons l’occasion, dans les prochains cours, de croiser quelques autres utilisations
de ce mécanisme de levée et de rattrapage d’exceptions.

3. failwith "Hello" a donc le même résultat que raise (Failure "Hello").
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1.4 Interfaces de programmation

Le module Stack nous fournit les fonctions, Stack.create, Stack.push, Stack.pop,
Stack.top et Stack.is_empty, mais ne nous éclaire pas sur la façon dont ces fonctions
sont implémentées.

C’est ce que l’on appelle une interface. L’utilisateur du module peut librement utiliser
ces fonctions, dont le comportement est complètement détaillé (arguments attendus,
résultats, effets).

En général, on précise également la complexité des fonctions. Dans le cas d’une pile,
toutes les options présentées précédemment ont un coût constant (en O(1)).

L’utilisateur n’a en revanche pas à savoir comment ces fonctions sont programmées.

C’est une stratégie fréquemment utilisée en informatique. Pour le développeur du mo-
dule, cela présente l’avantage de la flexibilité : il peut librement choisir la façon dont les
fonctions sont implémentées, et peut même changer la façon dont les fonctions sont
implémentés sans que les programmes utilisant le module ne soient impactés par le
changement.

1.5 Implémentation

Il existe de nombreuses façons d’implémenter une structure de pile, nous allons en
examiner quelques-unes.

La plus simple consiste à utiliser les nombreuses similarités entre les listes et les piles.
On définit donc une pile comme un objet mutable contenant une liste (qui recueillera
les éléments contenus dans la pile). On peut donc créer les trois fonctions élémentaires,
create, push et pop, de la façon suivante 4 :

# type 'a t = { mutable contenu : 'a list };;

# let create () = { contenu = [] };;

# let push elem pile = pile.contenu <- elem :: pile.contenu;;

# exception Empty;;

# let pop pile =
match pile.contenu with

| t :: q -> pile.contenu <- q; t
| [] -> raise Empty;;

4. On ne s’encombre pas ici avec top et is_empty pour lesquelles nous avons vu qu’il était possible de les
définir à partir de push et pop.

Plutôt qu’un contenu mutable, on pourrait tout aussi bien définir le contenu comme
une référence vers une liste :

# type 'a t = { contenu : 'a list ref };;

# let create () = { contenu = ref [] };;

# let push elem pile = pile.contenu := elem :: !(pile.contenu);;

# exception Empty;;

# let pop pile =
match !(pile.contenu) with
| t :: q -> pile.contenu := q; t
| [] -> raise Empty;;

Puisque les ajouts en tête de liste, l’extraction de la tête et de la queue d’une liste, et la
mutation sont des opérations qui sont réalisées en temps constant, chacune de ces trois
fonctions a une complexité en O(1), c’est-à-dire qu’elles ne dépendent pas du nombre
d’éléments dans la pile.

Ces deux approches sont très similaires, y compris en terme de rapidité à l’exécution. Il
s’agit donc essentiellement ici de préférences de style de programmation de la personne
écrivant le code.

Si une liste Caml est une structure de données particulièrement adaptée pour créer une
structure de pile, car leurs fonctionnements sont similaires, ce n’est pas la seule solution
que l’on puisse envisager.

On pourrait, par exemple, utiliser un tableau ('a Array) pour contenir les données 5.
La difficulté est qu’un tableau a une taille fixe, et il est hors de question, pour d’évidentes
raisons d’efficacité, de créer un nouveau tableau à chaque ajout ou chaque extraction.

L’idée consiste donc à créer un tableau d’une certaine taille 6, et de mémoriser le nombre
d’éléments présents dans la pile, car le tableau ne nous renseigne pas sur ce point. On
supposera les éléments de la pile « tassés » dans sur la « gauche » du tableau (c’est-à-dire
que l’élément d’indice 0 correspondra à l’élément le plus profond de la pile).

Il sera nécessaire de prévoir un remplacement du tableau par un tableau plus grand

5. Comme on le verra, cette approche va conduire à une solution plus complexe en terme d’implémentation,
des concessions (certes modérées) en terme d’efficacité et un léger gaspillage de mémoire. On est en droit de se
demander si cela présente un intérêt. En fait, les listes « dispersent » leurs éléments partout dans la mémoire au
lieu de les garder dans une même zone, comme pour un tableau, ce qui a des conséquences sur la gestion de
la mémoire, voire de performances (liées à l’utilisation du cache). On n’entrera pas dans les détails, mais cette
solution utilisant un tableau présente des avantages qui ne semblent pas évident au premier abord.

6. Lors de l’ajout du premier élément, car avant cet ajout, on ne sait pas de quels types les objets seront.
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lorsque celui-ci n’est plus assez grand pour contenir les données 7, ce qui complique
quelque peu l’écriture de la fonction push.

# type 'a t = { mutable taille : int; mutable contenu : 'a array };;

# let create () = { taille = 0; contenu = [| |] };;

# let push elem pile =
match pile.taille with

| _ when Array.length pile.contenu = 0 ->
(* La première insertion crée le tableau *)
pile.contenu <- Array.make 4 elem;
pile.taille <- 1

| n when n < Array.length pile.contenu ->
(* S'il reste de la place, on ajoute l'élément *)
pile.contenu.(n) <- elem;
pile.taille <- n+1

| n -> (* S'il n'y a plus de place, on crée un nouveau tableau
et on y recopie le contenu de l'ancien *)

let n_contenu = Array.make (2*n) elem
in for i = 0 to n-1 do
n_contenu.(i) <- pile.contenu.(i)

done;
pile.contenu <- n_contenu; (* n_contenu.(n) *)
pile.taille <- n+1;; (* contient déjà elem ! *)

# exception Empty;;

# let pop pile =
if pile.taille = 0 then raise Empty;

pile.taille <- pile.taille - 1;
pile.contenu.(pile.taille);;

La taille du tableau est ici doublée à chaque agrandissement, pour conserver, en moyenne,
une complexité en O(1) lors de l’ajout d’un élément 8.

7. On pourrait également envisager de le remplacer par un tableau plus petit s’il contient beaucoup moins de
données que sa capacité, afin d’économiser de la mémoire, mais on ne se souciera pas de ce problème ici.

8. Une fois de temps en temps, on aura effectivement à recopier toutes les données, donc un ajout en O (k),
k étant la taille du tableau. Mais si on a, lors d’un ajout, à recopier k éléments, on n’aura pas à agrandir le
tableau durant les k −1 ajouts suivants. Sans entrer trop dans les détails, le temps moyen d’un ajout est donc
(O(k)+ (k −1)O(1))/k = O(1).

2 Les files

2.1 Principe

Une pile est un conteneur qualifié de LIFO (pour Last In, First Out), ou bien dernier entré,
premier sorti, car les éléments sont extraits dans l’ordre inverse de leur insertion.

On peut définir un conteneur FIFO (pour pour First In, First Out) dans lequel les objets
ressortent du conteneur dans l’ordre dans lequel ils ont été introduits. De tels conteneurs
sont appelés files, ou parfois queues. On peut les assimiler à un tuyau, dans lequel on
introduit les éléments à une extrémité et on les extrait à l’extrémité opposée.

17

17

42

17 42

54

17 42 54

42 54

17

54

42

Comme dans une pile, on ignore le nombre d’éléments présents dans la file, et on ne
peut regarder qu’un seul élément, celui qui sera le prochain à sortir.
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2.2 Le module Queue

OCaml fournit un module Queue qui contient quelques fonctions permettant de mani-
puler une file. Ces fonctions sont 9 :

• Queue.create (unit -> 'a Queue.t), qui crée une nouvelle file ;
• Queue.add ('a -> 'a Queue.t -> unit), qui insère un élément dans une file ;
• Queue.take ('a Queue.t -> 'a), qui extrait un élément de la file (ou lève l’excep-

tion Empty lorsque la file est vide) ;
• Queue.peek ('a Queue.t -> 'a), qui fournit, sans le retirer, le prochain élément à

sortir de la file (ou lève l’exception Empty lorsque la file est vide) ;
• Queue.is_empty ('a Queue.t -> bool), qui indique si la file est vide ou non.

Il n’est pas possible ici de créer une fonction peek à partir de add et take : si on retire un
élément de la file, il est impossible de le remettre où on l’a pris sans extraire et remettre tous
les autres éléments ! En revanche, il est toujours possible de créer une fonction is_empty
si elle n’existait pas, grâce aux exceptions :

# let isEmpty queue =
try
let elem = peek queue in false

with
| Empty -> true;;

val isEmpty : 'a Queue.t -> bool = <fun>

2.3 Implémentation

Implémenter une file est un peu plus difficile que d’implémenter une pile. Il n’est plus
possible d’utiliser directement les listes OCaml car il faut pouvoir manipuler les deux
extrémités. On peut en revanche ressortir le type « liste chaînée » que l’on avait élaboré
précédemment (dans la représentation ci-dessous, le suivant d’un élément se situe à sa
gauche, pour correspondre à la l’illustration précédente des files) :

# type 'a cell = { valeur : 'a ; mutable suiv : 'a lst }
and 'a lst = Nil | Cell of 'a cell;;

Nilvaleur suiv valeur suiv valeur suiv

9. En fait, Queue.push, Queue.pop, Queue.top existent également, avec des comportements identiques à
Queue.add, Queue.take et Queue.peek. Il en existe également quelques autres fonctions dans le module Queue
sur lesquelles nous ne nous étendrons pas, qui s’écartent un peu de la structure théorique des files mais per-
mettent de simplifier l’écriture de certains algorithmes.

Une file peut alors être représentée par une telle liste chaînée, dont on mémorise les
deux extrémités, représentant l’entrée et la sortie de la file :

# type 'a t = { mutable entree : 'a lst ; mutable sortie : 'a lst };;

sortie

entree

Nilvaleur suiv valeur suiv valeur suiv

Une file vide est représentée par une liste chaînée vide, les deux extrémités pointant
alors vers une étiquette « Nil ») :

# let create () = { entree = Nil ; sortie = Nil };;

val create : unit -> 'a t = <fun>

Nil Nil

sortie

entree

Insérer un élément dans la file consiste à ajouter un nouvel élément à droite de la liste
chaînée.

Si la file est vide (entree et sortie désignent tous deux Nil), suite à l’ajout de l’élément,
entree et sortie désignent le seul élément de la file, tout juste inséré.

Si la file n’est pas vide, l’ajout dans la liste s’effectue après l’élément désigné par le
champ entree de notre file, qui n’avait pour l’instant pas de de suivant. Cet élément doit
être modifié de sorte que son champ suiv désigne dorénavant l’élément nouvellement
introduit :

# let add elem queue =
let c = Cell { valeur = elem ; suiv = Nil }
in match queue.entree with

| Nil -> queue.entree <- c;
queue.sortie <- c

| Cell d -> queue.entree <- c;
d.suiv <- c;;

val add : 'a -> 'a t -> unit = <fun>
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Retirer un élément dans la file consiste à retirer élément à gauche de la liste chaînée. S’il
n’y avait aucun élément (la sortie désignant Nil), il nous faut lever une exception Empty.
Dans le cas contraire, le champ Sortie de notre file devra pointer vers l’élément suivant
celui qui vient d’être extrait (qui peut être Nil).

# exception Empty;;

# let take queue = match queue.sortie with
| Nil -> raise Empty
| Cell c -> queue.sortie <- c.suiv;

if c.suiv = Nil then queue.entree <- Nil;
c.valeur;;

val take : 'a t -> 'a = <fun>

Enfin, le prochain élément à sortir est celui à gauche de la liste chaînée :

# let peek queue = match queue.sortie with
| Nil -> raise Empty
| Cell c -> c.valeur;;

val peek : 'a t -> 'a = <fun>

Une autre solution utilise un tableau 10 11 ('a array), ainsi que deux indices : celui de la
case où ranger le prochain élément introduit, et celui de la case du prochain élément à
sortir. Le contenu de la file est situé entre ces deux cases.

# type 'a t = { mutable contenu : 'a array ;
mutable entree : int ;
mutable sortie : int };;

17 42 54contenu

sortie

entree

3

6

10. Mutable, car il sera nécessaire de faire varier sa taille en fonction des besoins, en particulier l’agrandir s’il
n’est plus assez grand.

11. Cette fois encore, l’implémentation est plus complexe, et il semble n’y avoir que des inconvénients, mais
une étude plus poussée permettrait de voir que cette alternative présente, comme pour les piles implémentées
avec des tableaux, des avantages en terme d’utilisation de la mémoire.

Initialement, puisque l’on ne connaît pas le type des éléments qui seront introduit dans
la file, on est forcé, comme pour les listes, de créer un tableau vide 12.

# let create () = { contenu = [| |] ; entree = 0; sortie = 0 };;

val create : unit -> 'a t = <fun>

L’ajout se fait en plaçant l’élément dans la case désignée par l’indice entree. Lorsque l’on
dépasse la fin du tableau, on reprend au début 13. Si c’est le tout premier élément introduit
dans la file (le tableau a encore une taille nulle), on en profite pour créer le tableau. Si,
après l’insertion, le tableau est plein (ce que l’on détecte lorsque entree désigne la même
case que sortie), on crée un tableau plus grand dans lequel on recopie les données 14 :

# let add elem queue =
let taille = Array.length queue.contenu in

if taille = 0 then (* Insertion du premier élément, *)
begin (* on crée un premier tableau non vide *)
queue.contenu <- Array.make 4 elem;
queue.entree <- 1

end
else

begin
queue.contenu.(queue.entree) <- elem;
queue.entree <- (queue.entree + 1) mod taille;
if queue.sortie = queue.entree then (* Si le tableau est *)

begin (* plein, on crée un *)
let n_tab = Array.make (* nouveau tableau deux *)

(taille*2) elem in (* fois plus grand dans *)
for i = 0 to taille-1 do (* lequel on va *)

n_tab.(i) <- (* recopier les données *)
queue.contenu.((queue.sortie + i) mod taille)

done;
queue.contenu <- n_tab;
queue.entree <- taille;
queue.sortie <- 0

end
end;;

val add : 'a -> 'a t -> unit = <fun>

12. Les valeurs de entree et sortie n’ont ici pas d’importance.
13. On parle parfois de tableau circulaire, comme si l’on avait collé l’extrémité droite à l’extrémité gauche.
14. Les données sont recopiées à partir du début du nouveau tableau, par simplicité.
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L’extraction des éléments de la file est bien plus simple :

# exception Empty;;

# let take queue =
if queue.entree = queue.sortie then raise Empty;
let res = queue.qontenu.(queue.sortie) in
queue.sortie <- (queue.sortie+1) mod (Array.length queue.contenu);
res;;

val take : 'a t -> 'a = <fun>

3 Les files de priorité

3.1 Principe

Les files de priorité sont des conteneurs similaires aux files « normales » à ceci près qu’à
chaque élément est associé une priorité, c’est-à-dire une valeur appartenant à un ensemble
ordonné (généralement des entiers). L’ordre d’extraction des éléments ne dépend alors
plus de l’ordre d’insertion, mais de la priorité des éléments : c’est l’élément de plus haute
priorité qui est extrait en premier. Cela donne par exemple :

17
11

17
11

42
37

42
37

17
11

54
22

42
37

54
22

17
11

54
22

17
11

42
37

17
11

54
22

Les files de priorités permettent souvent d’altérer la priorité d’un élément dans la file, ce
qui provoque une réorganisation des éléments dans la file (ils restent en permanence triés
par ordre de priorité décroissante).

3.2 Implémentation

Il n’existe pas d’outil directement utilisable en OCaml pour manipuler une file de prio-
rité 15. Par ailleurs, l’implémentation d’une file de priorité est plus complexe. On en propose
ici une implémentation élémentaire, à titre d’illustration, mais une solution plus efficace
sera étudiée en seconde année.

Les fonctions à implémenter sont, comme pour une file, create, add, peek et take
(is_empty pouvant, comme précédemment, être écrit à partir de peek). On choisit ici de
représenter la file par une liste de couples, contenant un entier (la priorité) et un élément
de type 'a (le type des éléments dans la file).

# type 'a t = { mutable contenu : (int * 'a) list };;

# let create () = { contenu = [] };;

val create : unit -> 'a t = <fun>

Le début de la liste correspondra à la sortie de la file de priorité. Cela permettra d’accéder
au prochain élément à sortir en O (1) :

# let peek queue =
match queue.contenu with

| (_,elem) :: q -> elem
| [] -> raise Empty;;

val peek : 'a t -> 'a = <fun>

15. On trouve cependant de nombreuses bibliothèques prêtes à l’usage proposant de tels conteneurs.
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Même chose pour l’extraire :

# let take queue =
match queue.contenu with
| (_,elem) :: q -> queue.contenu <- q; elem
| [] -> raise Empty;;

val take : 'a t -> 'a = <fun>

L’ajout est plus délicat, car il faut placer l’élément à la bonne position dans la liste. Pour
ce faire, on utilise une fonction auxiliaire insert qui va aller insérer dans la file le couple
(priorité, élément) au bon endroit :

# let add priority elem queue =
let rec insert = function
| [] -> [ (priority,elem) ]
| t::q when priority >= fst t (* Placé en tête si la priorité *)
-> (priority,elem)::t::q (* est plus grande que l'élément *)

(* présentement en tête de liste *)
| t::q -> t::(insert q) (* Sinon, on essaie plus loin *)

in queue.contenu <- insert queue.contenu;;

val add : int -> 'a -> 'a t -> unit = <fun>

On remarque ici que l’ajout est en O (n), car si l’élément doit se retrouver à l’extrémité
droite de la file, il est nécessaire de parcourir toute la liste pour le placer.

Nous verrons l’an prochain une meilleure solution pour l’implémentation, permettant
d’avoir toutes les opérations en temps logarithmique (O

(
log(n)

)
).

4 Quelques exemples d’utilisation

4.1 Vérification du parenthésage

Supposons que l’on ait une chaîne contenant expression incluant des parenthèses, des
crochets et des accolades. On souhaite vérifier que ces éléments soient bien équilibrés,
c’est-à-dire que l’on trouve bien une parenthèse fermante à la suite d’une parenthèse
ouvrante, et ainsi de suite 16.

Par exemple, "a+[b-c*{(d/e+f)-[(g+h(i))]-k/{l+(m/n)}]+o(p)-q]+r}/s]"

16. Ces règles sont à la base des langages de Dyck qui seront étudiés en seconde année.

On cherche donc à écrire une fonction de signature string -> bool ignorant tous les
caractères qui ne sont pas des délimiteurs, et vérifiant le bon équilibrage de ces derniers.
On souhaite par ailleurs avoir une complexité linéaire vis-à-vis de la longueur de la chaîne
de caractères.

Les piles simplifient fort heureusement grandement ce type de vérification :

# let verifie ch =

val verifie : string -> bool = <fun>

4.2 Parcours hiérarchique d’un arbre

Dans le chapitre précédent, nous avions défini un arbre binaire strict par exemple de la
sorte :

type 'a arbre = Feuille of 'a | Noeud of 'a * 'a arbre * 'a arbre

Nous avons vu que les parcours en profondeur s’écrivaient très simplement avec des fonc-
tions récursives, mais nous avions laissé pour plus tard l’implémentation d’un parcours en
largeur, ou hiérarchique, dans lequel on explore l’arbre « génération par génération ». On
s’intéressera d’abord à la racine de l’arbre, puis à ses fils, puis aux fils de ses fils, etc. Ce
parcours est rendu possible grâce aux files 17.

17. On travaille ici sur des arbres binaires stricts, mais l’idée sous-jacente s’étend de façon immédiate à des
arbres quelconques.
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Par exemple, on peut écrire une fonction affichant les entiers contenus dans un arbre
d’entiers dans un ordre hiérarchique :

# let affiche_hierarchique arbre =

val affiche_hierarchique : int arbre -> unit = <fun>

5 Les dictionnaires

5.1 Introduction

Dans le chapitre précédent, nous avons brièvement étudié le problème de la gestion d’un
annuaire. La solution proposée, une liste de couples (nom, numéro), présentait l’avantage
de la simplicité, mais elle n’est guère efficace.

En effet, la recherche d’un numéro, connaissant le nom d’une personne, nécessite dans
le pire des cas de parcourir l’intégralité de la liste. La consultation de l’annuaire est donc,
formellement, en O(n) où n correspond à la taille de l’annuaire.

On pourrait envisager, comme dans un véritable annuaire papier, de conserver les noms
par ordre alphabétique. La méthode de recherche dichotomique 18 permet de réduire le
temps de recherche en O(log(n)), mais elle suppose que l’on puisse accéder en un temps
en O(1) à un quelconque élément de la liste dont on connaît la position.

Or, en OCaml, les listes ne permettent pas d’accéder aux éléments en O(1). Il faut donc

18. Méthode étudiée en tronc commun, mais sur laquelle nous reviendrons ultérieurement.

se retourner vers des tableaux 19 ('a array). Outre les éventuelles difficultés posées par la
taille fixe des tableaux 20, le problème viendra de l’ajout ou de la suppression d’un élément :
dans un tableau trié, cela impose de déplacer tous les éléments suivant l’élément ajouté
ou retiré, ce qui donne une complexité en O(n) pour l’ajout ou la suppression.

Il existe en fait une structure de données bien plus adaptée à cet usage, les dictionnaires.

5.2 Principe

Un dictionnaire, ou table d’association, est une structure de données qui associe des clés
à des valeurs. Clés et valeurs peuvent être des objets de n’importe quel type (qui seront
désignés par 'a et 'b dans la suite). On peut donc représenter un dictionnaire par un
ensemble de couples (clé, valeur) où toutes les clés sont distinctes 21.

Cela convient donc tout à fait pour un annuaire, par exemple un annuaire d’entreprise,
dans lequel le nom de chaque employé est associé à son numéro de poste. Un employé
n’apparaît qu’une seule fois 22, mais certains employés peuvent partager un même poste.

La table d’association correspondante ressemblera par exemple à cela :

Clés (type 'a) Valeurs (type 'b)

"Durand"

"Dupont"

"Martin"

4281

1234

où les noms des employés ('a ≡ string) font office de clés tandis que les numéros de
postes ('b ≡ int ou string) sont les valeurs qui leurs sont associées.

Dans un dictionnaire, il doit être aisé 23 de vérifier l’existence d’une clé, d’obtenir la
valeur associée à une clé, et d’ajouter (ou de retirer) une clé (et sa valeur associée). Une
telle structure de données permet de faire beaucoup de choses très efficacement dans les
algorithmes 24.

19. Les « listes » en Python sont en fait bien plus proches de tableaux, à ceci près qu’il est possible de les
redimensionner.

20. Difficultés que l’on a évoquées précédemment lorsque l’on a voulu implémenter une pile avec un tableau.
21. Dans le cas de clés mutables, distinctes pour l’égalité, pas pour l’identité, ce qui on le comprend peut

occasionner des difficultés.
22. On supposera qu’il existe un moyen de différencier les éventuels homonymes.
23. Notamment en terme de rapidité pour exécuter ces opérations. Nous verrons qu’elles sont toutes O (1) en

moyenne dans le cas d’une implémentation normale d’un dictionnaire.
24. Et, pour une raison obscure, est très peu utilisée dans le cadre des concours. Il vaut très probablement

mieux, d’ailleurs, éviter de l’utiliser sauf si le sujet vous y autorise explicitement.
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5.3 Le module Hashtbl

Le module Hashtbl de la bibliothèque standard fournit un ensemble de fonctions per-
mettant de manipuler des dictionnaires.

Un dictionnaire dont les clés sont de type 'a et les valeurs associées de type 'b aura pour
type ('_a, '_b) Hashtbl.t.

Le module fournit :

• une fonction Hashtbl.create de type 25 int -> ('a, 'b) Hashtbl.t qui prend
en argument un entier 26 et retourne un dictionnaire vide;

• une fonction Hashtbl.add de type ('a, 'b) Hashtbl.t -> 'a -> 'b -> unit
qui prend en argument un dictionnaire, une clé et une valeur, et ajoute dans le
dictionnaire le couple (clé, valeur) correspondant 27 ;

• une fonction Hashtbl.mem de type ('a, 'b) Hashtbl.t -> 'a -> bool qui prend
en argument un dictionnaire et une clé, et retourne un booléen indiquant si la clé est
présente dans le dictionnaire ;

• une fonction Hashtbl.find de type ('a, 'b) Hashtbl.t -> 'a -> 'b qui prend
en argument un dictionnaire et une clé, et retourne la valeur associée à cette clé, ou
lève l’exception Not_found si la clé n’est pas présente dans le dictionnaire ;

• une fonction Hashtbl.remove de type ('a, 'b) Hashtbl.t -> 'a -> unit qui
prend en argument un dictionnaire et une clé, et retire le couple (clé, valeur) corres-
pondant du dictionnaire s’il existe (et ne fait rien si la clé n’est pas présente) ;

• une fonction Hashtbl.clear de type ('a, 'b) Hashtbl.t -> unit qui prend en
argument un dictionnaire et supprime tous les couples (clé, valeur) qu’il contient 28.

On remarquera qu’il est possible, avec un dictionnaire, de trouver une valeur connaissant
la clé, mais pas de retrouver aisément une clé connaissant une valeur. Plusieurs raisons à
cela, la principale tenant à la façon dont les dictionnaires sont implémentés. Mais aussi,
nous n’avons pas imposé l’unicité des valeurs (et de fait, dans l’exemple précédent, deux
clés conduisent à la même valeur), aussi la recherche en sens inverse serait, en l’état,
ambiguë 29.

25. Les curieux qui iraient vérifier le type trouveront une signature un peu plus curieuse, car la fonction accepte
un paramètre booléen facultatif supplémentaire, que nous passerons sous silence ici par souci de simplicité.

26. Qui détermine la taille initiale de la table, la documentation recommandant de choisir une valeur de
l’ordre du nombre d’éléments qui seront rangés dans la table ; nous reviendrons sur ce point en étudiant
l’implémentation des dictionnaires.

27. En fait, si la clé est déjà présente, la nouvelle valeur « cache » la valeur précédemment associée à la clé,
un appel à Hashtbl.remove fait réapparaitre le couple précédent. Il existe une fonction Hashtbl.replace qui
remplace la valeur associé à la clé (et crée un nouveau couple (clé, valeur) si la clé n’était pas présente).

28. En conservant la zone mémoire utilisée pour le stockage en mémoire du dictionnaire, dont la taille a pu
croître avec le temps. Une fonction Hashtbl.reset permet, outre de vider le contenu, de réduire la mémoire
utilisée à celle utilisée lors de la création du dictionnaire.

29. Dans l’hypothèse d’unicité des valeurs, on peut assez facilement d’obtenir une structure de données
utilisable dans les deux sens, en maintenant à jour deux dictionnaires, un dans chaque sens !

5.4 Utilisation

L’utilisation du module hashtbl est simple. On crée d’abord un dictionnaire :

# let annuaire = Hashtbl.create 997;;
val annuaire : ('_a, '_b) Hashtbl.t = <abstr>

On remarquera que le type des associations est ('_a, '_b). C’est le signe que l’intro-
duction du premier couple (clé, valeur) dans la table fixera de manière définitive les types
des clés et des valeurs dans le dictionnaire.

Puis on ajoute les couples (clés, valeur) avec la fonction add :

# Hashtbl.add annuaire "Durand" 8241;;
- : unit = ()

On peut vérifier que l’instruction précédente a bien fixé les types des clés et valeurs (les
premières comme des chaînes de caractères, les secondes comme des entiers) :

# annuaire;;
- : (string, int) Hashtbl.t = <abstr>

D’autres appels à la fonction add permettent de compléter le dictionnaire en ajoutant
d’autres couples (clé, valeur) :

# Hashtbl.add annuaire "Dupont" 1029;;
- : unit = ()

# Hashtbl.add annuaire "Martin" 4281;;
- : unit = ()

On peut ensuite librement interroger le dictionnaire :

# Hashtbl.mem annuaire "Durand";;
- : bool = true

# Hashtbl.mem annuaire "Lechêne";;
- : bool = false

Et d’obtenir les valeurs associées aux clés :

# Hashtbl.find annuaire "Durand";;
- : int = 8241
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Lorsque l’on tente d’accéder à la valeur associée à une clé qui n’est pas présente dans le
dictionnaire, le module lève une exception Not_found indiquant qu’il n’a pu trouver la clé
demandée :

# Hashtbl.find annuaire "Lechêne";;
Exception: Not_found.

On peut supprimer un couple (clé, valeur) avec la commande Hashtbl.remove :

# Hashtbl.find annuaire "Dupont";;
- : int = 1029

# Hashtbl.remove annuaire "Dupont";;
- : unit = ()

# Hashtbl.find annuaire "Dupont";;
Exception: Not_found.

On peut enfin vérifier que la fonction Hashtbl.add, lorsque la clé existe déjà, a pour
effet de remplacer 30 l’ancien couple (clé, valeur) par le nouveau couple :

# Hashtbl.find annuaire "Durand";;
- : int = 8241

# Hashtbl.add annuaire "Durand" 6809;;
- : unit = ()

# Hashtbl.find annuaire "Durand";;
- : int = 6809

5.5 Implémentation naïve d’un dictionnaire

Bien que nous ayons déjà suggéré que cette solution serait inefficace, il est possible
d’envisager, dans un premier temps, d’implémenter un tel dictionnaire en maintenant une
liste des couples (clé, valeur).

30. En fait, c’est un peu plus compliqué que cela... Comme on l’a dit, la nouvelle valeur « cache » l’ancienne,
mais les anciennes valeurs ne sont pas supprimées pour autant. On peut retrouver toutes les valeurs grâce à
la commande Hashtbl.find_all qui retourne une liste de valeurs, rangées par ancienneté décroissante. La
fonction Hashtbl.remove a pour effet de retirer la valeur présentement associée à une clé, ce faisant rétablissant
la valeur précédente. Si le but est de supprimer la clé du dictionnaire, il faudra donc effectuer autant d’appels
Hashtbl.remove que l’on a effectué d’appels à Hashtbl.add, ou bien faire précéder les Hashtbl.add visant à
modifier une clé d’un Hashtbl.remove à chaque fois !

Pour ce faire, on commence par définir notre dictionnaire comme un type contenant
une liste (nécessairement mutable) de couples 'a * 'b :

# type ('a, 'b) t = { mutable table : ('a * 'b) list };;

La création d’un nouveau dictionnaire revenant simplement à créer un objet de ce type,
associé à une liste vide :

# let create () = { table = [] };;

val create : unit -> ('a, 'b) t = <fun>

La recherche d’une clé dans la table peut être effectuée récursivement :

# let find dict cle =
let rec auxFind = function

| [] -> raise Not_found
| (k, v)::q when k=cle -> v
| _::q -> auxFind q

in auxFind dict.table;;

val find : ('a, 'b) t -> 'a -> 'b = <fun>

La fonction mem s’écrirait exactement de la même manière, mais retournerait true plutôt
que v et false plutôt que de lever l’exception Not_found.

L’ajout d’un couple (ou la modification de la valeur associée à une clé déjà présente 31 32)
est également implémentée via une fonction récursive :

# let add dict cle valeur =
let rec auxAdd = function
| [] -> [ (cle, valeur) ]
| (k, v)::q when k=cle -> (cle, valeur)::q
| t::q -> t::(auxAdd q)

in dict.table <- (auxAdd dict.table);;

val add : ('a, 'b) t -> 'a -> 'b -> unit = <fun>

31. On supposera qu’une clé ne peut apparaître qu’une seule fois dans la liste, ce qui sera bien le cas ici si l’on
n’utilise que la fonction Add pour ajouter des couples (clé, valeur). La présente implémentation diffère quelque
peu du vrai module hashtbl en ce sens que l’on n’a pas conservé la valeur antérieure associée à une clé, si elle
existait, pour la rétablir lors d’un appel ultérieur à la fonction remove.

32. En fait, pour obtenir le même comportement que le dictionnaire fourni par Caml, il suffirait simplement
d’ajouter le couple (clé, valeur) en tête de liste, sans se préoccuper de sa présence ou non de la clé plus loin dans
la liste.
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La suppression d’une clé pourrait quant à elle s’écrire :

# let remove dict cle =
let rec auxRemove = function
| [] -> []
| (k, _)::q when k=cle -> q
| t::q -> t::(auxRemove q)

in dict.table <- (auxRemove dict.table);;

val remove : ('a, 'b) t -> 'a -> unit = <fun>

Avec cette approche,

• la recherche d’une clé (ou de la valeur associée) est en temps linéaire O(n) en fonction
du nombre n de couples (clé, valeur) ;

• l’ajout d’une clé pourrait être en O(1), mais comme il nous faut vérifier que la clé
n’existe pas encore, on a un ajout en O(n) également ;

• enfin, la suppression d’une clé serait également en O(n).

On pourrait envisager améliorer les choses en utilisant un tableau que l’on maintiendrait
trié selon l’ordre des clés 33, ce qui permettrait de retrouver une clé et la valeur qui lui
est associée en O

(
log(n)

)
par une recherche dichotomique. Mais dans ce cas, l’ajout d’un

couple est en O (n) car l’insertion du nouveau couple nécessite de décaler les éléments
dans le tableau 34.

On peut en fait obtenir bien mieux que cela. Une solution possible est d’utiliser, en lieu
et place de tableaux, des arbres, dits arbres binaires de recherche, pour implémenter cette
idée de recherche dichotomique dans un ensemble trié.

5.6 Arbres binaires de recherche

Structure d’un arbre binaire de recherche

Définition. On considère un ensemble E muni d’un ordre total ⪯.
Un arbre binaire étiqueté par E est qualifié d’arbre binaire de recherche lorsqu’il est soit
vide, soit de la forme

(
Fg , x,Fd

)
et tel que

• Fg et Fd sont des arbres binaires de recherche ;
• tout étiquette y d’un nœud de Fg vérifie y ⪯ x ;
• tout étiquette y d’un nœud de Fd vérifie y ⪰ x.

33. En supposant qu’il existe un ordre total sur l’ensemble des clés.
34. On n’a pas ce problème avec une liste, mais il n’est pas possible d’implémenter une recherche dichotomique

en temps logarithmique dans une liste chaînée, car il est impossible d’accéder au milieu de la liste en O (1) !

L’arbre binaire ci-dessous a par exemple la structure d’un arbre binaire de recherche
pour la comparaison usuelle É :

25

11 29

9 14 42

4 10 22 37 54

1 17 23

Recherche d’un élément

Nous nous servirons principalement des arbres de recherche pour représenter un en-
semble, les étiquettes (généralement supposées toutes distinctes) représentant les élé-
ments de l’ensemble. Dans la suite, nous dirons qu’un élément de E se trouve « dans
l’arbre » s’il est égal à une des étiquettes de l’arbre.

Pour tester la présence d’un élément y dans un arbre binaire de recherche, on peut écrire
une fonction récursive, utilisant les propriétés de tels arbres :

• l’élément n’est pas présent dans un arbre vide ;
• pour un arbre

(
Fg , x,Fd

)
, si l’élément x ̸= y , alors il suffit de chercher y dans le

sous-arbre Fg si y ⪯ x et dans le sous-arbre Fd dans le cas contraire.

La recherche de la présence d’un élément dans l’arbre a, de façon évidente, une com-
plexité majorée par la hauteur de l’arbre, soit en O (h( A)). On ne vérifie donc qu’un nombre
d’éléments qui peut être très petit devant |A| (de l’ordre de log(|A|) si, à chaque étape de
l’algorithme, les tailles du sous-arbre gauche et du sous-arbre droit sont similaires), ce qui
fait tout l’intérêt de la structure d’arbre binaire de recherche par rapport à un conteneur
linéaire tel qu’une liste.

La traduction en OCaml est immédiate ;

# let rec contient y = function
| Nil -> false
| Noeud (_, x, _) when y=x -> true
| Noeud (fg, x, _) when y<x -> contient y fg
| Noeud (_, _, fd) -> contient y fd;;

val contient : 'a -> 'a arbre -> bool = <fun>
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Plus petit/plus grand élément

De part la structure d’un arbre de recherche, pour trouver le plus petit élément pour la
relation ⪯, il suffit de suivre la branche de gauche tant que l’on n’atteind pas « Nil » (notons
que le nœud que l’on recherche n’est pas nécessairement une feuille, mais simplement n’a
pas de fils gauche). Cette recherche aura une complexité temporelle en O (h( A)).

Un arbre vide n’ayant pas de plus petit élément, il paraît naturel de provoquer une erreur
si l’on tente de trouver un plus petit élément dans un tel arbre. Beaucoup de fonctions ne
pouvant retourner un résultat pour un arbre vide, il est utile de créer une exception :

# exception Empty

La fonction retournant le plus petit élément s’écrira donc ainsi :

# let rec plusPetit = function
| Nil -> raise Empty
| Noeud (Nil, x, _) -> x
| Noeud (fg, _, _) -> plusPetit fg;;

val plusPetit : 'a arbre -> 'a = <fun>

Alternativement, on pourrait, de façon équivalente, systématiquement chercher le plus
petit (plus grand) élément dans le fils gauche (droit) et sans chercher à savoir s’il est vide,
et si cette recherche lève l’exception Empty, retourner l’étiquette de la racine :

# let rec plusPetit = function
| Nil -> raise Empty
| Noeud (fg, x, _) -> try plusPetit fg with Empty -> x;;

val plusPetit : 'a arbre -> 'a = <fun>

Pour obtenir le plus grand élément, on parcourt de même la branche la plus à droite.

Prédécesseur et successeur

Définition. On considère un ensemble E muni d’un ordre total ⪯, et un arbre binaire
de recherche A étiqueté par E . Soit un élément y ∈ E .
Le prédécesseur de y dans l’arbre A est la plus grande (pour ⪯) des étiquettes a de A
strictement inférieure à y . Le successeur de y dans l’arbre A est la plus petite (pour ⪯)
des étiquettes de A strictement supérieure à y .

a. Les termes prédécesseurs et successeurs peuvent également désigner le nœud portant l’étiquette
correspondante (il n’y a alors unicité que si les étiquettes sont toutes distinctes).

Pour l’arbre proposé en exemple, le prédécesseur de 31 est 29, le successeur de 31 est 37.

Pour trouver le prédécesseur d’un élément y dans un arbre binaire de recherche A, on
utilisera une démarche récursive :

• si A est l’arbre vide, un tel prédécesseur n’existe pas ;
• si A est de la forme

(
Fg , x,Fd

)
avec y ⪯ x, on recherche le prédécesseur dans le

sous-arbre gauche Fg ;
• sinon, A est de la forme

(
Fg , x,Fd

)
avec x ≺ y , et deux cas peuvent se présenter :

soit on trouve un prédécesseur dans le sous-arbre droit (qui sera plus grand que
l’étiquette située à la racine, et le prédécesseur recherché), soit il n’y a pas de prédé-
cesseur dans l’arbre droit, et c’est l’étiquette de la racine qui convient.

Pour traduire cet algorithme en OCaml, on utilisera l’exception Not_found pour indiquer
qu’il n’y a aucun prédécesseur dans un arbre binaire de recherche fourni en paramètre,
ce qui nous permettra, avec un try ... with, d’implémenter le test du dernier cas. Cela
donne donc (la fonction retournant le successeur s’écrirait de façon similaire) :

# let rec prec y = function
| Nil -> raise Not_found
| Noeud(fg, x, _) when y <= x -> prec y fg
| Noeud(_, x, fd) -> try prec y fd

with Not_found -> x;;

val prec : 'a -> 'a arbre -> 'a = <fun>

Cette fois encore, la fonction a une complexité en O (h( A)).

Parcours infixe d’un ABR

Le parcours en profondeur infixe d’un arbre binaire de recherche présente un intérêt
particulier. En effet, un tel parcours traite les descendants gauches d’un nœud avant celui-
ci, et ses descendants droits après. Or, les descendants gauches du nœud portent tous des
étiquettes plus petites pour ⪯ que l’étiquette du nœud considéré, et les descendants droits
des étiquettes plus grandes. Les nœuds sont donc traités dans un ordre croissant pour ⪯.

Cela nous donne un moyen simple de vérifier qu’un arbre binaire respecte les conditions
d’un arbre binaire de recherche : il faut et suffit que les étiquettes, dans un parcours en
profondeur infixe, soient rangées par ordre croissant.

On peut par exemple écrire une fonction qui visite les nœuds dans un parcours en pro-
fondeur infixe, et vérifie que chaque étiquette est plus grande que la précédente considérée.
On peut conserver la dernière étiquette dans une référence.

La première étiquette visitée est un cas un peu particulier, car il est inutile de la comparer
à quoi que ce soit. Pour la traiter comme les autres, toutefois, on initialisera la référence
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avec la première étiquette, à savoir celle retournée par la fonction plusPetit 35.

# let verifie arbre =
let dernier = ref (plusPetit arbre) in
let rec dfs = function
| Nil -> true
| Noeud (fg, x, fd) -> (dfs fg) &&
(if !dernier <= x then (dernier := x; true) else false) &&
(dfs fd)

in dfs arbre;;

val verifie : 'a arbre -> bool = <fun>

Partition

Une partition d’un arbre binaire de recherche par rapport à un élément y consiste en
deux arbres binaires de recherche 36 contenant les nœuds de l’arbre original, l’un n’ayant
que des éléments x vérifiant x ⪯ y , l’autre des éléments vérifiant y ⪯ x.

On peut obtenir une partition de façon récursive en écrivant :

# let rec partition y = function
| Nil -> Nil, Nil
| Noeud (fg, x, fd) when x <= y

-> let a1, a2 = partition y fd in Noeud (fg, x, a1), a2
| Noeud (fg, x, fd)
-> let a1, a2 = partition y fg in a1, Noeud (a2, x, fd);;

val partition : 'a -> 'a arbre -> 'a arbre * 'a arbre = <fun>

La fonction précédente, appliquée à l’arbre utilisé en exemple pour une valeur y = 18,
donne les deux arbres binaires de recherche suivants :

11 25

9 14 22 29

4 10 17 23 42

1 37 54

35. Si l’arbre n’est pas un arbre binaire de recherche, l’élément retourné par la fonction n’est pas nécessairement
le plus petit, mais cela reste l’étiquette la plus à gauche, la première visitée par le parcours en profondeur.

36. Même si toutes les étiquettes sont distinctes, il n’y a pas unicité pour la structure des deux arbres.

La structure des arbres binaires de recherche permet d’obtenir cette partition, une fois
encore, avec une complexité temporelle O (h( A)). Notons par ailleurs que la hauteur des
deux arbres obtenus est inférieure ou égale à la hauteur de l’arbre original.

Démonstration. Cette propriété est vraie pour un arbre vide.
Supposons cette propriété vraie pour tout arbre de hauteur inférieure ou égale à h ;
pour un arbre de hauteur h + 1, on a h

(
Fd

) É h et h
(

Fg
) É h, donc les arbres a1 et

a2 issus de la partition de Fg ou Fd auront également une hauteur majorée par h, et
l’arbre Noeud(fg, x, a1) (respectivement l’arbre Noeud(a2, f, fd)) aura une hauteur
majorée par h +1, donc la propriété est vraie pour un arbre de hauteur h +1.

Insertion (adjonction) d’un élément dans un ABR

Il existe deux stratégies pour insérer un élément dans un arbre binaire de recherche : au
niveau de la racine, et au niveau des feuilles.

Profitons de l’occasion pour rappeler que l’on travaille avec des arbres immutables, donc
une fonction insérant un élément dans un arbre ne modifie pas cet arbre, mais crée un
nouvel arbre contenant l’élément inséré 37.

Insertion au niveau des feuilles Pour insérer un élément y dans un arbre binaire de
recherche au niveau des feuilles, on procède de façon récursive :

• insérer un élément y dans un arbre vide consiste simplement à retourner une feuille
(soit Noeud(Nil, y, Nil)) ;

• insérer un élément y dans un arbre
(
Fg , x,Fd

)
lorsque y ⪯ x revient à insérer l’élément

y dans le sous-arbre gauche 38 : on crée donc un nouvel arbre, dont la racine porte
toujours l’étiquette x, avec le même sous-arbre droit Fd , et avec pour sous-arbre
gauche le résultat de l’insertion de y dans Fg ;

• sinon, lorsque x ≺ y , il en est de même, mais avec une insertion de y dans le sous-
arbre droit.

En OCaml, cela donne :

# let rec insere y = function
| Nil -> Noeud(Nil, y, Nil)
| Noeud(fg, x, fd) when y <= x -> Noeud(insere y fg, x, fd)
| Noeud(fg, x, fd) -> Noeud(fg, x, insere y fd);;

val insere : 'a -> 'a arbre -> 'a arbre = <fun>

La complexité de cette insertion est O (h( A)). Dans le pire des cas, l’ajout d’une feuille
supplémentaire augmente de 1 la hauteur de l’arbre.

37. Attention, la plupart du temps, les deux arbres ne sont pas indépendants, et peuvent avoir des branches en
commun. Mais tant que l’on reste dans le cadre d’objets immutables, cela n’a pas d’importance.

38. Dans le cas où y = x, on pourrait tout aussi bien l’insérer dans le sous-arbre droit.
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L’insertion d’un nœud avec une étiquette 18 dans l’arbre d’exemple donnerait :

25

11 29

9 14 42

4 10 22 37 54

1 17 23

18

Insertion à la racine L’insertion d’un élément y au niveau de la racine est un peu plus
délicate. En effet, cela a des conséquences plus importantes sur le forme de l’arbre. En
effet, si l’élément inséré y et l’étiquette de la racine x vérifient par exemple y ⪯ x, une
partie des nœuds de la branche gauche de l’arbre vont devoir migrer dans la branche droite.
Cependant, nous avons déjà écrit une fonction capable de partitionner un arbre binaire de
recherche en deux arbres binaires de recherche, selon que les étiquettes soient inférieures
ou supérieures à un élément y . On peut donc s’en servir pour écrire notre insertion :

# let insere y arbre =
let fg, fd = partition y arbre in Noeud(fg, y, fd);;

val insere : 'a -> 'a arbre -> 'a arbre = <fun>

L’insertion d’un nœud portant l’étiquette 18 au niveau de la racine de notre exemple
d’arbre binaire de recherche conduirait au résultat suivant :

18

11 25

9 14 22 29

4 10 17 23 42

1 37 54

La complexité de cette insertion est celle de partition, O (h( A)). Dans le pire des cas,
l’insertion augmente également de 1 la hauteur de l’arbre.

Suppression d’un élément dans un ABR

La suppression d’un nœud portant une étiquette donnée dans un arbre binaire de
recherche (ou le nœud de profondeur minimale vérifiant cette propriété si plusieurs
nœuds pourraient convenir) est une opération un peu plus délicate car, comme dans le
cas d’une insertion au niveau de la racine, elle peut nécessiter de nombreux changements
dans la structure de l’arbre.

Pour préparer cette tâche de suppression, nous allons tout d’abord écrire quelques fonc-
tions auxiliaires qui nous seront utiles. Tout d’abord, une fonction permettant d’extraire la
plus petite étiquette, et de retourner cette étiquette, et un arbre binaire de recherche où le
nœud portant cette étiquette a été retiré :

# let rec retireMin = function
| Nil -> raise Empty
| Noeud(Nil, x, fd) -> x, fd
| Noeud(fg, x, fd) -> let minimum, arbre = retireMin fg

in minimum, Noeud(arbre, x, fd);;

val retireMin : 'a arbre -> 'a * 'a arbre = <fun>

Cette fonction permet d’écrire une fonction fusionnant deux arbres binaires de recherche
tels que tout éléments x et x ′ issus respectivement du premier et du second arbre vérifient
x ⪯ x ′, en créant un arbre avec pour racine le plus petit élément du second arbre, pour fils
gauche le premier arbre, et pour fils droit le second arbre privé de son plus petit élément 39 :

# let rec fusion a1 = function
| Nil -> a1
| a2 -> let minimum, arbre = retireMin a2

in Noeud(a1, minimum, arbre);;

val fusion : 'a arbre -> 'a arbre -> 'a arbre = <fun>

On peut enfin écrire notre fonction supprimant un élément y d’un arbre binaire de
recherche :

• il est impossible de le supprimer d’un arbre vide;
• si l’étiquette de la racine est l’élément à supprimer, alors il suffit de retourner la

fusion des deux fils ;
• si l’étiquette x de la racine vérifie y ≺ x, alors on cherche à supprimer y dans le

sous-arbre gauche ;
• si, au contraire x ≺ y , on s’intéresse au sous-arbre droit.

39. On aurait évidemment pu tout aussi bien prendre pour racine le plus grand élément du premier arbre, et
pour fils le reliquat du premier arbre et l’intégralité du second.
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Cela donne, en OCaml :

# let rec supprime y = function
| Nil -> raise Not_found
| Noeud(fg, x, fd) when y = x -> fusion fg fd
| Noeud(fg, x, fd) when y < x -> Noeud(supprime y fg, x, fd)
| Noeud(fg, x, fd) -> Noeud(fg, x, supprime y fd);;

val supprime : 'a -> 'a arbre -> 'a arbre = <fun>

Un peu de complexité

Parmi toutes les opérations que l’on effectue sur un arbre de recherche, lesquelles étant
implémentées par des algorithmes récursifs, on peut distinguer deux situations :

• les algorithmes dont la récursion se fait uniquement sur l’un des deux fils (gauche ou
droit), tels que la recherche d’un élément, et dont la complexité temporelle sera la
plupart du temps 40 en O (h( A)) ;

• les algorithmes dont la récursion porte (ou peut porter) sur les deux fils, tels qu’un
parcours de l’arbre, et dont la complexité temporelle atteindra souvent 41 O (|A|).

Rappelons, pour un arbre binaire, l’encadrement
⌊

log2

( |A|)⌋ É h( A) É |A|−1. Pour
des raisons d’efficacité pour les algorithmes dont la complexité est en O (h( A)), il est
préférable que la hauteur h( A) d’un arbre soit aussi proche que possible de la limite
inférieure,

⌊
log2

( |A|)⌋.

Ainsi, pour un même ensemble de six éléments, on préférera pour des raisons d’efficacité
travailler avec l’arbre binaire de recherche de gauche plutôt que celui de droite (que l’on
qualifie parfois d’« arbre-peigne » :

22

9 25

4 11 37

37

25

22

11

9

4

40. Tant que les opérations sur chaque nœud sont en O (1).
41. Toujours pour des opérations en O (1) sur les nœuds.

Pour s’assurer que l’on ne travaille qu’avec des arbres binaires de recherche dont la
forme est « favorable », on peut ajouter des contraites sur les arbres que l’on manipule.

Définition. On dira travailler avec un ensemble AB d’arbres binaires équilibrés si, pour
tout arbre binaire A ∈AB, sa hauteur vérifie la relation h( A) = O

(
log(|A|)).

Lorsque l’on travaille sur un ensemble AB d’arbres binaires équilibrés, les nombreuses
fonctions que nous avons présentées, de complexité temporelle O (h( A)), ont en fait un
coût logarithmique O

(
log(|A|)), ce qui les rend très efficaces. il existe de nombreuses

familles d’arbres binaires de recherches équilibrés (AVL, arbres rouges-noirs, etc.), et il
est possible d’appliquer toutes les opérations précédentes sur de tels arbres. Leur étude
dépasse le cadre de ce cours.

Utilisation pour implémenter un dictionnaire

Pour implémenter un dictionnaire à l’aide d’un arbre binaire de recherche, on place
au niveau des nœuds des étiquettes contenant des couples (clé, valeur). Dans ce but, on
définit un type :

# type ('a,'b) enregistrement = { cle: 'a; vlr: 'b };;

On suppose disposer ici d’une relation d’ordre total ⪯ sur l’ensemble des clés car, dans
l’arbre binaire de recherche, les éléments seront ordonnées en fonction de leur clé.

Les opérations courantes sur un dictionnaire sont :
• la recherche d’une clé donnée dans le dictionnaire, et le renvoi de la valeur associée

(on lèvera une exception Not_found si la clé n’est pas présente) ;
• la modification d’une valeur associée à une clé ;
• l’ajout d’un nouveau couple (clé, valeur) ;
• la suppression d’une clé et de la valeur qui lui est associée.

Toutes ces opérations peuvent aisément être réalisées à partir des fonctions que l’on a
déjà écrites sur les arbres binaires de recherche, au prix de quelques changements dûs au
typage des étiquettes.

La recherche peut être écrite ainsi :

# let rec recherche k = function
| Nil -> raise Not_found
| Noeud(_, x, _) when k=x.cle -> x.vlr
| Noeud(fg, x, _) when k<x.cle -> recherche k fg
| Noeud(_, _, fd) -> recherche k fd;;

val recherche : 'a -> ('a, 'b) enregistrement arbre -> 'b = <fun>
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L’ajout ou la modification (si la clé existe, on modifie la valeur, et si elle n’existe pas, on
crée un nouveau nœud dans l’arbre étiqueté par le couple (clé, valeur)) s’écrira 42 :

# let rec modifie k v = function
| Nil -> Noeud(Nil, { cle=k; vlr=v }, Nil)
| Noeud(fg, x, fd) when k=x.cle -> Noeud(fg, { cle=k; vlr=v }, fd)
| Noeud(fg, x, fd) when k<x.cle -> Noeud(modifie k v fg, x, fd)
| Noeud(fg, x, fd) -> Noeud(fg, x, modifie k v fd);;

val modifie : 'a -> 'b -> ('a, 'b) enregistrement arbre
-> ('a, 'b) enregistrement arbre = <fun>

La suppression d’une clé reste l’opération la plus délicate, mais les changements sont
très limités par rapport aux fonctions précédemment étudiées :

# let rec supprime y arbre =
let rec retireMin = function
| Nil -> raise Empty
| Noeud(Nil, x, fd) -> x, fd
| Noeud(fg, x, fd) -> let minimum, arbre = retireMin fg

in minimum, Noeud(arbre, x, fd)

and fusion a1 = function
| Nil -> a1
| a2 -> let minimum, arbre = retireMin a2

in Noeud(a1, minimum, arbre)

in match arbre with
| Nil -> raise Not_found
| Noeud(fg, x, fd) when y=x.cle -> fusion fg fd
| Noeud(fg, x, fd) when y<x.cle -> Noeud(supprime y fg, x, fd)
| Noeud(fg, x, fd) -> Noeud(fg, x, supprime y fd);;

val supprime : 'a -> ('a, 'b) enregistrement arbre
-> ('a, 'b) enregistrement arbre = <fun>

Bien évidemment, ces opérations sont en O (h( A)) et non en O (1) comme c’est le cas
pour une implémentation à l’aide d’une table de hachage. Toutefois, l’implémentation
nécessite généralement moins de mémoire (il n’est pas nécessaire d’avoir une table avec
de nombreuses cases vides) et plus simple (pas besoin non plus d’augmenter la taille de la
table de hachage lorsque les collisions deviennent nombreuses).

Par ailleurs, si l’on parvient à garder un arbre raisonnablement équilibré, la hauteur

42. On a choisi un ajout au niveau des feuilles, on pourrait envisager un ajout au niveau de la racine.

de l’arbre sera de l’ordre de log(n) pour un dictionnaire contenant n éléments, et les
opérations courantes seront donc en O

(
log(n)

)
. La différence entre O (1) et O

(
log(n)

)
n’est

pas suffisamment marquée pour qu’elle emporte un choix d’implémentation. Rappelons
en effet que pour n = 106 par exemple, log2

(
106

)≃ 20. Les opérations sur un dictionnaire à
un million de clés ne nécessiteront donc généralement, tant que l’arbre reste équilibré,
pas plus de deux douzaines de comparaisons, ce qui reste très efficace.

On y gagne également la possibilité d’implémenter d’autres opérations, telles que la
recherche efficace d’un successeur/prédécesseur dans l’ensemble des clés.

Les arbres binaires de recherche sont donc une excellente façon d’implémenter un
dictionnaire, à condition toutefois que l’on y inclue un mécanisme garantissant que l’arbre
binaire de recherche reste équilibré (arbres AVL, arbres rouge-noir, etc.)

5.7 Tables de hachage

Principe

Une autre solution très efficace pour implémenter un dictionnaire consiste à utiliser une
table de hachage, qui permettra, sous certaines conditions, d’obtenir une complexité en
temps en O(1) pour les opérations de recherche, d’ajout, de modification et de suppression
d’une clé.

Le principe est relativement simple : la structure qui nous permettait d’accéder directe-
ment aux données en temps constant est celle d’un tableau. On crée donc un tableau de
m cases 43, mais il nous faut un moyen d’associer une quelconque clé à un entier entre 0 et
m −1, correspondant à l’une des cases. Cela se fait en deux temps :

• on utilise une fonction de hachage qui transforme un objet de n’importe quel type en
un entier (la fonction Hashtbl.hash du module hashtbl, de signature 'a -> int,
peut par exemple être utilisée à cet effet) ;

• on restreint le résultat dans l’intervale �0 . . m −1� par exemple en utilisant le reste
d’une division entière.

Par exemple, si l’on souhaite ranger le couple (Durand, 8241) dans un tableau conte-
nant 8 cases, on commence par déterminer dans quelle case il convient de le ranger, en
utilisant une fonction de hachage :

# Hashtbl.hash "Durand";;
- : int = 679905404

# Hashtbl.hash "Durand" mod 8;;
- : int = 4

43. On appelle généralement ces cases « buckets », ou « seaux » en français.
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Puis le couple (Durand, 8241) est alors glissé dans la case correspondant au résultat
fourni par la fonction de hachage ramené, par un modulo, au nombre de cases du tableau,
et de même pour les autres couples (clé, valeur) :

"Durand"⇔ 4

"Dupont"⇔ 6

"Martin"⇔ 3
("Durand", 4281)

("Dupont", 1234)

("Martin", 1234)

Dès lors, tout est plus rapide : pour savoir si une clé est présente dans le dictionnaire, et
pour récupérer sa valeur, on utilise la fonction de hachage pour déterminer dans quelle
case la clé devrait se trouver, et on n’a alors qu’une seule et unique case à examiner. Il en
est de même pour les autres opérations.

Il est important de conserver dans les cases non seulement les valeurs, mais également
les clés. En effet, le nombre de clés possibles excède très largement le nombre m de cases
dans le tableau. Par exemple, dans un tableau avec 8 cases, "Dubois" conduirait également
à la case 3, et une recherche avec la clé "Dubois" ne doit pas retourner la valeur associée
à la clé "Martin" simplement parce que les deux clés correspondent à la même case!
Une fois la case identifiée, il faut donc vérifier la clé. Bien évidemment, si le dictionnaire
doit contenir à la fois les clés "Martin" et "Dubois", on voit venir un problème, nous
reviendrons sur ce point un peu plus loin.

Idéalement, la fonction de hachage devrait pouvoir :
• fournir un résultat rapidement (pour que l’on puisse accéder rapidement aux élé-

ments du dictionnaire) ;
• donner une distribution aussi uniforme que possible sur l’ensemble �0 . . N−1� des

valeurs retournées.

La seconde condition vise à limiter les collisions, c’est-à-dire les clés qui se retrouvent
dans une même case du tableau, telles que "Martin" et "Dubois". En effet, même avec
un nombre de cases m supérieur au nombre n de clés, on risque de se retrouver avec
plusieurs clés dans la même case. On peut montrer que, quelle que soit la fonction de
hachage choisie, la probabilité d’avoir une collision est d’au moins

1− m!

mn(m −n)!

ce qui donne, pour un tableau de 1000 cases, une probabilité de plus de 71% de chances
d’avoir au moins une collision avec seulement 50 clés 44.

44. Situation connue sous le nom de « paradoxe des anniversaires », puisque cette même formule indique que,

Ces collisions devront ensuite être prises en compte. Une solution 45 consiste à dire que
chaque case peut contenir une liste de couples (clé, valeur).

Tant que le nombre de clés dans la table d’association est, au plus, de l’ordre du nombre
de cases, et sous réserve que la fonction de hachage ait des propriétés satisfaisantes en
terme de répartition, on aura au plus quelques couples dans chacune des cases, et l’accès
aux clés et aux valeurs pourra rester en un temps constant. Tout se passe comme si le
dictionnaire contenait un grand nombre de dictionnaires distincts, un pour chacune des
valeurs de l’intervalle �0 . . m −1�.

Une implémentation possible

Un type définissant un dictionnaire implémenté avec une table de hachage serait donc,
par exemple :

# type ('a, 'b) t = { table : ('a * 'b) list array };;

On construit un nouveau dictionnaire en créant un tableau à n cases (n étant passé en
argument), contenant des listes vides destinées à recueillir des couples (clé, valeur) :

# let create n = { table = Array.make n [] };;
val create : int -> ('a, 'b) t = <fun>

La recherche 46 de la valeur associée à une clé se passe comme précédemment (en parti-
culier, il s’agit de la même fonction auxilliaire auxFind), mais dans une liste, normalement
courte, prise dans la case du tableau désignée par le résultat hsh du hachage de la clé :

# let find dict cle =
let rec auxFind = function

| [] -> raise Not_found
| (k, v)::q when k=cle -> v
| _::q -> auxFind q

in let hsh = Hashtbl.hash cle mod (Array.length dict.table)
in auxFind dict.table.(hsh);;

val find : ('a, 'b) t -> 'a -> 'b = <fun>

à supposer que les naissances soient réparties uniformément sur l’année, il y a presque 95% de chances d’avoir
deux personnes nées le même jour de l’année dans une classe de 45 étudiants.

45. La plus courante, même si ce n’est pas la plus efficace en terme de mémoire. Il en existe de nombreuses
autres, par exemple la solution consistant, lorsque la case désignée est déjà occupée par une autre clé, à utiliser
itérativement une autre fonction de hachage jusqu’à trouver une case libre. On peut montrer que sous certaines
conditions, sur la fonction de hachage et la taille du tableau par rapport au nombre de clés, cette approche
présente des avantages.

46. La fonction mem, déterminant simplement la présence d’une clé dans la table, s’écrirait de la même manière.
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Même chose pour la fonction add, la liste de couples (clé, valeur) potentiellement allon-
gée étant replacée dans la case idoine :

# let add dict cle valeur =
let rec auxAdd = function
| [] -> [ (cle, valeur) ]
| (k, v)::q when k=cle -> (cle, valeur)::q
| t::q -> t::(auxAdd q)

in let hsh = Hashtbl.hash cle mod (Array.length dict.table)
in dict.table.(hsh) <- (auxAdd dict.table.(hsh));;

val add : ('a, 'b) t -> 'a -> 'b -> unit = <fun>

Et enfin, la fonction remove :

# let remove dict cle =
let rec auxRemove = function
| [] -> []
| (k, _)::q when k=cle -> q
| t::q -> t::(auxRemove q)

in let hsh = Hashtbl.hash cle mod (Array.length dict.table)
in dict.table.(hsh) <- (auxRemove dict.table.(hsh));;

val remove : ('a, 'b) t -> 'a -> unit = <fun>

Le lecteur ne manquera pas de remarquer que nous avons utilisé la fonction
Hashtbl.hash plutôt que de la reprogrammer. En effet, cette fonction est particulière-
ment difficile à écrire, tant d’un point de vue théorique (pour qu’elle respecte les critères
précédemment énoncés) que pratique (il n’existe pas de manière simple d’écrire une
fonction traitant un argument de type quelconque).

Il reste une chose à envisager : lorsque le nombre de couples devient trop important
dans certaines cases, il nous faut agrandir le tableau. Pour ce faire, il doit être possible de
remplacer le tableau, aussi nous faut-il modifier notre type dictionnaire par exemple par

# type ('a, 'b) t = { mutable table : ('a * 'b) list array };;

Ensuite, lorsque le tableau devient trop petit (trop de collisions, c’est-à-dire des listes
qui deviennent longues dans certaines cases), on crée un tableau plus grand, et on hashe
à nouveau toutes les clés pour replacer les couples dans les bonnes cases. Plutôt que de
doubler la taille m de la table de hachage, on peut être tenté de choisir comme nouvelle
taille 2m +1. En effet, si la nouvelle taille était un multiple de la précédente, vu la façon
dont on calcule le numéro de la case, on séparerait le contenu de chaque case isolément
(un élément dans la case 3 d’une table de taille 8 ne pourrait se retrouver que dans les

cases 3 et 11 d’une table de taille 16), plutôt que de procéder à une nouvelle répartition
globale des couples dans la table (un élément dans la case 3 d’une table de taille 8 peut se
retrouver dans n’importe quelle case d’une table de taille 17). On peut ainsi parfois obtenir
un meilleur résultat 47.

On peut par exemple utiliser la fonction suivante :

let extend dict =
let m = Array.length dict.table in (* Ancienne taille m *)

let p = 2*n+1 in (* Nouvelle taille p = 2m+1 *)
let n_table = Array.make p [] in (* Nouveau table de hachage *)

let addkv = function (k, v)
-> let hsh = Hashtbl.hash k mod p

in n_table.(hsh) <- (k, v)::n_table.(hsh)
in for i=0 to n-1 do (* On la remplit avec tous *)
List.iter addkv dict.table.(i) (* les couples (clé,valeur) *)

done; (* dans l'ancienne table *)
dict.table <- n_table;; (* Elle remplace la table précédente *)

val extend : ('a, 'b) t -> unit = <fun>

Le coût de cette inflation est O (m +n) où m est la taille de la table et n le nombre de
clés (coût de la création du tableau, puis coût de son remplissage). Cependant, on en vient
à augmenter la taille du tableau en général lorsque les listes dans les cases s’allongent,
ce qui arrivent seulement lorsque n n’est plus petit devant m, aussi la fonction est O (n)
en pratique. Cela coûte cher, mais l’opération ne sera plus effectuée avant un nombre
d’ajouts de l’ordre de n puisque la taille de la table est doublée, donc en moyenne, le coût
de l’augmentation de la table de hachage est O (1) lors d’un ajout d’un couple (clé, valeur),
ce qui en fait une opération raisonnable.

Il reste à détecter le besoin d’agrandir la table, ce qui peut se faire sur le nombre de
couples dans la table (facile à comptabiliser) ou bien à partir de statistiques (que l’on peut
mettre à jour sans surcout notable lors des ajouts et recherches). La fonction Hashtbl.stat
permet justement d’obtenir des statistiques sur le remplissage de la table de hachage d’un
dictionnalre.

Pour conclure, signalons que les clés devraient être des objets immutables 48 : si l’on mute
une clé, son hachage va changer, et on cherchera possiblement la clé dans la mauvaise
case du tableau ! Par exemple, avec notre implémentation du dictionnaire 49 :

47. Il peut aussi être moins bon, parfois... Cet aspect est à contrebalancer avec l’utilisation d’un m qui soit
toujours une puissance de deux pour faciliter le calcul du reste de la division entière par m.

48. C’est une des raisons pour lesquelles les chaînes sont immutables en Python, qui utilise considérablement
dans son fonctionnement des dictionnaires.

49. Mais il en serait de même avec l’implémentation du module Hashtbl.
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# let dico = create 8;;
val dico : ('_a, '_b) t = {table = [|[]; []; []; []; []; []; []; []|]}

# let ch = "Hello";;
val ch : string = "Hello"

# add dico ch 42;; (* On ajoute le couple ("Hello", 42) *)
- : unit = ()

# Hashtbl.hash ch mod 8;; (* Il a été rangé dans la case 5 *)
- : int = 5

# find dico ch;; (* On retrouve le couple associé à ch *)
- : int = 42

# ch.[0] <- 'h';; (* Mutons à présent la chaîne ch *)
- : unit = ()

# find dico ch;; (* On ne retrouve plus la clé *)
Exception: Not_found.

# dico;; (* Pourtant, elle demeure dans dico *)
- : (string, int) t =

{table = [|[]; []; []; []; []; [("hello", 42)]; []; []|]}

# Hashtbl.hash ch mod 8;; (* Mais find la cherche à présent *)
- : int = 0 (* dans la case (hash ch) = 0 *)

Bref, une mutation de la clé nécessiterait de vérifier si le couple (clé, valeur) correspon-
dant ne doit pas être déplacé dans la table de hachage!

� Exercices

Ex. 4.1 – Piles d’assiettes

On considère un ensemble d’assiettes bleues et rouges, numérotées empilées dans un
ordre quelconque. On souhaite réordonner les assiettes, de sorte que les bleues se situent
en-dessous des rouges, mais sans changer la position relatives des assiettes bleues entre
elles, ou des assiettes rouges entre elles.

Les assiettes sont des objets de type

# type assiette = Bleue of int | Rouge of int;;

Proposer une fonction de signature assiette Stack.t -> unit prenant en argument
une pile d’assiette et les réordonnant selon les critères proposés.

Ex. 4.2 – Doubles files

Il est parfois utile d’avoir des files à double sens : il s’agit de files particulières dans
lesquelles on peut ajouter des éléments à la fois à l’extrémité gauche et à l’extrémité droite,
et de même les retirer de chaque côté.

Pour représenter une telle double file, on peut utiliser des listes doublement chaînées,
avec pour chaque élément dans la liste une indication de celui qui se trouve à gauche et à
droite dans la file. En voici une représentation :

Nil
Gauche Droite

Valeur

Gauche Droite

Valeur

Gauche Droite

Valeur
Nil

Le type d’une telle liste doublement chaînée serait par exemple :

# type 'a cell = { valeur : 'a ;
mutable gauche : 'a dclist ;
mutable droite : 'a dclist }

and 'a dclist = Nil | Cell of 'a cell;;

Et celui de la double file :

# type 'a dequeue = { mutable extrGauche : 'a dclist;
mutable extrDroite : 'a dclist; }

Une double file vide, comme une file vide, voit ses deux extrémités pointer vers Nil.

Proposer des fonctions addLeft, addRight, takeLeft et takeRight qui ajoute et retirent
des éléments dans la double file respectivement à gauche et à droite.
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Ex. 4.3 – Nombres de Hamming

On rappelle que les nombres de Hamming sont les entiers strictement positifs dont la
décomposition en facteurs premiers ne font intervenir que des 2, des 3 et des 5. Les vingt
premiers nombres de Hamming sont donc

1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,25,27,30,32,36, . . .

On souhaite écrire une fonction affichant les n premiers nombres de Hamming. Une
méthode testant les entiers un à un avec la fonction écrite dans un exercice précédent
serait inefficace (le 10000e entier de Hamming est 288325195312500000 !)

On se propose donc d’utiliser la méthode suivante :
• on crée trois files f2, f3 et f5, et on insère 1 dans chacune des files ;
• puis, n fois de suite :

— on détermine les entiers n2, n3 et n5 en tête de chacune des files ;
— on détermine et affiche n = min(n2,n3,n5) ;
— on retire n des files f2, f3 et f5 s’il s’y trouve en tête ;
— on insère 2n dans f2, 3n dans f3 et 5n dans f5.

1. Implémenter la fonction précédemment décrite.

2. Justifier qu’elle affiche bien les n plus petits nombres de Hamming par ordre croissant.

3. Une limite de la fonction précédente est que certains entiers peuvent se retrouver
dans plusieurs files. Améliorer la fonction pour que cela n’arrive pas.

Ex. 4.4 – PGCD

On suppose que l’on dispose d’une fonction pgcd de signature int -> int -> int
retournant le PGCD de deux entiers positifs passés en arguments.

On dispose d’une pile d’entiers non vide, et on souhaite calculer le PGCD de tous les
entiers dans la pile.

On se propose d’utiliser l’algorithme suivant :
• tant que la pile contient au moins deux éléments 50, on en extrait deux entiers, on

calcule leur PGCD, et on empile le résultat ;
• lorsque la pile ne contient plus qu’un élément, on le retourne.

1. Justifier que l’algorithme termine et retourne le résultat attendu.

2. Implémenter une fonction de signature int Stack.t -> int implémentant cet
algorithme (lequel a pour effet de vider la pile passée en argument en plus de retourner le
PGCD des entiers qu’elle contient).

3. Cet algorithme fonctionne-t-il également avec une file?

50. On rappelle que l’on ne connait PAS la taille de la pile, on peut seulement savoir si elle est vide ou non.

72



5Étude de la récursivité

1 Récursivité, terminaison, correction

1.1 Introduction

Une fonction récursive, en informatique 1 est une fonction qui, pour déterminer le
résultat associé à certains paramètres, fait appel à elle-même. Nous avons eu l’occasion
d’en croiser à plusieurs reprises déjà. Rappelons qu’il est nécessaire, en Caml, d’utiliser
le mot-clé rec pour signaler au compilateur que la fonction va apparaître dans sa propre
définition.

Par exemple, nous avons vu que la fonction factorielle, définie en mathématiques sur N

à valeur dans N par

Factorielle :

{
0 7−→ 1

n 7−→ n! = n × (n −1)!

peut naturellement être écrite en Caml par la fonction récursive

let rec fact = function
| 0 -> 1
| n -> n * fact (n-1);;

Dans ce chapitre, nous allons nous attacher, principalement, à montrer la correction et
la terminaison de fonctions récursives.

Montrer la correction d’une fonction consiste à prouver que, si la fonction retourne
un résultat, ce résultat est bien le résultat recherché. Par exemple que la fonction fact
précédente retourne bien la factorielle de son argument.

Montrer la terminaison d’une fonction récursive pour un ensemble de paramètres
consiste à prouver que la fonction retournera bien un résultat en un temps fini pour
n’importe lequel de ces paramètres. Par exemple, on cherchera à montrer que la fonction
Fact précédente retourne bien un résultat quel que soit l’entier positif qu’on lui fournit en
paramètre.

1. En mathématiques, le terme de « fonction récursive » a un autre sens, lié à sa calculabilité.

En effet, toute fonction ne retourne pas un résultat en un temps fini. Prenons par exemple
la fonction Foo retournant toujours 0, définie par

foo :


0 7−→ 0

n 7−→ 2× f
(⌈n

2

⌉)
que l’on traduit par

let rec foo = function
| 0 -> 0
| n -> 2 * foo ((n+1)/2);;

Cette fonction ne s’arrête jamais 2, car foo(1) = 2× foo(1), aussi est-il impossible de
calculer foo(1) (et par conséquent, il en est de même pour tout entier positif).

Cette fonction peut néanmoins être « correcte » dans l’acception que l’on en donne dans
ce cours (chaque fois qu’elle retourne un résultat, ce résultat est bien 0).

1.2 Lien entre terminaison et démonstration par récurrence

La preuve de la terminaison d’une fonction récursive est fortement liée aux démonstra-
tion par récurrence en mathématiques, même si dans ce dernier cas on a un raisonnement
davantage « constructif ».

Par exemple, pour démontrer par récurrence qu’un ensemble de propriétés notées P(n),
pour tout n ∈N, sont vraies, on montre généralement que la propriété est vraie pour n = 0
(initialisation), et que, pour tout n Ê 0, si elle est vraie pour n, alors elle est vraie également
pour n +1 (récursion).

Ce n’est pas la seule possibilité. On pourrait montrer par exemple :
• qu’elle est vraie pour n = 0 et n = 1, et que, pour tout n Ê 0, si elle est vraie pour n et

n +1, alors elle est vraie pour n +2 ;
• qu’elle est vraie pour n = 0, et que, pour tout n Ê 0, si elle est vraie pour tout k É n,

alors elle est vraie pour n +1 ;
• qu’elle est vraie pour n = 0 et n = 1, et que, pour tout n Ê 0, si elle est vraie pour n,

alors elle est vraie pour n +2 ;
• qu’elle est vraie pour n = 5, et que, pour tout n Ê 5, si elle est vraie pour n, alors elle

est vraie pour n +1, et également que, pour 1 É n É 5, si elle est vraie pour n, elle est
vraie pour n −1...

On remarque qu’il y a toujours deux éléments indispensables : une initialisation, et une
récurrence. Le point important est que l’on puisse atteindre n’importe quel n en partant
de l’initilisation et en utilisant les récurrences.

2. Ou plutôt, ne s’arrêtera que lorsque l’ordinateur se trouvera à court de mémoire.
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Par exemple, pour les deux derniers cas proposés, cela peut se comprendre aisément
avec un schéma :

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Sinon, il existe des valeurs de n pour lesquelles la propriété n’a pas été démontrée.

Il en est de même pour les fonctions récursives. Elles ont nécessairement deux compo-
santes, une terminaison (des paramètres pour lesquels la fonction n’a pas à faire appel à
elle-même) et une récursion.

Alors qu’une démonstration mathématique par récurrence suppose que l’on montre
que toutes les propriétés peuvent être déduites à partir de l’initialisation en utilisant la
récurrence, on cherchera à prouver que les appels récursifs finissent toujours par tomber
dans le cas terminal (ou un des cas terminaux), quel que soit le paramètre initial fourni à
la fonction.

1.3 Cas de la factorielle

Revenons sur le cas de la fonction factorielle. Il est assez simple de comprendre que
fact n retourne un résultat en effectuant n +1 appels à la fonction fact. Le calcul de
fact n exige le calcul de fact (n-1), et ainsi de suite, jusqu’à parvenir au calcul de fact 0
pour lequel on a un résultat sans qu’il soit nécessaire de faire un appel récursif.

Pour justifier ceci aisément, on peut simplement dire que les arguments des différents
appels successifs sont des entiers positifs, constituant une suite strictement décroissante.
Il ne peut y avoir de suite infinie strictement décroissante dans N, donc on peut être assuré
que la fonction terminera toujours.

Ce même argument ne fonctionne pas pour la fonction foo car on n’a pas toujours⌈ n
2

⌉ < n, donc les arguments des appels successifs ne forment pas nécessairement une
suite strictement décroissante dans N (et on a vu qu’effectivement, ce n’était pas le cas
pour n = 1).

Outre la terminaison de la fonction fact, on peut s’interroger sur sa correction. On peut,
pour cela, raisonner de façon similaire aux invariants de boucles. Pour un paramètre n Ê 1,
la fonction associe fact n à n * fact (n-1), ce qui est précisément la définition de la
factorielle. Si la fonction retourne un résultat (ce qu’elle fait puisqu’elle termine), il sera
correct, sous réserve que la multiplication ne déborde pas (ce qui arrive relativement vite
en Caml, dès n = 21, car Caml utilise des entiers signés sur 63 bits).

1.4 Un autre exemple, le PGCD

Prenons un autre exemple, le calcul du PGCD de deux entiers positifs, que l’on définirait
en Caml par la fonction

let rec pgcd a b = match a with
| 0 -> b
| _ -> pgcd (b mod a) a;;

Regardons la succession des appels qui sont effectués :

pgcd 42 24 -> pgcd 24 42 -> pgcd 18 24 -> pgcd 6 18 -> pgcd 0 6 -> 6

Comment justifier que la fonction termine toujours pour a et b positifs ? On peut remar-
quer que, lorsque b n’est pas nul, on a un appel récursif dont le premier paramètre est
b mod a. Or, pour b Ê 0 et a > 0, on a 0 b mod a < a !

Autrement dit, lors des appels successifs, le premier paramètre représente une suite
strictement décroissante dans N, donc finira toujours par atteindre 0 (et donc le cas de
terminaison), ce qui permettra de terminer la fonction.

Pour prouver la correction de la fonction, il suffit de justifier que pgcd a b est bien égal,
pour tout a et b positifs, à pgcd (b mod a) a, ce qui est le cas.

2 Aller un peu plus loin

2.1 Un autre exemple

Prenons un exemple qui a beaucoup fait cogiter de nombreux penseurs, et ce dès l’an-
tiquité, un des paradoxes de Héron. Achille était réputé pour être l’un des plus grands
athlètes de l’antiquité. Héron, dans une expérience de pensée, l’oppose à une tortue dans
une épreuve de course à pied.

La tortue n’étant pas bien rapide, Achille a la bonté de lui laisser cent mètres d’avance.
La question est de savoir si Achille rattrapera la tortue (et au bout de combien de temps),
ou si cette dernière restera indéfiniment en tête.

Bien évidemment, après un certain temps, Achille aura parcouru une distance de 100 m.
En supposant qu’il court à la vitesse de va = 10 m/s, il lui faudra 10 s. Cependant, pendant
ces dix secondes, la tortue aura elle aussi avancé, et se trouvera un peu plus loin, devançant
toujours Achille. En supposant que la tortue (très rapide) avance à une vitesse vt = 0,1 m/s,
honorable mais cent fois moindre (vt /va = 0.01), elle aura encore un mètre d’avance. Un
mètre qu’Achille comblera en un maigre dixième de seconde, mais la tortue avançant
toujours, elle est toujours en tête. Et ainsi de suite.
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En combien d’étapes Achille rattrapera-t-elle la tortue? Il en faut évidemment une
infinité, bien que l’on ne s’attend pas à une victoire de la tortue pour autant, ce qui en
faisait un paradoxe intéressant à étudier (qui se résoud en remarquant qu’une somme
infinie de temps de parcours peut très bien donner un résultat fini, ce qui n’étonnera guère
le lecteur).

Revenons à nos problèmes de récursivité. On peut écrire une fonction qui calcule le
temps nécessaire à Achille pour dépasser la tortue, lorsque l’on passe en paramètre l’avance
d de la tortue :

let rec temps = function
| d when d <= 0. -> 0.
| d -> d /. 10. +. temps (0.01 *. d);;

Pour le problème qui nous intéresse, on l’appellera avec temps 100.0.

Cette fonction récursive termine-t-elle quels que soient les arguments qui lui sont
fournis? Nous allons voir que la réponse est loin d’être simple.

Prenons le problème d’un point de vue mathématique : l’avance d de la tortue, tant
qu’elle est positive, est multipliée par vt /va = 0.01 à chaque appel. On a donc ici une suite
de réels positifs, décroissante. Seulement, d’un point de vue mathématique, on n’atteindra
jamais zéro 3, comme c’était le cas pour nos deux exemples précédents, même si la limite se
trouve bien être zéro. Il y a donc une différence fondamentale entre des suites strictement
décroissantes sur N et celles strictement décroissantes sur R+.

2.2 Formaliser le problème

Pour formaliser un peu les choses, considérons une fonction récursive f : E 7→ F, prenant
un « argument » x parmi un ensemble E d’arguments possibles 4, et retournant un résultat
dans F.

Parmi les éléments x ∈ E, il existe un sous-ensemble A d’arguments pour lesquels la
fonction retourne un résultat immédiatement. Pour les arguments de E \ A, la fonction
opère nombre fini d’appels récursifs 5.

Pour que le problème soit intéressant, A et E \ A ne sont pas vides (si E \ A est vide, la
fonction, non récursive, termine toujours, si A est vide, elle ne peut pas terminer).

3. Peut-être aurez-vous dans l’idée que le problème n’est pas si simple avec des flottants, et vous avez
parfaitement raison, nous y reviendrons un peu plus tard.

4. On prendra ici « argument » dans un sens très général, x pouvant être un simple entier, une liste, un
ensemble d’une demi-douzaine d’éléments de types variés, ou quelque entrée que ce soit que l’on puisse
imaginer à une fonction; ainsi f peut désigner n’importe quelle fonction.

5. Si le nombre d’appels récursifs est infini pour certaines valeurs du paramètre x, la question de la terminaison
est d’ores et déjà réglée !

Prenons un élément x0 de E \ A. Le calcul de f (x0) nécessite le calcul d’une ou plusieurs
expressions f (x1,i ). Certains des x1,i seront peut-être des éléments de A, mais d’autres
nécessiteront possiblement à leur tour le calcul de f (x2, j ), et ainsi de suite. Par exemple,
les appels récursifs peuvent se succéder comme dans le schéma ci-dessous :

E

A

x4

x3,2

x2,3

x2,4

x1,2

x2,2

x3,1

x0

x2,1

x1,1

Prouver qu’une fonction récursive termine toujours consiste à montrer qu’il n’y a pas,
dans cet ensemble d’appels récursifs, une séquence infinie d’appels n’aboutissant jamais
dans A (une véritable séquence infinie, ou bien un cycle, ce qui revient au même), et ce
quel que soit le point de départ x0 dans E. Bref, on se pose la question de savoir si « tous
les chemins mènent à A » !

Une des solutions pour parvenir à prouver la terminaison consiste à montrer qu’à chaque
étape, on se « rapproche » de A, et que la « longueur » du chemin menant à A, pour chacun
des éléments x diminue à chaque appel.

Cependant, le fait qu’on s’approche à chaque étape n’est pas suffisant : Achille ne rat-
trapera pas la tortue en un nombre fini d’étapes, même s’il s’en approche à chacune des
étapes.

2.3 Principe d’induction

Définition. Considérons un ensemble E , muni d’une relation d’ordre, notée É. Si A est
une partie non-vide de E , et a ∈A, on dit que

• a est un élément minimal de A lorsque, ∀x ∈A, x É a ⇒ x = a ;
• a est le plus petit élément de A lorsque, ∀x ∈A, a É x.

Dans une partie, il peut y avoir plusieurs éléments minimaux (lorsque l’ordre n’est
pas total), mais le plus petit élément, s’il existe, est nécessairement unique. De façon
évidente, s’il existe un plus petit élément, il est nécessairement aussi un élément minimal
(la réciproque n’étant vraie que pour un ordre total).
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Définition. (E ,É) est qualifié d’ensemble bien fondé lorsque toute partie non-vide de
E possède au moins un élément minimal. (E ,É) est qualidié d’ensemble bien ordonné
lorsque toute partie non-vide de E possède un plus petit élément. Bien entendu, un
ensemble bien ordonné est nécessairement bien fondé.

L’ensemble N muni de l’ordre usuel est bien ordonné et bien fondé. En revanche, R+
n’est ni bien ordonné, ni bien fondé : en effet, des sous-ensembles comme R+⋆, ou ]0,1],
n’ont ni élément minimal, ni plus petit élément. C’est cette différence qui est la clé.

Théorème 2 (Principe d’induction). Soit (E ,É) un ensemble bien fondé, M l’ensemble
de ses éléments minimaux. Si un prédicat P sur E vérifie

• pour tout x ∈M, P(x) est vrai ;
• pour tout x ∈ E \M, (∀y < x,P(y)) ⇒P(x),

alors P(x) est vrai pour tout x ∈ E .

Démonstration. On peut démontrer le principe d’induction en raisonnant par l’absurde,
en supposant qu’il existe un ensemble X d’éléments de E pour lesquels P(x) est faux. Cet
ensemble admet un élément minimal x0, qui est nécessairement un élément de E \M.
Seulement, tout y ∈ E vérifiant y < x0,P(y) est vérifié (puisque x0 est un élément minimal
de X), ce qui implique que P(x0) est vérifié, soit une contradiction avec l’hypothèse
initiale, prouvant le principe.

Le principe d’induction est une généralisation du principe de récurrence. Il va nous
permettre de vérifier que notre fonction récursive f : E 7→ F termine pour tout x ∈ E.

Théorème 3. Soit f une fonction récursive d’un ensemble E vers un ensemble F, et φ une
fonction de E vers un ensemble bien fondé (E ,É) telle que, pour tout x ∈ E,

• soit la fonction f retourne un résultat directement ;
• soit la fonction calcule le résultat en utilisant un nombre fini d’appels récursifs dont

les arguments yi vérifient tous φ(yi ) <φ(x).
La fonction f termine pour tous les éléments de E.

Démonstration. Il suffit d’utiliser le principe d’induction, en considérant pour tout e ∈ E
le prédictat P(e) « Pour tout argument x ∈ E vérifiant φ(x) = e, la fonction récursive f
termine ». Les propriétés de φ permettent de vérifier la seconde condition du principe
d’induction. Pour la première condition, il suffit de voir que les éléments x ∈ E pour
lesquels φ(x) est un élément minimal de E n’effectuent jamais aucun appel récursif a.
L’application du principe d’induction garantit donc bien que la fonction f termine bien
pour tout x ∈ E.

a. Car ils devraient utiliser des arguments y pour lesquels φ(y) <φ(x), ce qui est en contradiction avec le
fait que φ(x) est un élément minimal de E .

2.4 Exemples

Il n’est pas absolument nécessaire de maîtriser le formalisme précédent pour démontrer
la terminaison d’une fonction récursive.

On peut en effet justifier la terminaison d’une fonction en deux points :
• exhiber une suite strictement décroissante 6 construite à partir des paramètres ;
• justifier que cette suite ne peut être infinie (par exemple en remarquant que les

termes de la suite sont des éléments d’un ensemble bien fondé pour l’ordre consi-
déré 7).

Comme on l’a vu, le cas le plus simple est celui où on peut travailler avec des entiers
naturels et la relation d’ordre usuelle. Idéalement, les arguments sont des entiers naturels
et forment eux-même une suite strictement décroissante 8.

Par exemple, dans le cas de la fonction factorielle, N muni de l’ordre usuel est un
ensemble bien fondé, et lors de l’unique appel récursif, on passe d’un paramètre n à
un paramètre n-1 strictement inférieur. La fonction fact termine donc pour tout entier
naturel.

Pour la fonction calculant le PGCD,

let rec pgcd a b = match a with
| 0 -> b
| _ -> pgcd (b mod a) a;;

une solution consiste à considérer la fonction φ : N2 7→N qui au couple (a,b) associe a.

Comme on l’a montré tantôt, φ(a mod b, a) < φ(a,b), donc comme (N,É) est bien
fondé, cela suffit à prouver la terminaison de la fonction pgcd pour tout couple d’entiers
positifs.

Prenons de même la fonction comb calculant le coefficient binomial

(
n
k

)
définie par

let rec comb k n =
if k < 0 || k > n then 0 else
if k = 0 || k = n then 1 else
comb (k-1) (n-1) + comb k (n-1);;

et intéressons-nous à sa terminaison pour k et n entier naturels.

Cette fois-ci, pour calculer comb k n, on a deux appels récursifs, mais le second para-
mètre de ces deux appels est toujours strictement plus petit que n. En prenant la fonction

6. Pour un ordre quelconque, pas nécessairement l’ordre usuel.
7. Il est aisé demontrer que la non-existence de suite strictement décroissante dans un ensemble ordonné est

équivalente au caractère bien fondé de cet ensemble.
8. On prend alors pour fonction φ la fonction identité
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φ : N2 7→ N qui au couple (a,b) associe b, on peut justifier que la fonction précédente
termine pour tout couple d’entiers positifs (lorsque le paramètre n est nul, la fonction
termine bien quelle que soit la valeur du paramètre k).

La correction de la fonction précédente est également facile à justifier, puisque la récur-
sion est basée sur la relation (

n
k

)
=

(
n −1
k −1

)
+

(
n −1
k

)

Signalons cependant que, si la fonction précédente termine pour tout couple d’entiers
positifs, et donne un résultat correct, elle n’en est pas moins très maladroite.

En effet, le nombre d’appels devient rapidement prohibitif : le premier appel de la
fonction Comb provoque potentiellement deux appels, qui en provoquent à leur tour jusque
quatre, et ainsi de suite. Le temps de calcul devient rapidement déraisonnable, (quoique
nous verrons prochainement une façon d’y remédier en partie).

Ce n’est pas parce que l’on a réussi à justifier qu’une fonction termine et retourne le
résultat correct qu’elle sera utilisable en pratique. Encore faut-il qu’elle retourne le résultat
en un temps raisonnable, ce qui est un tout autre problème.

Dans l’exemple précédent, on peut aisément montrer par une récurrence que la fonction

est appelée, au total, 2

(
n
k

)
−1 fois, ce qui est vite gigantesque même pour des valeurs

assez modestes de k et n.

On préférera nettement cette version de la fonction comb (elle termine d’après un raison-
nement similaire au précédent), qui conduit au plus à k +1 appels de la fonction :

let rec comb k n =
if k < 0 || k > n then 0 else
if k = 0 || k = n then 1 else
Comb (k-1) (n-1) * n / k;;

2.5 Autres ordres utiles

Plutôt que de se ramener à des éléments de N, il est parfois plus simple de travailler
directement avec un ensemble E =Np avec p > 1. Pour ce faire, on dispose de plusieurs
ordres potentiellement utiles.

Ordre lexicographique N2, lorsqu’il est muni de l’ordre lexicographique ⪯ℓ (que l’on
définit par (a,b) ⪯ℓ (a′,b′) ⇔ a < a′ ou a = a′ etb É b′) est un ensemble bien ordonné (et
donc également bien fondé).

Par exemple, le graphe ci-dessous montre le couple (a,b) où a = 4 et b = 5 (le premier
élément du couple est placé en ordonnée), et l’ensemble des couples

(
a′,b′) qui sont

inférieurs à (a,b) pour l’ordre lexicographique ⪯ℓ :

(a,b)

Il est intéressant de remarquer ici qu’il existe une infinité d’éléments
(
a′,b′) ∈N2 stricte-

ment plus petits qu’un (a,b) donné. Et pourtant, il n’existe pas de suite infinie (ai ,bi )i∈N

dans N2 strictement décroissante pour ⪯ℓ !

Cela peut se comprendre en remarquant qu’à chaque itération, soit ai+1 < ai , soit
ai+1 = ai et bi+1 < bi diminue. Le premier cas ne peut pas arriver plus de a0 fois. Par
conséquent, s’il existait une suite infinie, le second cas devrait se succéder une infinité de
fois pour une valeur donnée de ai , ce qui n’est pas possible car on exhiberait une suite de
bi infinie strictement décroissante dans N !

L’ordre lexicographique peut aisément être étendu de N2 à Np pour p ∈N∗ quelconque.

Ordre produit De même, l’ensemble N2, muni de l’ordre produit ⪯× (que l’on défini par
(a,b) ⪯× (a′,b′) ⇔ a É a′ etb É b′), n’est pas bien ordonné (l’ordre n’est pas total) mais est
néanmoins bien fondé. Les éléments inférieurs à (a,b) sont représentés ci-dessous :

(a,b)

Il n’existe dont pas de suite infinie strictement décroissante dans N2 pour ⪯× 9.

Notons que, l’ordre produit n’étant pas total (on n’a ni (2,5) ⪯× (5,2), ni (5,2) ⪯× (2,5)
par exemple), il existe des parties de N2 sans plus petit élément, comme celle ci-dessous.

9. Comme cette fois, il existe un nombre fini – exactement (a +1)× (b +1) – d’éléments de N2 plus petits que
(a,b) pour ⪯×, cela n’est guère surprenant.
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En revanche, toute partie de N2 a bien des éléments minimaux (que l’on a mis en évidence
en couleur ci-dessous) :

L’ordre produit peut également être étendu à Np pour p quelconque.

Exemples d’utilisation Dans le cas de pgcd, on peut donc simplement choisir l’identité
pour la fonction φ, et remarquer que (b mod a, a) ≺ℓ (a,b) pour l’ordre lexicographique.
Ce qui permet directement de conclure sur la terminaison de la fonction pgcd.

L’ordre produit, en revanche, ne convient pas, car la première étape de la fonction pgcd
peut échanger les arguments si initialement a > b.

Pour la fonction comb, (k − 1,n − 1) ≺ (k,n) et (k,n − 1) ≺ (k,n) à la fois pour l’ordre
lexicographique ≺ℓ et pour l’ordre produit ≺×, donc les deux ordres conviennent.

2.6 Arguments complexes (listes, arbres, chaînes...)

Lorsque les arguments sont un peu plus complexes (listes, arbres), on peut utiliserφ pour
les ramener à des entiers positifs en prenant une de leurs caractéristiques bien choisies
(longueur de la liste, hauteur de l’arbre...).

Par exemple, dans cette fonction calculant la somme des termes d’une liste d’entiers,

let rec somme = function
| [] -> 0
| t::q -> t + somme q;;

la longueur de la liste passée en argument est un entier positif qui décroit strictement lors
de chaque appel récursif, donc la fonction termine pour toute liste.

De même, dans la fonction calculant la hauteur d’un arbre,

let rec hauteur = function
| Feuille -> 0
| Noeud (filsg, filsd) -> 1 + max (hauteur filsg) (hauteur filsd);;

ou bien dans celle calculant sa taille,

let rec taille = function
| Feuille -> 1
| Noeud (filsg, filsd) -> 1 + taille filsg + taille filsd;;

les hauteurs des deux sous-arbres utilisés comme arguments des appels récursifs sont
strictement inférieures à celle de l’arbre argument de la fonction, donc ces fonctions
hauteur et taille terminent pour tout arbre.

Pour une chaîne de caractères, on peut utiliser sa longueur 10, comme dans cette fonction
qui termine puisque la longueur de la chaîne passée en argument décroit de 2 à chaque
appel récursif :

let rec estPalindrome chaine =
let n = String.length chaine in
n < 2 || chaine.[0] = chaine.[n-1]
&& estPalindrome (String.sub chaine 1 (n-2));;

Précisons que la fonction précédente effectue des copies coûteuses de la chaîne lors des
appels à String.sub, et inutiles : une meilleure solution consisterait à utiliser des indices
délimitant la partie de la chaîne qu’il reste à vérifier. Ces indices étant entiers, et le nombre
de caractères restant à vérifier strictement décroissant, la terminaison d’une telle fonction
n’est pas difficile à prouver.

2.7 Problème de la terminaison

Malheureusement, il n’est pas toujours aussi simple de montrer qu’une fonction récur-
sive termine. Par exemple, la fonction Q de Hofstadter :

let rec q = function
| 1 -> 1
| 2 -> 1
| n -> q (n - q (n-1)) + q (n - q (n-2));;

ou bien cette fonction, basée sur la suite de Syracuse :

let rec syracuse = function
| 1 -> true
| n when (n mod 2) = 0 -> syracuse (n/2)
| n -> syracuse (3*n+1);;

10. Précisons qu’il existe des relations d’ordre bien fondés sur l’ensemble des chaînes de caractères, dont
certaines seront étudiées dans le programme de seconde année.
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sont deux exemples de fonctions dont on a conjecturé qu’elles terminaient toujours (on
n’a pas trouvé de n pour lesquels ce ne serait pas le cas) mais ces conjectures n’ont pas
encore pu être démontrées à l’heure actuelle.

Par exemple, dans le cas de la fonction de Hofstadter, on a bien n −1 < n, n −2 < n,
n −q(n −1) < n et n −q(n −2) < n puisque la fonction ne peut visiblement retourner que
des éléments de N⋆, mais il reste à prouver que n −q(n −1) Ê 1 et n −q(n −2) Ê 1 pour
justifier que la fonction n’effectue des appels récursifs qu’avec des éléments de N⋆.

En fait, il a été montré par A. Turing (avant même que les ordinateurs modernes existent)
que la question de la terminaison d’une fonction (récursive ou non) était un problème
indécidable, c’est-à-dire qu’on ne peut écrire de fonction « termine » qui prenne une
fonction en argument et retourne true si cette fonction termine pour tous les arguments,
et false dans le cas contraire. Il est aisé de s’en convaincre en considérant la fonction
suivante :

let rec foo () = match termine foo with
| true -> foo ()
| false -> true;;

En effet, si foo termine, alors foo () fait un appel récursif à foo (), donc elle ne termine
pas. Et si elle ne termine pas, alors elle retourne true, donc elle termine. La seule façon de
lever ce paradoxe est que termine ne peut pas fonctionner correctement avec foo comme
argument.

2.8 Réels vs flottants

Revenons à notre course entre Achille et la tortue. Si l’on travaillait sur R, le fait que
(R+,É) ne soit ni bien ordonné, ni bien fondé, nous empêche de conclure à la terminaison
de l’algorithme. Et, de fait, dans R+, il ne terminerait pas.

Pourtant, la fonction retourne bien un résultat après un nombre fini d’appels (164 très
exactement) :

# temps 100.0;;

- : float = 10.101010101

La raison est que l’on travaille avec des flottants et non des réels. La quasi-totalité des
grandeurs manipulées en informatique utilisent un nombre prédéterminé de bits (souvent
64 bits pour des flottants), et il y en a donc un nombre fini de valeurs possibles. L’ensemble
des entiers relatifs sur 32 bits ou l’ensemble des flottants 64 bits positifs sont bien fondés
lorsqu’ils sont munis de la relation d’ordre habituel (puisque tout sous-ensemble fini muni
d’un ordre total aura nécessairement un élément minimal), même si Z et R+ ne le sont
pas.

Excepté lorsque l’on travaille avec des données dont la taille peut varier (des listes, par
exemple) 11, seule la question de la relation d’ordre importe réellement.

Ce pourrait être une excellente nouvelle, mais toute médaille ayant son revers, il faut se
souvenir que les calculs sur les flottants ne se comporent pas tout à fait comme ceux sur
les réels. Dans le cas qui nous intéresse, pour un x flottant positif, on a bien 0.01×x < x.

Seulement, x > 0 n’implique pas 0.01× x > 0, car 0.01× x peut être nul. C’est ce qui
permet à notre fonction récursive de se terminer après 164 appels. Le plus petit flottant est
de l’ordre de 10−324, or 100× (0.01)164 est plus petit que cela, donc assimilé à zéro 12.

À l’inverse, on n’a pas 0.6×x < x, car il est possible que 0.6×x = x si x est suffisamment
petit (0.6×x étant arrondi à x). De sorte que si la tortue, dopée au stéroïdes, a une vitesse
de 0,6 fois celle d’Achille, la fonction

let rec temps = function
| 0. -> 0.
| d -> d /. 10. +. (temps (0.6 *. d));;

elle, ne termine jamais 13 14 !

Ces problèmes d’arrondis peuvent également poser des problèmes lorsqu’il s’agit de
prouver la correction de la fonction.

Il est bien plus facile de travailler avec des entiers, les preuves concernant les fonctions
faisant intervenir des flottants sont souvent très délicates, et encore souvent un sujet de
recherche.

3 Récursion terminale

3.1 Le mécanisme d’appel de fonction

Cette dernière partie de ce chapitre vise à examiner un peu plus en détail comment un
ordinateur gère les appels de fonctions. Dans l’optique des concours, il n’est nul besoin
d’être un expert sur le sujet, et on cherche avant tout ici à éclairer pourquoi certaines
écritures de fonctions récursives fonctionnent mieux que d’autres (et sont donc plus
fréquemment utilisées).

11. C’est aussi le cas des entiers relatifs en Python, dont la représentation peut utiliser un nombre quelconque
de bits.

12. Pour les règles usuelles d’arrondi, lesquelles peuvent être changées mais nous n’entrerons pas dans les
détails.

13. Ici encore, pour les règles usuelles d’arrondis sur les flottants.
14. La fonction ne termine pas, mais elle finira cependant par provoquer une erreur, plus précisément un

débordement de pile, car les appels récursifs consomment ici de la mémoire. Nous allons y revenir dans la section
suivante.
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Dans un programme, un appel de fonction « suspend » un temps l’exécution d’une sé-
quence d’instructions, le temps d’exécuter les instructions constituant la fonction appelée.

Dans un programme compilé, par exemple, la séquence d’instructions de la fonction se
trouve à un endroit différent dans la mémoire de la séquence d’instructions où survient
l’appel à ladite fonction. Lors d’un appel de fonction, le processeur doit noter où il se
trouvait juste avant l’appel à la fonction avant de s’intéresser au instructions constituant la
fonction, histoire de pouvoir y revenir ultérieurement.

Tout se passe comme si vous lisez un livre, qu’un paragraphe fait référence à une note
en fin d’ouvrage, et que vous laissez un marque-page le temps d’aller lire la note avant de
reprendre votre lecture à l’emplacement du marque-page.

Seulement, dans un programme, une fonction peut appeler une seconde fonction, qui
peut faire appel à une troisième fonction, et ainsi de suite. Les fonctions peuvent même
s’appeler elles-mêmes, ce qui se trouve d’ailleurs être le sujet de ce chapitre. Il faut donc
mémoriser plusieurs « adresses de retour ». Comme on reviendra aux différentes tâches
dans l’ordre inverse où on les a laissées, il est naturel d’utiliser une pile pour cet usage.

De fait, tous les ordinateurs disposent d’une pile d’appel dans laquelle on mémorise les
adresses de retour à chaque appel de fonction, de façon à pouvoir reprendre l’exécution
normale du programme lorsque l’on termine la fonction.

Ce n’est pas la seule chose que l’on place dans cette pile. Les arguments de la fonction y
sont généralement également placés, de sorte que la fonction qui est appelée puisse les
retrouver aisément. Et dans le cas d’une fonction récursive, que les différents appels ne
mélangent pas leurs arguments respectifs ! Les définitions locales 15 y sont généralement
également placées, afin que chaque fonction puisse accéder à ses propres définitions.

Prenons l’exemple du programme suivant, qui calcule 2n! :

let rec fact = function
| 0 -> 1
| n ->
fact (n-1) (* position A *)
* n;;

let foo n =
fact n (* position B *)
* 2;;

foo 2;; (* position C *)

L’instruction foo 2 fait appel à foo avec 2 en paramètre. Laquelle fait appel à fact avec
2 en paramètre. Qui à son tour fait appel à fact avec 1 en paramètre. Et enfin, un dernier

15. Ou les variables locales dans d’autres langages

appel à fact avec 0 en paramètre.

Au niveau de la pile, les choses se passent de la façon suivante :

Pos. C

2

Pos. B

2

Pos. C

2

Pos. A

1

Pos. B

2

Pos. C

2

Pos. A

0

Pos. A

1

Pos. B

2

Pos. C

2

Appel foo 2 Appel fact 2 Appel fact 1 Appel fact 0

Comme on le voit, à chaque appel de fonction, Caml empile le paramètre de la fonction,
puis juste avant de « sauter » à la fonction appelée, l’adresse 16 à laquelle il devra revenir
lorsqu’il en aura terminé avec la fonction.

Chaque fonction n’a besoin d’accéder qu’à la partie de la pile qui lui correspond (en
blanc dans l’exemple du dessus). On parle parfois de « trame de pile » (stack frame en
anglais). Sous l’adresse de retour se trouvent le ou les paramètres qui lui ont été passés en
arguments 17.

Le dernier appel à fact ne cause pas de nouvel appel, et la fonction retourne simplement
le résultat 1. Le programme Caml va donc alors dépiler l’adresse de retour (de même que
l’argument, qui ne sera plus utile et sera jeté), et retourne à la fonction appelante (qui ici
est fact également). La fonction appelante récupère le résultat (ici 1) et le multiplie par
son argument (1 encore), et retourne comme résultat le produit. On dépile alors à nouveau
une trame de pile. Et ainsi de suite.

Le résultat retourné par la fonction pourrait être placé dans la pile 18, mais actuellement,
en général, il est plutôt laissé dans un registre du processeur 19, une mémoire interne au
processeur destinée aux calculs, et particulièrement rapide, ce qui permettra d’utiliser
directement le résultat dans la suite du programme sans perdre de temps.

16. Désignée ici par « Pos. A », « Pos. B » et « Pos. C », mais correspondant pour le processeur en réalité à
l’emplacement, dans la mémoire, de l’instruction suivant celle qui effectue l’appel.

17. Précisons que l’ordre des éléments dans la trame de pile est une convention, la seule chose qui importe est
que la fonction appelante et la fonction appelée s’entendent. Il est néanmoins fréquent que les paramètres se
trouvent « en-dessous » de l’adresse de retour dans la pile, car l’adresse de retour est empilée au moment du saut
d’une fonction à l’autre, autrement dit au tout dernier moment.

18. C’est ici aussi un choix laissé au compilateur, qui dépend des possibilités du processeur utilisé.
19. Ou bien, s’il est trop volumineux pour y tenir, la fonction laisse dans le registre une adresse mémoire

indiquant où trouver le résultat.
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Au niveau de la pile d’appel et du registre utilisé pour les résultats, la suite du programme
se déroule donc de la sorte :

Pos. A

0

Pos. A

1

Pos. B

2

Pos. C

2

Pos. A

1

Pos. B

2

Pos. C

2

Pos. B

2

Pos. C

2

Pos. C

2

Retour fact 0

1

Retour fact 1

1

Retour fact 2

2

Retour foo 2

4

3.2 Récursion vs boucles

Chaque fois que l’on effectue un appel de fonction, il y a donc un coût au niveau du
processeur : il faut empiler les paramètres, puis l’adresse de retour, avant de « sauter »
en un autre point du programme. Puis, un peu plus tard, on dépilera les données et on
reviendra à la fonction appelante.

Parfois, il est nécessaire d’effectuer des opérations supplémentaires. Par exemple, beau-
coup de fonctions utilisent les registres du processeur. On peut avoir besoin de mémoriser
le contenu de ces registres avant de faire appel à une fonction, afin de pouvoir les restaurer
lorsque l’appel sera terminé, dans le cas où la fonction appelée aurait modifié le contenu
des registres. On parle alors de sauvegarde (et de restauration) du contexte.

Les appels récursifs ont donc un coût, modéré (quelques dizaines de cycles, soit quelques
nanosecondes sur un ordinateur moderne) mais non nul. Si une écriture récursive d’une
fonction est parfois plus lisible ou plus simple, elle peut être un peu plus lente qu’une
version écrite au moyen d’une boucle.

On passe cependant souvent plus de temps à écrire et modifier les programmes qu’à
les utiliser, donc gagner quelques nanosecondes n’a cependant de sens que si la fonc-
tion est réellement appelée très, très souvent, surtout si c’est au prix d’une complication
importante de la fonction.

L’autre difficulté que l’on peut rencontrer lorsque l’on effectue de nombreux appels
de fonction est lié à la mémoire : la pile d’appels décrite ci-dessus occupe de la place en
mémoire (dans une zone qui lui est réservée). Lorsque l’on effectue trop d’appels récursifs,

on peut se retrouver à court de mémoire, ce qui interrompt le programme! C’est par
exemple le cas sur cette fonction qui tente d’effectuer une infinité d’appels récursifs :

# let rec foo () = 1 + foo ();;
val foo : unit -> int = <fun>

# foo ();;
Stack overflow during evaluation (looping recursion?).

3.3 Récursion terminale

Il existe un mécanisme permettant d’économiser quelques opérations et un peu de place
en mémoire : la récursion terminale. Regardons ce que donne le calcul de fact 3 :

Adr. X

4

Adr. Y

2

Adr. X

3

Adr. Y

1

Adr. Y

2

Adr. X

3

Adr. Y

0

Adr. Y

1

Adr. Y

2

Adr. X

3

Appel fact 3 Appel fact 2 Appel fact 1 Appel fact 0

Adr. Y

0

Adr. Y

1

Adr. Y

2

Adr. X

3

Adr. Y

1

Adr. Y

2

Adr. X

3

Adr. Y

2

Adr. X

3

Adr. Y

3

Retour fact 0

1

Retour fact 1

1

Retour fact 2

2

Retour fact 3

6
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On peut écrire légèrement différemment la fonction fact :

# let fact_RT n =
let rec aux res = function

| 0 -> res
| n -> aux (res*n) (n-1)

in aux 1 n;;

val fact_RT : int -> int = <fun>

Voyons ce qui se passe avec la fonction auxiliaire aux :

Adr. X

1

3

Adr. Y

3

2

Adr. X

1

3

Adr. Y

6

1

Adr. Y

3

2

Adr. X

1

3

Adr. Y

6

0

Adr. Y

6

1

Adr. Y

3

2

Adr. X

1

3

Appel aux 1 3 Appel aux 3 2 Appel aux 6 1 Appel aux 6 0

Pour l’instant, les avantages sont loin d’être évidents, on a plutôt augmenté l’occupation
de la mémoire. Cependant, il se passe quelque chose d’intéressant lorsque l’on commence
à s’intéresser aux retours des fonctions.

En effet, la fonction aux 6 0 place son résultat, 6, dans un registre, et retourne. La
fonction aux 6 1 retourne directement le résultat que vient de lui retourner aux 6 0. Ce
résultat est déjà dans le registre, elle n’a donc qu’à dépiler sa trame de pile et retourner à la
fonction aux 3 2 qui l’a appelée. aux 3 2 se trouve dans la même situation.

Comme l’appel récursif se trouve être la toute dernière opération qu’effectue la fonction
Aux, on peut alors effectuer une optimisation qui va avoir de l’importance. Plutôt que de
remonter les appels un par un, on va s’arranger pour effectuer tous les retours d’un seul
coup.

Pour ce faire, plutôt que d’empiler une nouvelle trame de pile lors d’un appel qui est la
toute dernière instruction d’une fonction, on va modifier la trame actuellement au sommet
de la pile, de façon à y substituer les nouveaux paramètres, mais en conservant l’adresse
de retour.

La pile évoluera donc de la façon suivante :

Adr. X

1

3

Adr. X

3

2

Adr. X

6

1

Adr. X

6

0

Appel aux 1 3 Appel aux 3 2 Appel aux 6 1 Appel aux 6 0

On remarquera que pour tous les appels, dans l’exemple ci-dessus, les nouveaux argu-
ments sont substitués aux anciens, mais l’adresse de retour n’est pas modifiée.

Lorsque l’on arrivera à la fin des appels récursifs, le résultat est placé dans le registre, et
on saute directement à Adr. X, l’appelant (notre fonction fact_RT ici), en un seul retour.
Plus le nombre d’appels récursifs sera important, plus le gain sera notable. Par ailleurs,
puisque la pile ne se remplit pas, on ne risque pas d’avoir des soucis de mémoire !

Précisons cependant, encore une fois, que la lisibilité d’une fonction prime généralement
sur des critères d’efficacité. Il n’est pas attendu que vous écriviez des fonctions utilisant le
principe de récursion terminale 20, surtout lorsque cela complique notablement l’écriture
de la fonction. Mais cela vous permettra peut-être de comprendre pour quelle raison
certaines fonctions que vous rencontrerez sembleront écrites de façon un peu moins
naturelles.

3.4 Quelques exemples

Pour calculer (récursivement) la somme des termes d’une liste, la solution la plus natu-
relle consiste à écrire :

# let rec somme = function
| [] -> 0
| t::q -> t + somme q;;

val somme : int list -> int = <fun>

Si l’on souhaite en faire une fonction récursive terminale, on peut, comme dans le cas
de la fonction aux de fact_RT, construire le résultat étape par étape, et passer les calculs

20. Et encore moins en Python où ce mécanisme d’optimisation de l’utilisation de la pile n’est pas utilisé, par
choix.
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intermédiaires en tant qu’argument supplémentaire à la fonction (le dernier appel ne
faisant que retourner le paramètre correspondant au résultat, en général).

Il est alors généralement nécessaire de définir une fonction auxiliaire, travaillant avec un
argument supplémentaire. Dans le cas de la fonction Somme, cela pourrait donner :

let somme liste =
let rec aux s = function
| [] -> s
| t::q -> aux (s+t) q

in aux 0 liste;;

val somme : int list -> int = <fun>

Une telle fonction peut être légèrement plus rapide, mais permet aussi (et surtout) de
traiter des listes plus longues sans que la pile ne « déborde », ce qui est très utile dans un
langage fonctionnel qui fait la part belle aux fonctions récursives. Toutefois, le résultat
n’étant pas aussi lisible, il convient d’utiliser cette possibilité avec parcimonie, lorsque
c’est réellement utile.

Précisons qu’il n’est pas toujours nécessaire d’introduire une fonction auxiliaire, on
aurait pu également écrire notre fonction Somme de la sorte :

# let rec somme = function
| [] -> 0
| [ elem ] -> elem
| t1::t2::q -> somme ((t1+t2)::q);;

val somme : int list -> int = <fun>

L’important est que l’appel récursif soit la dernière opération qu’effectue la fonction.

Dans ce dernier cas, on utilise davantage le conse, aussi il n’est pas certain que les
performances soient améliorées, c’est surtout la possibilité de traiter de longues listes qui
peut faire pencher la balance en faveur d’une telle solution.

Profitons enfin de l’occasion pour éclaircir un point évoqué tantôt : comme on peut le
constater ci-dessous, la fonction List.fold_left utilise une récursion terminale :

let rec fold_left f b = function
| [] -> b
| t::q -> fold_left f (f b t) q;;

En effet, l’appel récursif à fold_left est bien la toute dernière opération effectuée par
la fonction, ce qui rend possible l’optimisation.

Ce n’est en revanche pas le cas de List.fold_right, dans laquelle le résultat de l’appel
récursif sert ensuite d’argument à la fonction f :

let rec fold_right f lst b = match lst with
| [] -> b
| t::q -> f t (fold_right f q b);;

Aussi la fonction fold_left est-elle un peu plus rapide, mais surtout s’accomode de
listes plus longues que sa consœur.
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6Paradigmes de programmation

Dans ce dernier chapitre, nous étudierons quelques stratégies pouvant permettre l’élabo-
ration d’algorithmes plus efficaces en terme de complexité : division pour régner, program-
mation dynamique, etc. Nous en profiterons pour établir quelques résultats permettant
de déterminer plus rapidement et plus simplement la complexité d’un algorithme. Nous
aurons, par la même occasion, l’opportunité d’étudier quelques algorithmes intéressants
pour résoudre des problèmes courants (tris, recherches, etc.)

1 Les tris

1.1 Objectif

Une des tâches que l’on rencontre fréquemment en informatique consiste à trier des
données. Compte tenu de son importance, il a été apporté à ce problème un nombre
conséquent de solutions, aux avantages et inconvénients variés. Il va nous permettre par
ailleurs d’illustrer quelques concepts importants de programmation, mais également de
revenir sur les calculs de complexité.

Dans la suite, nous chercherons donc à écrire une fonction de tri, prenant en argument
une liste d’éléments (des flottants par exemple), et retournant une liste contenant les
mêmes éléments, triés par ordre croissant.

1.2 Tri par sélection

Une façon naturelle de trier un ensemble d’éléments consiste à trouver, dans cet en-
semble, le plus petit de ses éléments, puis le second plus petit, le troisième, et ainsi de
suite jusqu’à épuisement des éléments de l’ensemble. On parle de tri par sélection.

L’écriture en Caml d’une telle méthode est assez simple 1. Dans un premier temps, on
commence par écrire une fonction minReste prenant en argument une liste, et retournant
un couple constitué du plus petit élément de la liste, et de la liste des éléments restants 2.

1. On ne cherchera pas, dans ce cours, à obtenir des fonctions exhibant une récursion terminale, sauf si
elle vient naturellement; ce sont les algorithmes proprement dits qui nous intéressent ici, et non le détail leur
implémentation.

2. Si l’élément le plus grand apparaît n fois dans la liste, il doit apparaître n −1 fois dans la liste retournée.

Comme souvent en Caml lorsque l’on manipule des listes, une solution récursive est
assez naturelle. Après avoir séparé la liste en une tête et un reste, le plus petit élément est
soit la tête, soit le plus petit élément du reste. La liste privée du plus petit élément contient
la queue privée de son plus petit élément, à laquelle on rajoute l’élément parmi les deux
précédents qui n’a pas été retenu comme plus petit élément de la liste :

# let rec minReste = function
| [] -> failwith "Empty"
| [ elem ] -> elem, []
| t::q -> let minimum, reste = minReste q in

(min t minimum), (max t minimum)::reste;;

val minReste : 'a list -> 'a * 'a list = <fun>

La terminaison de cet algorithme est garantie par le fait que la longueur de la liste décroit
strictment à chaque appel, sa correction est immédiate par récurrence.

Trier les données consiste alors simplement à chercher successivement les plus petits
éléments et à les assembler, ce qui s’écrit très simplement de façon récursive :

# let rec tri = function
| [] -> []
| liste -> let minimum, reste = minReste liste in

minimum::(tri reste);;

val tri : 'a list -> 'a list = <fun>

Intéressons-nous à présent au temps nécessaire à l’exécution des fonctions minReste
et tri. Bien que nos fonctions soient polymorphes, on s’intéressera ici uniquement au
cas du tri de liste d’entiers (ou de flottants) de sorte que le temps de comparaison de deux
éléments a et b reste borné 3

Dans la suite, nous noterons Dn l’ensemble des listes comprenant n éléments, et TMR(d)
le temps d’exécution de la fonction minReste pour une liste d .

Un appel à la fonctionminReste sur un élément de Dn consiste en un appel récursif à
minReste avec pour paramètre un élément de Dn−1 et une succession d’opérations (ex-
traction de la tête, calcul du minimum et du maximum, conse...) dont le temps d’exécution
ne dépend pas de n, et que l’on peut encadrer par deux temps t1 et t2.

Pour la question de la complexité, cet encadrement n’a pas besoin d’être précis, « entre
une femtoseconde et un milliard d’années » est suffisant ! L’important est que cet encadre-
ment soit valable quel que soit l’argument de la fonction minReste.

3. En effet, lorsque l’on compare des chaînes de caractères ou des listes, par exemple, le temps nécessaire
peut dépendre de la taille des chaînes ou des listes comparées.
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On peut donc écrire, pour tout entier n Ê 2 et en notant TMR(d) le temps d’exécution 4

de la fonction minReste sur la liste d ∈Dn :

∀d ∈Dn , t1 + min
d ′∈Dn−1

(TMR(d ′)) É TMR(d) É t2 + max
d ′∈Dn−1

(TMR(d ′))

Par une récurrence immédiate, cela conduit, pour tout n Ê 1, à :

∀d ∈Dn , (n −1)× t1 + min
d ′∈D1

(TMR(d ′)) É TMR(d) É (n −1)× t2 + max
d ′∈D1

(TMR(d ′))

Puisque l’on peut encadrer le temps TMR(d ′) pour un quelconque élément de D1 par
deux constantes, il existe donc des constantes réelles strictement positives α, β, γ et δ telles
que, pour tout n Ê 1 :

∀d ∈Dn , αn +β É TMR(d) É γn +δ

Ce qui signifie que la fonction minReste a un coût linéaire, une complexité Θ(n).

Penchons-nous à présent sur la fonction tri. Pour un argument pris dans Dn avec n Ê 1,
elle comprend un appel à la fonction minReste avec le même argument, un appel récursif
à la fonction tri avec pour argument un élément de Dn−1, et un ensemble d’opérations
dont le temps peut être encadré par des temps t ′1 et t ′2. Aussi peut-on écrire, pour tout
entier n Ê 1 et en notant Ttri(d) le temps d’exécution de la fonction tri pour un argument
d ∈Dn :

∀d ∈Dn , t ′1 +αn +β+ min
d ′∈Dn−1

(Ttri(d ′)) É Ttri(d) É t ′2 +γn +δ+ max
d ′∈Dn−1

(Ttri(d ′))

Cette fois encore, une récurrence immédiate permet, pour tout n Ê 1, d’établir que :

∀d ∈Dn , n × (t ′1 +β)+ n(n +1)

2
α+Ttri([]) É Ttri(d) É n × (t ′2 +δ)+ n(n +1)

2
γ+Ttri([])

On a donc un coût quadratique pour notre fonction de tri, une complexité Θ(n2).

Dans la pratique, on tentera rarement d’encadrer le temps d’exécution d’une fonction, et
on préférera dénombrer le nombre d’occurrences de l’une des opérations qui conditionne
la complexité de la fonction. Par exemple, dans un tri, on pourra s’intéresser au nombre de
comparaisons. En effet, le temps d’exécution sera, nécessairement, au moins proportionnel
au nombre de comparaisons effectuées. Mais, puisque inversement, pour chaque com-
paraison on effectue un nombre borné d’autres opérations toutes élémentaires, le temps

4. Dans la réalité, le temps d’exécution d’une fonction sur un argument donné peut varier, même si l’argument
ne change pas, en fonction de nombreux critères, donc on pourrait dire « un quelconque temps d’exécution de
la fonction » pour l’argument d . En pratique, on ne se souciera pas, dans la pratique, de tels détails, car on ne
recherche qu’un équivalent et ces fluctuations de temps d’exécution ne changeront pas la complexité.

d’exécution est aussi majoré par un temps proportionnel au nombre de comparaisons. Le
nombre de comparaisons et le temps d’exécution sont des suites équivalentes.

Si l’on note un le nombre de comparaisons effectuées par minReste pour une liste
comprenant n éléments, et u′

n le nombre de comparaisons effectuées par tri pour une
liste de n éléments, on peut écrire 5

u0 = u1 = 0 et ∀n Ê 2, un = 2+un−1

ce qui conduit, pour n Ê 2, à
un = 2× (n −1)

et, pour la fonction tri

u′
0 = 0 et ∀n Ê 2, u′

n = u′
n−1 +un = u′

n−1 +2× (n −1)

ce qui donne, pour n Ê 1,

u′
n =

n∑
k=2

2× (k −1) = 2
n−1∑
k=1

k = n × (n −1) = n2 −n

Un appel à tri effectue donc de l’ordre de n2 comparaisons, ce qui permet de retrouver
que cette fonction a un coût quadratique Θ(n2).

1.3 Tri par insertion

Une autre méthode de tri possible consiste à partir d’une liste vide, et à « insérer » tour à
tour chacun des éléments à trier dans cette liste, en les plaçant de sorte que la liste que
l’on construit reste à chaque instant triée. On parle de tri par insertion.

On commence donc par écrire une fonction permettant d’insérer un élément à la bonne
place dans une liste d’éléments triés par ordre croissant, en utilisant cette fois encore une
approche récursive :

# let rec insere elem = function
| (t::q) when elem > t -> t::insere elem q
| lst -> elem::lst;;

val insere : 'a -> 'a list -> 'a list = <fun>

5. Le « 2 » dans la relation de récurrence vient de la présence d’un min et d’un max, on pourrait le réduire à 1
en utilisant par exemple un test, mais la complexité sera la même dans les deux situations. Notons que l’on n’a
pas compté ici les comparaisons que Caml devra effectuer afin de filtrer l’argument. En nombre moindre, dans
l’exécution de la fonction, que les comparaisons entre éléments de la liste, elles ne changeraient de toute façon
pas la complexité.
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Là encore, la taille de la liste passée en second argument décroit à chaque appel, donc la
fonction va toujours terminer. Pour la correction, l’élément elem se retrouve juste avant le
premier élément de la liste qui soit plus grand que lui, aussi est-il placé au bon endroit.

L’insertion d’un « 2 » dans une liste de sept éléments triés par ordre croissant place bien
l’élément à la position idoine :

insere 2 [ -5; -2; 0; 1; 3; 4; 7; 9 ];;

- : int list = [-5; -2; 0; 1; 2; 3; 4; 7; 9]

À présent le tri par insertion proprement dit s’écrit très simplement :

# let rec tri = function
| [] -> []
| t::q -> insere t (tri q);;

val tri : 'a list -> 'a list = <fun>

Cela correspond bien à ce que l’on décrivait tantôt, car l’appel

tri [ 2; 3; 9; -5; 4; 1; -2; 7; 0 ];;

correspond, si l’on déroule les différents appels récursifs, à

insere 2 (insere 3 (insere 9 ( insere (-5) (insere 4
(insere 1 (insere (-2) (insere 7 (insere 0 []))))))))

Pour déterminer la complexité en temps de ce tri par insertion, nous allons à nouveau
nous pencher sur le nombre de comparaisons effectuées par ces deux fonctions. Cette
fois, le nombre de comparaisons pour une liste contenant n éléments n’est pas toujours le
même. On s’intéresse ici à la complexité dans le pire des cas, celui pour lequel le nombre
de comparaisons est maximal.

Si l’on note un le nombre de comparaisons effectuées par la fonction insere dans le
pire des cas, pour une insertion d’un élément dans une liste à n éléments, il apparaît très
vite que un = n (lorsque l’insertion se fait en bout de liste, après avoir constaté que tous
les éléments de la liste sont plus grands que l’élément à insérer). La complexité en temps,
dans le pire des cas 6, de insere est donc Θ(n).

Le nombre u′
n de comparaisons nécessaires, dans le pire des cas, pour appliquer tri à

une liste de longueur n vérifie 7

u′
0 = 0 et ∀n Ê 1, u′

n = u′
n−1 +un−1

6. Dans le cas favorable, en revanche, un = 1, donc on a une fonction en temps constant.
7. On peut vérifier que le pire des cas pour tri est une liste triée par ordre décroissant, qui provoque bien à

chaque appel de insere la pire insertion possible, en toute fin de liste.

On a donc, pour tout n Ê 1,

u′
n =

n−1∑
k=0

k = n(n −1)

2
= 1

2
n2 − 1

2
n

Cette fois encore, dans le pire des cas, le nombre de comparaisons est quadratique, donc
le tri par insertion a une complexité en temps dans le pire des cas en Θ(n2).

En revanche, dans le cas le plus favorable, puisque pour tout n, un = 1, on a u′
n = n −1,

ce qui donne un coût en temps linéaire. Ce genre de situation se produit pour des listes
triées par ordre croissant (ou presque triées), pour lesquelles ce tri peut être très efficace.

1.4 Aller plus loin

Les coûts des deux fonctions de tri précédentes deviennent rapidement prohibitifs
lorsque le nombre d’éléments à trier est important. Pour seulement 10000 éléments, les tris
précédents peuvent nécessiter plusieurs dizaines de secondes sur une machine courante,
et cent fois plus (donc près d’une heure) pour 100000 éléments 8.

Dans le cas du tri par insertion, le coût en Θ(n2) du tri vient, en partie, du fait que la
fonction qui insère un élément dans une liste triée a un coût en Θ(n).

Dans le cours de tronc commun, il a été montré que l’on pouvait trouver cette position
plus efficacement, par une recherche dichotomique dans la liste triée, sous réserve de
pouvoir accéder aux éléments de la liste en O(1) 9. En effet, cette recherche dichotomique
peut trouver la position où devra être inséré l’élément en un temps O(ln(n)) (en n’effectuant
que

⌈
log2(n)

⌉
comparaisons pour ce faire).

On pourrait envisager d’utiliser cette idée pour transformer notre tri par insertion en un
tri en O(n ln(n)). En pratique, cela ne fonctionne pas. En effet, pour déterminer la place
en log(n), il faut pouvoir accéder aux éléments en O(1), ce qui nécessite de conserver les
éléments dans une structure de type tableau (array en Caml). Mais dans ce cas, l’insertion
de l’élément à la bonne place est une opération en O(n). La recherche dichotomique ne
peut donc pas nous aider directement ici.

En revanche, l’idée derrière la recherche dichotomique est intéressante : lorsque l’on
compare l’élément à insérer avec celui au milieu de la liste triée, le résultat permet d’élimi-
ner la moitié des positions possibles. C’est un des très nombreux exemples d’application
d’un paradigme en informatique, « diviser pour régner ».

8. Une partie de cette « lenteur » est à attribuer au compilateur relativement ancien de Caml Light, mais
celui-ci n’est responsable que d’un coefficient multiplicatif, une liste dix fois plus longue nécessitera quoi qu’il
arrive un temps cent fois plus grand, ce qui pose problème.

9. Ce qui n’est pas le cas des listes en Caml
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2 Diviser pour régner

2.1 Présentation

Le paradigme de programmation « diviser pour régner » consiste à ramener la résolution
d’un problème dépendant d’un entier n en un nombre borné de problèmes identiques
dépendant d’un entier n′ ≃ αn avec 10 α< 1.

Fréquemment, on a α = 1/2. Par exemple, dans le cas de la recherche dichotomique,
déjà vue dans le cours de tronc commun et sur laquelle nous allons revenir, rechercher la
position adéquate dans une liste à n éléments se traduit en une recherche de la position
adéquate dans une liste à ⌈n/2⌉ éléments.

2.2 Tri fusion

Tentons d’appliquer ce paradigme « diviser pour régner » au problème du tri des éléments
d’une liste.

Il est possible de trier une liste à n éléments en procédant de la sorte :
• si la liste est vide ou contient un unique élément, elle est déjà triée, il n’y a donc rien

à faire ;
• sinon, on scinde la liste à trier en deux listes contenant respectivement ⌈n/2⌉ et ⌊n/2⌋

éléments ;
• puis on trie chacune des deux listes (ce qui revient à résoudre le même problème, sur

des listes de taille deux fois plus petite) ;
• enfin, on fusionne les deux listes triées en une seule liste triée.

[ 2; 3; 9; -5; 4; 1; -2; 7; 0 ]

[ 2; 3; 9; -5; 4 ] [ 1; -2; 7; 0 ]

[ -5; 2; 3; 4; 9 ] [ -2; 0; 1; 7 ]

[ -5; -2; 0; 1; 2; 3; 4; 7; 9 ]

scission

tri tri

fusion

Commençons par écrire des fonctions pour chacune de ces étapes.

Tout d’abord, considérons le problème de la scission de la liste. Comme on ne dispose
pas, en général, de la longueur de la liste, la façon la plus simple de procéder est de prendre

10. On remarquera que n′ = n −1 (ou n′ = n −k) ne convient pas, car on aurait n′ ≃ n lorsque n → ∞, en
contradiction avec α< 1.

les éléments de la liste fournie en paramètre un par un, et de les répartir alternativement
dans les deux listes qui seront retournées. Cela peut s’écrire grâce à un filtrage :

# let rec scinde = function
| t1::t2::q -> let q1, q2 = scinde q in t1::q1, t2::q2
| lst -> lst, [];;

val scinde : 'a list -> 'a list * 'a list = <fun>

Dans le cas d’une liste avec un nombre impair d’éléments, la première des deux listes
retournée est plus longue, comme sur l’exemple ci-dessous :

# scinde [ 2; 3; 9; -5; 4; 1; -2; 7; 0 ];;

- : int list * int list = ([2; 9; 4; -2; 0], [3; -5; 1; 7])

La fusion de deux listes, notre troisième étape, s’écrit aussi avec un filtrage. Si les listes
(triées) passées en argument sont non vides, l’élément le plus petit parmi les éléments en
tête de chacune des deux listes prend la première place dans la liste résultat, le reste étant
constitué de la fusion des autres éléments de chacune des deux listes :

# let rec fusionne l1 l2 = match (l1, l2) with
| (t1::q1), (t2::q2) when t1 <= t2 -> t1::(fusionne q1 l2)
| l1, (t2::q2) -> t2::(fusionne l1 q2)
| l1, [] -> l1;;

val fusionne : 'a list -> 'a list -> 'a list = <fun>

Le résultat est bien une liste d’éléments rangés par ordre croissant :

# fusionne [ -2; 0; 2; 4; 9 ] [ -5; 1; 3; 7 ];;

- : int list = [-5; -2; 0; 1; 2; 3; 4; 7; 9]

Il ne reste plus ensuite qu’à écrire le tri tel que nous l’avons décrit précédemment, en
exhibant encore une récursion :

# let rec tri lst = match scinde lst with
| lst, [] -> lst
| l1, l2 -> fusionne (tri l1) (tri l2);;

val tri : 'a list -> 'a list = <fun>
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Toutes ces fonctions terminent car les appels se font systématiquement sur des listes
strictement plus courtes, et sont par ailleurs correctes.

Intéressons-nous à présent aux coûts en terme de temps de calcul de ces différentes
fonctions.

Pour une liste à n éléments, découpée en deux listes de longueurs ⌊n/2⌋ et ⌈n/2⌉ élé-
ments, la fonction fusionne effectue, dans le pire des cas, n −1 comparaisons 11.

Si l’on note un le nombre de comparaisons effectuées, dans le pire des cas, par la fonction
tri lorsqu’elle trie une liste de longueur n, on peut écrire{

u0 = u1 = 0

∀n Ê 2, un = u⌊n/2⌋+u⌈n/2⌉+ (n −1)

On remarquera que la fonction scinde n’apparaît pas dans ce décompte, mais puis-
qu’elle effectue un nombre d’opérations du même ordre de grandeur que la fonction
fusionne, cela ne changera pas la complexité du tri.

Pour essayer de comprendre le comportement de un , supposons que n s’écrit de la
forme 2k (par exemple 24 = 16) et observons comment les choses se passent. Dans le
schéma suivant, chaque « groupe » représente un appel pour une liste ayant le même
nombre d’éléments que le nombre de cases dans le groupe (chaque ligne représentant une
récursion), et chaque case blanche correspond à une comparaison :

On peut voir sur le schéma que pour n = 2k , on a 2k cases sur chaque ligne, et k+1 lignes,
donc 2k × (k +1) cases au total. On peut également montrer que 1+2+4+ ...+2k de ces
cases ne sont pas blanches, autrement dit 2k+1 −1.

Sur une liste à 2k éléments, le tri fusion effectue donc, dans le pire des cas, 2k × (k −1)+1
comparaisons. Puisque k = log2(n), cela revient à n × log2(n)−n +1.

11. et ⌊n/2⌋ comparaisons dans le meilleur des cas.

On s’attend donc à une complexité, pour notre fonction de tri fusion, dans le pire des
cas 12, en Θ(n log(n)).

2.3 Comportement asymptotique de suites récurrentes

Pour s’éviter ces calculs dans d’autres situations similaires, nous allons présenter
quelques résultats généraux qui permettront de conclure plus rapidement.

Suites récurrentes d’ordre 1

Théorème 4. Soit a ∈ R+⋆, (bn)n∈N une suite réelle positive, et (un)n∈N une suite vérifiant

un = a ·un−1 +bn

On montre que
• si (bn) =Θ(nν) et a = 1, alors (un) =Θ(nν+1) ;
• si (bn) = o(nν) et a > 1, alors (un) =Θ(an) ;
• si (bn) ∼ λan avec λ> 0, alors (un) =Θ(nan) ;
• si (bn) ∼ λbn avec λ> 0 et b < a, alors (un) =Θ(an) ;
• si (bn) ∼ λbn avec λ> 0 et b > a, alors (un) =Θ(bn).

Démonstration. La première affirmation se démontre aisément.
Pour les autres, posons vn = un

an . La relation de récurrence sur vn s’écrit donc, ∀n ∈N,

vn = vn−1 + bn

an

On a donc vn = u0 +
n∑

k=1

bn

an soit un = an

(
u0 +

n∑
k=1

bn

an

)
.

• Dans le cas où (bn) = o(nν), on peut écrire

∀ε> 0, ∃n0 ∈N tel que ∀k Ê n0,
bk

ak
É εkν

ak

Or la série de terme kν

ak converge, d’où le second résultat.
Il en est de même si (bn) ∼ λbn avec λ> 0 et b < a.

• Si (bn) ∼ λan avec λ> 0, alors un ≃ an (u0 +nλ) donc (un) =Θ(nan).

• Si (bn) ∼ λbn avec λ> 0 et b > a, alors un ≃ an
(
u0 + λ

b−a

(
b
a

)n)
donc (un) =Θ(bn).

12. Il en serait de même dans le cas favorable, le fait que l’on effectue ⌊n/2⌋ comparaisons au lieu de (n −1) ne
change pas le comportement assymptotique de la suite.
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La plupart de ces résultats sont logiques et prévisibles : si le terme (bn) est négligeable
devant la suite u′

n = au′
n−1, c’est le comportement de cette suite qui gouverne celui de la

suite (un), soit Θ(an) ; si, à l’inverse, la suite u′
n = au′

n−1 croit moins vite que bn , alors c’est
bn qui va déterminer le comportement assymptotique de la suite. Seul le cas où les deux
termes sont de grandeur comparable conduit à un comportement assymptotique un peu
plus complexe.

Suites récurrentes de type « diviser pour régner »

Les suites récurrentes de type « diviser pour régner » font généralement apparaître une
suite (un)n∈N gouvernée par une relation de la forme 13

un = a1 ·u⌊n/2⌋+a2 ·u⌈n/2⌉+bn

Avant de s’intéresser au comportement assymptotique de telles suites, établissons
d’abord quelques résultats utiles.

Remarquons tout d’abord que

Lemme 1. Si a1 et a2 deux réels positifs vérifiant a1 + a2 Ê 1, et si (bn)n∈N et (b′
n)n∈N

sont deux suites de même ordre de grandeur, alors les suites (un)n∈N et (u′
n)n∈N telles que

u0 = u′
0 et pour tout n ∈N∗,

un = a1 ·u⌊n/2⌋+a2 ·u⌈n/2⌉+bn et u′
n = a1 ·u′

⌊n/2⌋+a2 ·u′
⌈n/2⌉+b′

n

sont du même ordre de grandeur également.

Cette propriété nous permet de substituer à bn , dans les démonstrations, une suite de
même ordre de grandeur. On peut également montrer que

Lemme 2. Si a1 et a2 sont deux réels positifs vérifiant a1 +a2 Ê 1, et si (bn)n∈N est une
suite croissante positive, alors la suites (un)n∈N définie par

un = a1 ·u⌊n/2⌋+a2 ·u⌈n/2⌉+bn

est également croissante.

Démonstration. On peut en effet montrer par récurrence que ∀n ∈N, un+1 Ê un :
• u2 = a1 ·u1+a2 ·u1+b2 = (a1+a2)u1+b2 Ê (a1+a2)u1 Ê u1, donc c’est vrai pour n = 1 ;
• si l’on suppose vraie la propriété pour tout k É n, on a

un+1 = a1 ·u⌊(n+1)/2⌋+a2 ·u⌈(n+1)/2⌉+bn+1 Ê a1 ·u⌊n/2⌋+a2 ·u⌈n/2⌉+bn = un

car (bn) est croissante, de même que u⌊(n+1)/2⌋ Ê u⌊n/2⌋ et u⌈(n+1)/2⌉ Ê u⌈n/2⌉ d’après

13. En général, a1 et a2 sont des entiers positifs (un des deux au moins étant non nul).

l’hypothèse de récurrence.
La propriété est donc vraie pour tout n Ê 1, la suite (un) est donc croissante.

Ces résultats préalables étant mis en place, on peut se pencher à présent sur les questions
de complexité.

Théorème 5. Soient a1 et a2 deux réels positifs vérifiant a1 +a2 Ê 1, (bn)n∈N une suite
positive et croissante, et (un)n∈N une suite vérifiant

un = a1 ·u⌊n/2⌋+a2 ·u⌈n/2⌉+bn

On montre les résultats suivants, où α= log2(a1 +a2) :

• si (bn) =Θ(nα), alors (un) =Θ(nα log(n)) ;
• si (bn) =Θ(nβ) avec β< α, alors (un) =Θ(nα) ;
• si (bn) =Θ(nβ) avec β> α, alors (un) =Θ(nβ).

Démonstration. Pour démontrer ces résultats, il suffit de considérer la suite (vk )k∈N

définie, pour tout k ∈N, par vk = u2k .
Cette suite vérifie, pour tout k ∈N⋆, vk = (a1 +a2) · vk−1 +b′

k avec b′
k = b2k .

Supposons par exemple que (bn) =Θ (nα). On a alors (b′
k ) =Θ(

2kα
)=Θ(

(a1 +a2)k
)
, ce

qui conduit à (vk ) =Θ(
k(a1 +a2)k

)
grâce aux relations établies pour les suites récurrentes

d’ordre 1.
Ensuite, puisque (un) est croissante, v⌊log2(n)⌋ É un É v⌊log2(n)⌋+1, ce qui permet de

conclure que (un) =Θ(
log2(n)× (a1 +a2)log2(n)

)=Θ (n lnnα).

2.4 Recherche dichotomique

Supposons que l’on dispose d’un tableau ('a array) tab d’éléments ordonnés de façon
croissante ainsi qu’un élément elem, et que l’on souhaite déterminer l’indice i vérifiant

• i = 0 si tous les éléments du tableau sont supérieurs à elem ;
• i = n (où n est la longueur du tableau) si tous les éléments de la liste sont strictement

inférieurs à elem ;
• un i vérifiant tab.(i-1) < elem É tab.(i) sinon.

Autrement dit, une position i juste avant laquelle insérer 14 elem dans le tableau pour
conserver une liste triée 15.

La solution immédiate consisterait à envisager toutes les possibilités une par une, en
parcourant le tableau. Évidemment, cet algorithme a une complexité linéaire (Θ(n)) dans
le pire des cas, puisque l’on examinera alors les n +1 emplacements possibles un à un.

14. Ce qui, dans un tableau, nécessitera de décaler tous les éléments aux positions j Ê i au préalable.
15. Compte tenu des comparaisons, si plusieurs positions sont possibles, c’est la position la plus à gauche qui

sera retournée ici.
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L’algorithme de recherche dichotomique travaille plus efficacement. Après avoir envisagé
les deux premiers cas (i = 0 et i = n), il tente de trouver les indices des deux éléments de
tab qui encadrent elem en réduisant de moitié les possibilités pour la valeur de i à chaque
itération 16.

L’algorithme peut donc s’écrire ainsi :

# let dicho elem tab =
let n = Array.length tab in

if n == 0 || elem <= tab.(0) then 0
else if elem > tab.(n-1) then n
else let rec aux a b =

if b = a+1 then b
else let m = (a+b)/2 in

if elem <= tab.(m) then aux a m else aux m b
in aux 0 (n-1);;

val dicho : 'a -> 'a array -> int = <fun>

Dans cette fonction, l’invariant lors de chaque appel récursif à la fonction aux peut
s’écrire « le i recherché se trouve dans l’intervalle ]a,b] ».

Si le résultat n’est pas i = 0 ou i = n, on a initialement n −1 possibilités (de a +1 = 1
à b = n − 1 inclus). Après une comparaison, on en est réduit à ⌈(n −1)/2⌉ possibilités.
Et ainsi de suite. Le nombre un de comparaisons effectuée dans la partie principale de
l’algorithme 17 vérifie donc

un = u⌈n/2⌉+1

ce qui conduit (avec ici a1 = 0, a2 = 1, α= 0, bn = 1 donc (bn) =Θ(n0)) à une complexité
pour la recherche dichotomique en Θ

(
n0 log(n)

)=Θ(
log(n)

)
.

L’algorithme termine bien, car |b −a| est bien une suite strictement décroissante. En
effet, on a toujours a < m < b car b est toujours strictement supérieur a +1! Dans le cas
b = a + 1, on aurait m = ⌊(a +b)/2⌋ = a, mais on n’effectue alors plus d’appel récursif.
Si l’algorithme de la recherche dichotomique paraît simple, un grain de sable se glisse
très facilement dans son implémentation, et il convient d’être très prudent quant à sa
terminaison!

Nous avons utilisé ici des tableaux ('a array), car il était nécessaire de pouvoir accéder
directement (en un temps O (1)) à l’élément d’index i.

Ce n’est pas le cas avec des listes, et le temps nécessaire pour accéder aux éléments qui ne
sont pas en tête de liste conduirait, si l’on essayait d’appliquer l’algorithme dichotomique
à des listes, en une complexité Θ(n), dénuée d’intérêt car elle n’est pas meilleure qu’une
recherche linéaire dans la liste !

16. On se reportera au cours de tronc commun pour les détails.
17. Sans tenir compte des deux comparaisons initiales qui ne changeront pas le résultat.

2.5 Algorithme d’exponentiation rapide

On s’intéresse à présent au calcul de la ne puissance d’un élément « x » (qui peut être un
réel, une matrice, etc.).

La solution naive pour calculer xn consiste à écrire

xn = x ×xn−1 = . . . = ((((. . . ((x ×x)×x)×·· · )×x)×x)×x)

Soit, en Caml, pour une utilisation sur des x entiers :

# let rec power x = function
| 0 -> 1
| n -> x * power x (n-1);;

val power : int -> int -> int = <fun>

Le calcul nécessite alors n −1 multiplications, donc une complexité en Θ (n) si le coût
de la multiplication est constant. Si n est grand, cela peut représenter un temps de calcul
important, surtout si la multiplication est complexe (si x est une matrice par exemple).

Une solution plus efficace 18 consiste à utiliser le paradigme « diviser pour régner », en
remarquant que, pour n Ê 2,

• xn = x⌊n/2⌋×x⌊n/2⌋ si n est pair ;
• xn = x⌊n/2⌋×x⌊n/2⌋×x si n est impair.

L’écriture en Caml de cet algorithme est immédiate :

# let rec power x = function
| 0 -> 1
| 1 -> x
| n -> let y = power x (n/2) in

if n mod 2 = 0 then y * y
else y * y * x;;

val power : int -> int -> int = <fun>

Le second argument dans l’appel récursif est bien un entier positif strictement inférieur
à n, ce qui garantit la terminaison de l’algorithme. Sa correction découle immédiatement
des deux égalités précédentes.

Le nombre de multiplications nécessaires pour un argument n est un où u0 = u1 = 1 et

un = u⌊n/2⌋+1+ (n mod 2)

18. Cette méthode n’est pas non plus celle qui effectue toujours le moins de multiplications, la méthode des
arbres de Knuth donnant fréquemment une solution un peu meilleure. On ne connaît pas de méthode donnant
systématiquement et efficacement la solution optimale, en terme de nombre de multiplications, à ce problème.
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Pour déterminer le comportement de cette suite, on peut changer légèrement le second
membre (puisqu’il suffit de ne pas changer la complexité de la suite (bn)), et s’intéresser à
u′

n vérifiant
u′

n = u′
⌊n/2⌋+1

D’après les résultats précédents (avec ici a1 = 1, a2 = 0, α= 1, bn = 1 donc (bn) =Θ(n0)),
la complexité de l’algorithme sera donc Θ(log(n)).

Il convient aussi d’être prudent. On aurait pu considérer x = x⌊n/2⌋×x⌈n/2⌉ et en déduire
un autre algorithme :

# let rec power x = function
| 0 -> 1
| 1 -> x
| n -> power x (n/2) * power x ((n+1)/2);;

val power : int -> int -> int = <fun>

On montre aisément que cette seconde possibilité termine et est correcte. Mais le nombre
de multiplications est gouverné par une suite (un)n∈N vérifiant la récurrence

un = u⌊n/2⌋+u⌈n/2⌉+1

Or, cette récurrence conduit 19 à une complexité en Θ(n) (linéaire, donc), qui n’apporte
donc aucun gain par rapport à la méthode « naive », contrairement à ce que l’on pourrait
croire au premier coup d’œil !

2.6 Plus proches voisins dans un nuage de points du plan

On s’intéresse à présent à un ensemble de n points Mi du plan, de coordonnées (xi , yi ).
On souhaite connaître la distance minimale entre deux points de ce nuage (et éventuelle-
ment un couple de points Mi et M j réalisant cette distance).

Une solution naïve consisterait à calculer toutes les distances Mi M j avec i > j , soit
n(n −1)/2 calculs de distance, ce qui conduit à une complexité en Θ(n2). Toutefois, avec le
paradigme « diviser pour régner », il est possible de faire mieux, et d’obtenir une complexité
quasi-linéaire.

Dans un premier temps, on crée tout d’abord deux listes P et P ′ dans lesquels les
différents points du nuage sont rangés respectivement par abscisse croissante 20, et par or-
donnée croissante. Ces deux opérations peuvent être réalisées enΘ

(
n log(n)

)
, par exemple

en utilisant le tri fusion présenté tantôt.

19. Puisque a1 = 1, a2 = 1, donc α= 1, et β= 0 < α
20. Pour l’implémentation proprement dite, il peut être utile que la liste P contiennent les points rangés par

ordre lexicographique de leurs coordonnées, ce qui implique qu’ils soient rangés par abscisses croissantes, et
cela ne change pas la complexité de l’opération.

Puis on utilise le paradigme « diviser pour régner » :

• Si le nuage contient trois points ou moins, on calcule explicitement toutes les dis-
tances, et on en extrait le minimum;

• Sinon, on sépare le nuage de points en deux ensembles Eg et Ed de respectivement
⌈n/2⌉ et ⌊n/2⌋ points, séparés par une droite verticale 21 d’abscisse xd . Puisque les
points ont été ordonnés par abscisse croissante dans P(i ), cette opération est en
Θ(n) (elle serait même en Θ(1) si l’on utilisait des tableaux à la place des listes).

• Trois possibilités existent alors : les plus proches voisins sont tous deux dans Eg,
ils sont tous deux dans Ed, ou bien l’un est dans Eg et l’autre dans Ed. On va donc
envisager les trois possibilités.

— On détermine récursivement δg la plus courte distance entre deux points de Eg et
δd celle entre deux points de Ed, et on pose δ= min(δg,δd).

— Si la troisième possibilité donne une paire de points strictement plus proches que
δ, leurs abscisses strictement comprise entre xd −δ et xd +δ. On dresse une liste
P ′′ des points de cette bande, ordonnés par abscisses croissantes. Puisque l’on
dispose de P ′, la construction de P ′′ peut être faite en temps linéaire.

•

•

•

•

•

•δg •

•

•

•
•

•

• δd

Enfin, on prends les points de P ′′ dans l’ordre. L’objectif est simplement de savoir
si un couple de points de P ′′ ont une distance inférieure à δ. Si c’est le cas, ils sont
nécessairement de part et d’autre de la droite x = xd .

Un point M de P ′′ ne peut avoir une distance inférieure à δ qu’avec un point P de
P ′′ vérifiant par ailleurs yM −δ< yP < yM +δ. Puisque l’on prend les points par
abscisses croissantes, l’éventuel cas yP < yM aura déjà été traité, cela se réduit à
s’intéresser aux points P de P ′′ vérifiant yM É yP < yM +δ.

•

•

• •
•

•

•

M

21. Si plusieurs points ont pour abscisse xd , on les sépare en fonction de leur ordonnée, de façon à avoir deux
moitiés équilibrées, d’où l’intérêt de trier les points dans P par ordre lexicographique.
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Les points vérifiant ces deux inégalités figurent nécessairement parmi les cinq
points suivant M dans la liste P ′′, car les points d’un même côté de la droite sont
écartés d’au moins δ. Quelle que soit la disposition des points dans le plan, on
traitera donc moins de 5n couples dans cette dernière étape.

•M••

•
•

• •

— Il ne reste qu’à clore l’algorithme en comparant la distance δ à la plus petite
distance obtenue dans cette dernière étape de l’algorithme.

Pour déterminer la complexité de cet algorithme, on peut noter un le nombre de calculs
de distance effectués pour un ensemble de n points. Pour n Ê 4, on peut écrire

un = u⌊n/2⌋+u⌈n/2⌉+bn

où (bn) représente le nombre de couples de points examinés dans la bande autour de
la droite x = xd , d’où (bn) = Θ(n). On a donc a1 = a2 = 1, donc α = 1, ce qui conduit à
(un) =Θ(

n log(n)
)
.

Puisque les précalculs de P et P ′, effectués une fois pour toute, sont également en
Θ

(
n log(n)

)
et que la construction de P ′′, linéaire, a une complexité similaire à celle de

(bn), ces opérations ne changent pas la complexité générale de l’algorithme.

On peut donc ainsi obtenir la plus courte distance entre deux points (et éventuellement
les deux points qui réalisent cette distance) avec une complexité en temps Θ

(
n log(n)

)
.

À titre d’illustration, nous allons construire une implémentation possible de cet algo-
rithme en Caml. Pour ce faire, il nous faut construire plusieurs fonctions.

Tout d’abord, il nous faudra ordonner les points du plan par ordre lexicographique (pour
P), et par ordonnée croissante (pour P ′) en O

(
log(n)

)
. Pour ce faire, nous allons réutiliser

un tri fusion.

Pour éviter d’écrire deux tris distincts, nous allons réécrire notre fonction de tri de sorte
qu’elle accepte en argument supplémentaire une fonction foo permettant de préciser
que deux éléments x et y doivent être ordonnés selon les valeurs de foo x et foo y. On
pourra ainsi les trier par abscisses croissantes en utilisant la fonction snd, et par ordre
lexicographique en utilisant l’identité. La fonction scinde ne change pas :

# let rec scinde = function
| t1::t2::q -> let q1, q2 = scinde q in t1::q1, t2::q2
| lst -> lst, [];;

val scinde : 'a list -> 'a list * 'a list = <fun>

En revanche, fusionne et tri prennent foo en paramètre :

# let rec fusionne foo l1 l2 = match (l1, l2) with
| (t1::q1), (t2::q2) when foo t1 <= foo t2

-> t1::(fusionne foo q1 (t2::q2))
| l1, (t2::q2) -> t2::(fusionne foo l1 q2)
| l1, [] -> l1;;

val fusionne : ('a -> 'b) -> 'a list -> 'a list -> 'a list = <fun>

# let rec tri foo lst = match scinde lst with
| lst, [] -> lst
| l1, l2 -> fusionne foo (tri foo l1) (tri foo l2);;

tri : ('a -> 'b) -> 'a list -> 'a list = <fun>

Il nous faut une fonction prenant une liste de n points ordonnés lexicographiquement
et retournant deux listes de longueurs respectives ⌈n/2⌉ et ⌊n/2⌋, avec un ordre lexicogra-
phique inverse :

# let partition lst =
let rec partitionAux pool lst1 = function
| 0 -> lst1, (List.rev pool)
| n -> partitionAux (List.tl pool) ((List.hd pool)::lst1) (n-1)

in partitionAux lst [] ((List.length lst + 1) / 2);;

val partition : 'a list -> 'a list * 'a list = <fun>

Une fonction construisant la liste P ′′ à partir de P ′ et des paramètres de la bande 22 :

let rec filtre pmin pmax x delta = function
| [] -> []
| t::q when (t >= pmin && t <= pmax && (fst t) > (x-.delta)

&& (snd t) < (x+.delta))
-> t::(filtre pmin pmax x delta q)

| _::q -> (filtre pmin pmax x delta q);;

val filtre : float * float -> float * float -> float -> float ->
(float * float) list -> (float * float) list = <fun>

22. On fournit également le plus « petit » point et le plus « grand » point (pour l’ordre lexicographique) de
Eg ∪Ed pour que les points de la bande soient bien uniquement des points de Eg ∪Ed, car si les points sont
par exemple tous alignés le long d’une droite parallèle à l’axe des ordonnées, on courrait le risque d’obtenir
systématiquement la totalité des points du nuage dans la bande !
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Une fonction calculant la distance entre deux points (couples) :

# let dist pt1 pt2 =
sqrt ((fst pt1 -. fst pt2)**2. +. (snd pt1 -. snd pt2)**2.);;

val dist : float * float -> float * float -> float = <fun>

Une fonction prenant un paramètre δ et une liste P ′′ de points à l’intérieur d’une bande
de largeur 2δ (les points étant ordonnés dans la liste passée en argument par abscisse
croissante), et retournant le minimum entre δ et la plus petite des distances entre deux
points de la bande 23 :

let minBande delta = function
| [] -> delta (* = delta si la liste est vide *)
| _::[] -> delta (* = delta s'il y a un seul point *)
| p1::q -> let pool = ref q (* points à examiner *)

and i = ref 0 (* index dans la bande *)
and mini = ref delta (* plus petite distance *)
and tab = Array.make 5 p1 in (* -> 5 derniers points *)
while !pool <> [] do

let np = List.hd !pool in
for j = !i downto (max 0 (!i-4)) do
mini := min !mini (dist np tab.(j mod 5))

done;
i := !i+1;
tab.(!i mod 5) <- np; (* On garde le point *)
pool := List.tl !pool; (* pour la suite... *)

done;
!mini;;

val minBande : float -> (float * float) list -> float = <fun>

23. En profitant bien évidemment du fait qu’on ne doit au plus considérer que 5 voisins pour chaque point ;
plutôt que de calculer les distances avec les 5 points suivants, on préfère ici déterminer les distances avec les 5
points précédents dans la liste P ′′, le tableau tab contenant, à tout instant, les cinq précédents points examinés.

Et enfin, l’algorithme proprement dit qui utilise les fonctions précédemment définies :

# let minDist lst =
let p = tri (function x -> x) lst
and pprime = tri snd lst in
let rec aux = function

(* Terminaisons *)
| [] -> failwith "Pas assez de points"
| _::[] -> failwith "Pas assez de points"
| p1::p2::[] -> dist p1 p2
| p1::p2::p3::[] -> min (min (dist p1 p2) (dist p1 p3))

(dist p2 p3)

(* Récursions *)
| lst -> let l1, l2 = partition lst in (* Appels récursifs *)

let dg = aux (List.rev l1) (* sur les moitiés *)
and dd = aux (List.rev l2) in (* du nuage *)

let x = fst (List.hd l1) (* x du pt milieu *)
and delta = min dd dg
and pmin = List.hd lst (* premier point *)
and pmax = List.hd l2 in (* dernier point *)
let bande = filtre pmin pmax x delta pprime in
minBande delta bande

in aux p;;

val minDist : (float * float) list -> float = <fun>

Terminons avec un test :

# minDist [ 1.,3.; 4.,7.; 6.,2.; 9.,1.; 8.,3.; 3.,2.;
1.,8.; 3.,9.; 4.,4.; 5.,8.; 2.,5.; 7.,6. ];;

- : float = 1.4142135623730951
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7Logique propositionnelle

1 Propositions logiques

1.1 Introduction

Comme en mathématiques, la logique très naturellement a un rôle majeur en informa-
tique. Il n’est en effet pas rare d’être amené à devoir prouver, par exemple, la correction ou
la terminaison d’un programme, ce qui nécessitera un cadre logique rigoureux.

L’objectif de ce cours est de poser quelques bases de raisonnements logiques, permettant
notamment la formalisation de propositions logiques formulées en langage naturel. Avant
de nous lancer, efforçons nous d’illustrer le type de logique que l’on s’efforcera d’étudier
dans ce cours, afin d’éviter d’éventuels malentendus. Nous ne nous intéresserons ici qu’à
la logique appelée logique propositionnelle.

On qualifiera de variable propositionnelle 1 un énoncé qui est, sans ambiguité, soit vrai,
soit faux. On les représente typiquement par des lettres majuscules (cursives dans ce
cours). Par exemple, les énoncés suivants qui, au moment présent, sont soit vrai, soit faux,
sont de possibles variables propositionnelles :

A – il pleut ;
B – je n’ai pas de parapluie ;
C – je suis mouillé.

Il est possible de combiner ces variables propositionnelles avec des connecteurs logiques
pour construire des formules propositionnelles. Par exemple, « A et B », il pleut et je n’ai
pas de parapluie, est une formule propositionnelle. De même que « A ou C », il pleut ou je
suis mouillé. Ces formules propositionnelles sont également soit vraies, soit fausses. Par
exemple, s’il ne pleut pas, que je n’ai pas de parapluie et que je suis mouillé, la première
formule propositionnelle est fausse et la seconde est vraie. On peut également nier une
variable propositionnelle : « non A » correspond ainsi à l’énoncé logique il ne pleut pas.

Les formules ainsi obtenues peuvent à leur tour être combinées grâce aux connecteurs
logiques pour former d’autres formules propositionnelles plus complexes.

1. Le terme « variables » dans un cadre informatique, peut prêter à confusion : il n’y a rien de « variable » à
proprement parler, cela fait simplement ici référence aux énoncés, vrais ou faux, servant de base à la construction
des formules.

Attention, on ne s’intéresse pas, dans le cadre de la logique propositionnelle, aux relations
possibles (de cause à effet par exemple) entre les différents énoncés logiques. Je peux très
bien être mouillé tout en ayant mon parapluie, ou être mouillé même s’il ne pleut pas.

Des affirmations logiques telles que « quel que soit le temps, si j’ai un parapluie, je ne suis
pas mouillé » appartiennent au domaine de la logique des prédicats, qui sort du cadre de ce
cours. En particulier, nous ne ferons pas intervenir dans ce cours les quantifieurs que l’on
trouve dans les démonstrations mathématiques, tels que « quel que soit » ou « il existe »,
qui appartiennent à cette logique des prédicats.

On verra cependant apparaître dans ce cours la notion logique d’implication et
d’équivalence, dans une utilisation toutefois subtilement différente de ce qu’elle est usuel-
lement en mathématiques. Par exemple, l’énoncé « A et B → C » peut très bien être faux :
par exemple s’il pleut, que j’ai mon parapluie et que je suis mouillé. Si je veux pouvoir
exprimer que, quel que soit le temps, si j’ai mon parapluie, je ne suis pas mouillé, c’est du
domaine de la logique des prédicats.

Cela ne veut pas dire que l’on ne puisse pas obtenir des résultats logiques à partir de
la seule logique propositionnelle : si les trois énoncés « A et B → C », « A » et « non C »
sont tous trois vrais, alors nous verrons qu’il est possible d’en déduire que l’énoncé « B »
est faux (j’ai mon parapluie). En effet, si « B » était vrai, au moins l’un des trois énoncés
précédent serait également faux.

1.2 Définition

Définition. Formellement, on construit une formule propositionnelle a par induction
structurelle à partir

• de deux constantes ⊤ et ⊥ (faisant respectivement référence à quelque chose de
« toujours vrai » et « toujours faux ») ;

• d’un ensemble V = {A ,B, . . .} fini ou dénombrable de variables propositionnelles ;
• des constructeurs binaires (qualifiés de connecteurs logiques) de conjonction, noté

∧, de disjonction, noté ∨, d’implication, noté →, et d’équivalence, noté ↔, ainsi
que d’un constructeur unaire de négation, noté ¬.

a. On parle également de proposition logique, de formule logique ou d’expression logique, les termes et
notations peuvent varier d’un ouvrage à l’autre.

Nous le verrons, les connecteurs logiques de conjonction et de disjonctions sont liés
aux notions de « et logique » et de « ou 2 logique ». Il est donc d’usage de lire ∧ et ∨
respectivement « et » et « ou ». De même, la négation sera généralement lue « non ». Nous
reviendrons sur la signification donnée aux opérateur d’implication et d’équivalence un
peu plus loin.

2. Il s’agit ici d’un ou inclusif, « A ou B » étant vrai également lorsque A et B sont tous deux vrais. Le « ou »
en langage courant pouvant être tantôt inclusif, tantôt exclusif.
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1.3 Représentation arborescente

Il est naturel de représenter une proposition logique par un arbre binaire, où les
constantes ⊤ et ⊥ et variables propositionnelles se retrouvent dans les feuilles, et les
connecteurs logiques binaires et unaires font office de nœuds internes. Par exemple :

∨

∧ ∨

¬ ∨ ⊥ ¬

A B ⊤ C

Précisons que, même si ce n’est pas le cas sur cet exemple, une même variable proposi-
tionnelle peut apparaître à plusieurs endroits dans l’arbre, ou bien ne pas apparaître du
tout. Il en est évidemment de même pour ⊤ et ⊥ 3.

Il en découle naturellement une implémentation en langage OCaml d’un type permet-
tant de représenter des propositions logiques :

# type 'a proposition =
| Vrai (* pour représenter ⊤ *)
| Faux (* pour représenter ⊥ *)
| Var of 'a (* pour une variable propositionnelle *)
| Conj of 'a proposition * 'a proposition (* ∧ *)
| Disj of 'a proposition * 'a proposition (* ∨ *)
| Impl of 'a proposition * 'a proposition (* → *)
| Equiv of 'a proposition * 'a proposition (* ↔ *)
| Neg of 'a proposition;; (* ¬ *)

Le type 'a correspond au type utilisé pour identifier les différentes variables. Puisque
nous représentons les variables propositionnelles par des lettres, on utilisera généralement
dans la suite des caractères. Notre arbre d’exemple se déclare donc en OCaml de la sorte :

Disj (Conj (Neg (Var 'A'), Disj (Var 'B', Vrai)),
Disj (Faux, Neg (Var 'C')));;

Définition. La hauteur et la taille d’une proposition logique correspondent respective-
ment à la hauteur et la taille de l’arbre qui lui est associé.

3. Nous verrons un peu plus tard que ⊤ et ⊥ sont même inutiles, excepté dans les cas particuliers où l’arbre
est réduit à une feuille ⊤ ou à une feuille ⊥.

La formule propositionnelle nous servant d’exemple a donc une hauteur égale à 3 et une
taille égale à 11.

On peut donc déterminer la hauteur d’une formule propositionnelle en OCaml comme
on a pu le faire précédemment dans le cas d’un arbre binaire (et il en serait de même pour
sa taille) :

# let rec hauteur = function
| Vrai | Faux | Var _

-> 0
| Disj (a, b) | Conj (a, b) | Impl (a, b) | Equiv (a, b)

-> 1 + max (hauteur a) (hauteur b)
| Neg a

-> 1 + hauteur a;;

val hauteur : 'a proposition -> int = <fun>

1.4 Expressions parenthésées

Représenter une formule propositionnelle par un arbre n’est pas toujours commode. On
préfère souvent, comme il est d’usage en mathématiques, utiliser une écriture infixe de
l’arbre, en employant systématiquement des parenthèses pour éviter les ambiguïtés.

Par exemple, la formule propositionnelle précédente s’écrira :

((¬(A ))∧ ((B)∨ (⊤)))∨ ((⊥)∨ (¬(C )))

Il est possible de définir les formules propositionnelles directement sous cette forme par
induction structurelle 4 :

Définition. Soit V un ensemble fini ou dénombrable de variables vi

• « ⊤ » est une formule propositionnelle ;
• « ⊥ » est une formule propositionnelle ;
• pour toute variable propositionnelle vi ∈ V , « vi » est une formule proposition-

nelle ;
• si f est une formule propositionnelle, alors « ¬(

f
)

» est une formule proposition-
nelle ;

• si f et g sont deux formules propositionnelles, alors «
(

f
)∧ (

g
)

», «
(

f
)∨ (

g
)

»,
«

(
f
)→ (

g
)

» et «
(

f
)↔ (

g
)

» sont également des formules propositionnelles.

4. Les définitions sont équivalentes, cette écriture n’étant qu’une retranscription systématique et rigoureuse
du parcours infixe de l’arbre.
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Afin d’éviter l’abondance de parenthèses dans les formules propositionnelles, on
convient généralement d’une priorité pour les constructeurs : ¬ est prioritaire sur ∧,
lui-même prioritaire sur ∨, à son tour prioritaire sur → et ↔ 5. En outre, les formules
propositionnelles s’interprètent usuellement de la gauche vers la droite 6. On peut alors ne
pas écrire les parenthèses inutiles, ce que nous ferons dans la suite de ce cours. L’écriture
de la formule propositionnelle précédente peut donc se simplifier en

¬A ∧ (B∨⊤)∨ (⊥∨¬C )

1.5 Écriture de Łukasiewicz

Afin d’éviter la profusion de parenthèses dans certaines formules, le logicien polonais
J. Łukasiewicz a proposé d’écrire les formules propositionnelles au moyen du parcours
préfixe de l’arbre. De cette façon, il n’est pas besoin d’utiliser des parenthèses, l’arité des
connecteurs logiques étant connue. Ainsi, pour l’exemple précédent, on écrirait :

∨ ∧ ¬ A ∨ B ⊤ ∨ ⊥ ¬ C

On remarquera que l’ordre des symboles correspond précisément à l’ordre dans lequel
ils apparaissent dans la définition de la proposition en OCaml (ce qui est naturel dans la
mesure où les contructeurs en OCaml précèdent leurs arguments), même si la syntaxe
OCaml requiert l’utilisation de parenthèses.

Bien qu’elle présente des avantages en terme de notation et d’utilisation, cette notation
n’est plus guère utilisée en logique. Elle a un pendant, dite notation polonaise inverse, où
l’on utilise le parcours postfixe de l’arbre.

2 Sémantique des propositions logiques

2.1 Distributions de vérité

Une distribution de vérité consiste à préciser, pour un ensemble de variables proposi-
tionnelles, lesquelles sont vraies et lesquelles sont fausses. Formellement :

Définition. Soit un ensemble fini V de n variables propositionnelles vi .

On qualifie de distribution de vérité µ sur cet ensemble V une application de V dans Bn ,
où B = {V ,F} désigne l’ensemble des booléens.

5. Les priorités entre → et ↔ sont mal définies, on préférera systématiquement utiliser des parenthèses dans
ce cas pour éviter les ambiguïtés.

6. Ainsi, A ∨B ∨C correspond à (A ∨B)∨C , tandis que A ∨ (B∨C ) est une formule différente. Nous
verrons toutefois qu’elles sont équivalentes.

Notons que la définition peut aisément être étendue au cas d’un ensemble V dénom-
brable. Le point important est que µ permette d’associer à toute variable propositionnelle
v un booléen (V ou F), et il n’est pas rare que l’on adopte une définition plus générale de µ
qui ne se préoccupe pas précisément de la question de l’ensemble de définition.

S’il est relativement fréquent de noter, en français, les deux éléments de l’ensemble
B des « booléens » (ou valeurs booléennes) V et F, cette fois encore, cette notation peut
varier d’un ouvrage à l’autre 7. Le booléen V est associé à la notion de « vrai », tandis que le
booléen F est associé à la notion de « faux ».

Lemme 3. Il y a 2n distributions de vérité sur un ensemble V de cardinal n.

2.2 Évaluation

Définition. Soit µ une distribution de vérité sur un ensemble de variables V .

L’évaluation associée à la distribution de vérité µ est l’application, notée Eµ ou
[
µ
]

de
l’ensemble des formules propositionnelles sur V vers l’ensemble des booléens B = {V ,F}
définie par induction structurelle par :

• Eµ(⊤) = V ;

• Eµ(⊥) = F ;

• pour tout vi ∈V , Eµ(vi ) =µ(vi ) ;

• Eµ
(¬ f

)= V si Eµ
(

f
)= F, et Eµ

(¬ f
)= F sinon;

• Eµ
(

f ∧ g
)= V si Eµ

(
f
)= Eµ

(
g
)= V, et Eµ

(
f ∧ g

)= F sinon;

• Eµ
(

f ∨ g
)= F si Eµ

(
f
)= Eµ

(
g
)= F, et Eµ

(
f ∨ g

)= V sinon;

• Eµ
(

f → g
)= F si Eµ

(
f
)= V et Eµ

(
g
)= F, et Eµ

(
f → g

)= V sinon;

• Eµ
(

f ↔ g
)= V si Eµ

(
f
)= Eµ

(
g
)
, et Eµ

(
f ↔ g

)= F sinon.

Par exemple, pour la distribution de vérité µ= {A 7→ V ,B 7→ F ,C 7→ V}, l’évaluation de
notre proposition logique ¬A ∧ (B∨⊤)∨ (⊥∨¬C ) donne F.

Le comportement des constructeurs de conjonction, disjonction et négation justifient
ici qu’on les appelle « et », « ou » et « non ». En effet, pour que A ∧B soit évalué à V (vrai),
il faut que A et B le soient tous deux. Les opérateurs d’implication et d’équivalence ont
un comportement qui est cohérent avec le sens qu’on leur donne usuellement en mathé-
matiques, mais il faut prendre garde qu’ils ne représentent, dans le cadre de la logique
propositionnelle, que des connecteurs logiques et non des articulations du raisonnement.

On peut obtenir très simplement une fonction OCaml évaluant une formule proposi-
tionnelle, la distribution de vérité étant fournie sous la forme d’une fonction de 'a dans
l’ensemble des booléens B = {V ,F }. On utilisera naturellement pour B le type bool du

7. Pour des raisons à la fois pratiques et liées à l’informatique, V est fréquemment noté 1 et F, 0.
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langage OCaml (et donc les constantes true et false), ce qui permettra d’utiliser les
opérateurs booléens not, && et || :

# let rec eval mu = function
| Vrai -> true
| Faux -> false
| Var i -> mu i
| Neg a -> not (eval mu a)
| Conj (a, b) -> (eval mu a) && (eval mu b)
| Disj (a, b) -> (eval mu a) || (eval mu b)
| Impl (a, b) -> not (eval mu a) || (eval mu b)
| Equiv (a, b) -> (eval mu a) = (eval mu b);;

val eval : ('a -> bool) -> 'a proposition -> bool = <fun>

2.3 Tables de vérité

Définition. La table de vérité d’une formule propositionnelle f est le tableau contenant
son évaluation pour toutes les distributions de vérité µ possibles.

La table de vérité associée à notre proposition logique ¬A ∧ (B∨⊤)∨ (⊥∨¬C ) est :

µ(A ) µ(B) µ(C ) Eµ(¬A ∧ (B∨⊤)∨ (⊥∨¬C ))

F F F V
F F V V
F V F V
F V V V
V F F V
V F V F
V V F V
V V V F

Pour construire une fonction OCaml prenant une liste d’identifiants de variables propo-
sitionnelles et une formule propositionnelle, et affichant la table de vérité correspondante,
on peut utiliser un dictionnaire 8 9 mémorisant les µ(vi ), afin de permettre l’évaluation de
la proposition pour les différentes distributions de vérité à considérer.

8. Si les variables étaient indexées par des entiers, c’est-à-dire si le type 'a correspond au type int, il serait
plus simple d’utiliser un vecteur pour ce faire. Nous avons préservé ici la possibilité d’indexer les variables avec
un type 'a quelconque, la seule contrainte étant qu’il soit hachable.

9. Les instructions Hashtbl.remove dico vi ne sont pas indispensables, mais l’implémentation des diction-
naires en Caml mémorisant l’historique des associations, cela évite de gaspiller de la mémoire inutilement.

Cela donnerait par exemple 10 :

# let table vars expr =
let dico = Hashtbl.create 97 in
let mu = function vi -> Hashtbl.find dico vi in
let rec aux pre = function
| [] -> print_string pre;

print_char (if (eval mu expr) then 'V' else 'F');
print_newline ()

| vi::q -> Hashtbl.add dico vi false;
aux (pre^"F ") q;
Hashtbl.remove dico vi;
Hashtbl.add dico vi true;
aux (pre^"V ") q;
Hashtbl.remove dico vi;

in aux "" vars;;

val table : 'a list -> 'a proposition -> unit = <fun>

Les tables de vérité fournissent naturellement une manière alternative de décrire le
comportement d’un connecteur logique dans le cadre de l’évaluation. .

Par exemple, les opérateurs de négation ¬, de conjonction ∧ et de disjonction ∨ sont
associés aux tables de vérités suivantes 11 :

A ¬A

F V
V F

A B A ∧B

F F F
F V F
V F F
V V V

A B A ∨B

F F F
F V V
V F V
V V V

Ceux d’implication et d’équivalence correspondent aux tables suivantes :

A B A →B

F F V
F V V
V F F
V V V

A B A ↔B

F F V
F V F
V F F
V V V

10. Les concaténations de chaînes en série ne sont pas idéales en terme de complexité, mais pour une fonction
effectuant un affichage avec un nombre limité de variables propositionnelles, cela n’est pas bien gênant.

11. On notera que les intitulés de colonnes ont été simplifiés pour en faciliter la lecture.
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2.4 Équivalence logique

Définition. Deux formules propositionnelles f et g sont dites (logiquement) équiva-
lentes si et seulement si leurs tables de vérités coïncident, c’est-à-dire si leurs évaluations
sont les mêmes pour toute distribution de vérité µ.

L’équivalence logique de deux propositions logiques f et g est notée f ≡ g .

De façon évidente, ¬¬A et A sont deux formules propositionnelles équivalentes. Mais
attention, elles ne sont pas pour autant égales ! En effet, les arbres correspondant à ces
propositions sont différents.

De même, les propositions logiques (A ∧B)∧C et A ∧ (B∧C ) sont équivalentes,
comme le prouvent les tables de vérité ci-dessous, mais ne sont pas égales.

A B C A ∧B (A ∧B)∧C

F F F F F
F F V F F
F V F F F
F V V F F
V F F F F
V F V F F
V V F V F
V V V V V

A B C B∧C A ∧ (B∧C )

F F F F F
F F V F F
F V F F F
F V V V F
V F F F F
V F V F F
V V F F F
V V V V V

Théorème 6 (Principe de substitution). Soit V = {v1, v2, . . . , vn} un ensemble de variables
propositionnelles, et F1(v1, v2, . . . , vn) et F2(v1, v2, . . . , vn), deux formules proposition-
nelles équivalentes faisant intervenir tout ou partie de ces variables.

Quelles que soient les formules propositionnelles f1, f2, . . . , fn , on a

F1
(

f1, f2, . . . , fn
)≡ F2

(
f1, f2, . . . , fn

)
Ce résultat découle très naturellement des règles par induction structurelle régissant

l’évaluation de formules propositionnelles, mais l’écriture rigoureuse de la preuve est un
peu lourde, donc nous l’admettrons ici. Si les formules propositionnelles fi font intervenir
des variables propositionnelles différentes, l’équivalence se fait en considérant l’ensemble
des variables propositionnelles figurant dans au moins une des formules fi .

Théorème 7 (Lois de De Morgan). Si f et g sont deux propositions logiques, alors
• ¬ f ∧¬g ≡¬(

f ∨ g
)

;
• ¬ f ∨¬g ≡¬(

f ∧ g
)
.

Démonstration. Pour la première loi, il suffit de vérifier que pour deux variables logiques
A et B, on a ¬A ∧¬B ≡¬(A ∨B) en comparant les tables de vérité :

A B ¬A ∧¬B

F F V
F V F
V F F
V V F

A B ¬(A ∨B)

F F V
F V F
V F F
V V F

Puis d’utiliser le principe de substitution pour le généraliser à deux propositions logiques
quelconques f et g .

Il en est de même pour la seconde loi.

Lemme 4. Soit f une formule propositionnelle.

L’une des propositions suivantes est nécessairement vraie :
• f ≡⊤ ;
• f ≡⊥ ;
• il existe une formule propositionnelle g ne faisant intervenir ni ⊤ ni ⊥ telle que

f ≡ g

Démonstration. Une façon triviale de parvenir à ce résultat est de remarquer les équi-
valences ⊤≡ v ∨¬v et ⊥≡ v ∧¬v , de sorte qu’il est de toute façon toujours possible de
construire ⊤ et ⊥ à partir d’une variable quelconque. Cette solution rend toutefois la
proposition logique plus complexe, or avec à peine plus de travail, on peut éliminer les ⊥
et ⊤ en simplifiant la proposition.
Grâce au principe de substitution, on montre aisément que, pour toute formule proposi-
tionnelle f ,

• f ∨⊤≡⊤ et f ∨⊥≡ f (et de même ⊤∨ f ≡⊤ et ⊥∨ f ≡ f ) ;
• f ∧⊤≡ f et f ∧⊥≡⊥ (et de même ⊤∧ f ≡ f et ⊥∧ f ≡⊥) ;
• f →⊤≡⊤, f →⊥≡¬ f , ⊤→ f ≡ f et ⊥→ f ≡⊤ ;
• f ↔⊤≡ f et f ↔⊥≡¬ f (et de même ⊤↔ f ≡ f et ⊥↔ f ≡¬ f ) ;

On procède ensuite par induction structurelle : pour toute proposition logique f ,
• si f ≡⊤ ou f ≡⊥, on en a terminé ;
• si f =¬ f ′, on s’intéresse à f ′ :

— si f ′ ≡⊤, alors f ≡⊥ ;
— si f ′ ≡⊥, alors f ≡⊤ ;
— si f ′ ≡ g ′ où g ′ ne fait intervenir ni ⊤ ni ⊥, il suffit de choisir g =¬g ′.

• si f = f1 ∧ f2, f = f1 ∨ f2, f = f1 → f2 ou f = f1 ↔ f2, on détermine deux équivalents
à f1 et f2 satisfaisant aux conditions, et on applique les équivalences précédentes si
les équivalents de f1 ou de f2 sont ⊤ ou ⊥.

Par exemple, notre proposition logique ¬A ∧ (B∨⊤)∨ (⊥∨¬C ) est équivalente à la
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proposition logique ¬A ∨¬C (soit encore ¬(A ∧C ) d’après les lois de De Morgan), ce
que l’on retrouve d’ailleurs dans la table de vérité précédemment écrite.

Ce résultat relativise l’utilité de ⊤ et ⊥ dans les formules propositionnelles : on peut
toujours trouver une formule équivalente qui ne les fait pas intervenir 12.

2.5 Autres connecteurs binaires

Il est possible de construire 24 = 16 connecteurs logiques binaires distincts, c’est-à-dire
qui donnent, pour deux arguments A et B, des formules propositionnelles qui ne sont pas
équivalentes, dont six n’ont pas d’intérêt : deux ont des évaluations qui ne dépendent ni
de l’évaluation de A , ni de celle de B (ils sont équivalents à ⊤ et ⊥), et quatre autres ne
dépendent que de celle d’un seul des deux arguments (ils sont équivalents à A , ¬A , B et
¬B).

Nous avons d’ores et déjà rencontré quatre de ces connecteurs logiques : conjonction,
disjonction, implication et équivalence. Quatre autres connecteurs logiques binaires sont
plus rarement utilisés en mathématiques et en logique, mais beaucoup plus souvent en
informatique et en électronique : les connecteurs logiques « ou exclusif » (noté ⊕), « non-
et » (noté NAND), « non-ou » (noté NOR) et « inhibition » (noté INH). On peut les définir par
équivalence 13 :

• A ⊕B ≡ (A ∧¬B)∨ (¬A ∧B) (ou ¬(A ↔B)) ;
• A NAND B ≡ ¬(A ∧B) ;
• A NOR B ≡ ¬(A ∨B) ;
• A INH B ≡ A ∧¬B (ou ¬(A →B)).

Ou bien via leurs tables de vérité :

A B A ⊕B

F F F
F V V
V F V
V V F

A NAND B

V
V
V
F

A NOR B

V
F
F
F

A INH B

F
F
V
F

On remarquera qu’il s’agit de la négation des quatres connecteurs déjà étudiés. Parmi
ces huit connecteurs binaires, deux (le connecteur d’implication et celui d’inhibition) ne
sont pas commutatifs. Les deux connecteurs binaires restants correspondent simplement
à la permutation de leurs arguments.

12. Excepté éventuellement dans le cas d’une formule toujours vraie ou toujours fausse, encore que si l’on
dispose d’une variable propositionnelle A quelconque, on peut utiliser ⊤≡A ∨¬A et ⊥≡A ∧¬A !

13. Dans le cas du connecteur d’inhibition, il arrive que le rôle des deux arguments soit inversé, l’écriture
utilisée ici n’est pas universelle.

2.6 Systèmes complets

Si disposer de nombreux connecteurs logiques permet d’exprimer plus simplement
une formule propositionnelle donnée, on peut se passer de la plupart d’entre eux, grâce
notamment aux équivalences vues précédemment.

Définition. Un ensemble de connecteurs logiques forme un système complet si, pour
toute formule propositionnelle sur un ensemble de variables propositionnelles V , il est
possible d’écrire une formule équivalente avec ces seuls connecteurs.

Lemme 5. {∧,¬} et {∨,¬} sont des systèmes complets.

Démonstration. Pour vérifier que {∧,¬} est un système complet, il suffit de constater,
grâce aux lois de De Morgan, que A ∨A est équivalent à ¬(¬A ∧¬A ).

Nous avons déjà précisé que → et ↔ pouvaient être remplacées par des combinaisons de
¬, ∧ et ∨. Pour n’importe quelle formule propositionnelle f , on peut ainsi construire une
formule propositionnelle f ′ équivalente à f à partir des seuls connecteurs ∧ et ¬.

Il en est de même pour {∧,¬} : A ∧B est en effet équivalent à ¬(¬A ∨¬B).

Lemme 6. {NAND} et {NOR} sont des systèmes complets.

Démonstration. Pour montrer que NAND constitue, à lui seul, un système complet, il suffit
de voir que ¬A est équivalent à A NANDA , et que A ∧B est équivalent à (A NAND B)NAND

(A NAND B).

Puisque {∧,¬} est un système complet, {NAND} l’est également.

De même, pour {NOR}, on remarque que ¬A est équivalent à A NOR A et A ∧B à
(A NOR A ) NOR (B NOR B).

NAND étant à lui seul un système complet, il s’agit de la porte logique la plus courante
en électronique, tout circuit logique pouvant être construit à partir de cette seule porte, y
compris des cellules mémoire.

Outre cet intérêt évident dans le domaine de l’électronique, les systèmes complets
permettent également de simplifier certaines démonstrations. Par exemple, nous avons
montré précédemment que, pour toute formule propositionnelle qui n’était équivalente ni
à ⊤, ni à ⊥, on pouvait trouver une formule propositionnelle équivalente ne faisant inter-
venir ni ⊤, ni ⊥. On peut simplifier cette démonstration en commençant par éliminer tous
les connecteurs logique exceptés par exemple ∧ et ¬. Une fois ceci fait, il reste beaucoup
moins de cas à analyser dans la démonstration!

Usuellement, un système dit complet ne nécessite pas l’utilisation des constantes ⊤ et ⊥.
Mais on peut généraliser les choses et construire des systèmes complets basés sur un ou
plusieurs constructeur(s) et l’une ou l’autre des constantes ⊥ et ⊤.
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Par exemple, {→,⊥} est un système complet. En effet, on a ((A →⊥)→B)→⊥ ≡ A NOR

B. {NOR} étant un système complet, il en est de même pour {→,⊥}.

A B A →⊥ (A →⊥)→B ((A →⊥)→B)→⊥
F F V F V
F V V V F
V F F V F
V V F V F

3 Satisfiabilité et déduction logique

3.1 Tautologies et antilogies

Définition. On qualifie de tautologie une formule propositionnelle qui est évaluée à V
quelle que soit la distribution de vérité. On qualifie d’antilogie une formule proposition-
nelle qui est évaluée à F quelle que soit la distribution de vérité.

Par exemple, les formules A∨¬A, A→A ou bien (A∧¬B)↔ (¬(¬A∨B)) sont des tau-
tologies. Pour une propriété logique en général, cela peut se vérifier aisément en travaillant
avec les tables de vérité. Par exemple, pour la troisième formule propositionnelle :

A B A∧¬B ¬A∨B (A∧¬B)↔ (¬(¬A∨B))

F F F V V
F V F V V
V F V F V
V V F V V

3.2 Satisfiabilité

Définition. Une formule propositionnelle f est dite satisfiable s’il existe une distribution
de vérité µ telle que son évaluation Eµ

(
f
)

soit égale à V.

Une telle distribution est appelée un modèle de f .

Une antilogie est donc une formule propositionnelle qui n’est pas satisfiable, ou en
d’autres termes une formule propositionnelle qui n’admet aucun modèle. Une tautologie
est toujours satisfiable, puisque n’importe quelle distribution de probabilité µ convient.

Par exemple, la proposition logique (A →B)∧ (B→¬A ) est satisfiable. En effet, la
distribution de vérité µ telle que µ(B) = V et µ(B) = F convient.

3.3 Déduction logique

Définition. Soient deux formules propositionnelles f et g . On dit que g est une consé-
quence de f , et on note f Í g , lorsqu’il n’existe aucune distribution de véritée telle
que g soit évaluée à faux et f à vrai. En d’autres termes, lorsque tout modèle de f est
également un modèle de g .

f est qualifié de prémisse et g de conclusion.

Attention, f → g et f Í g ne signifient pas du tout la même chose :

• f → g est une proposition logique, qui peut tout à fait être fausse (on peut écrire
⊤→⊥, c’est une proposition logique fausse) ;

• f Í g affirme qu’il est impossible que f soit fausse tandis que g est vraie.

Ainsi, f Í g signifie que f → g est une tautologie.

La différence est la même entre le connecteur logique ↔ et la notation ≡ dénotant
l’équivalence entre deux formules propositionnelles, et de fait, f ≡ g sigifie que f ↔ g est
une tautologie.

Il est possible de se servir de cette notation pour décrire les propriétés d’une formule
propositionnelle f . Par exemple, f est une tautologie si et seulement si ⊤Í f . De même, f
est une antilogie si et seulement si f Í⊥ 14.

3.4 Conséquence d’un ensemble de formules

On peut étendre cette notion de conséquence logique à un ensemble de formules propo-
sitionnelles Γ= {

f1, f2, . . .
}

:

Définition. Soient un ensemble de formules propositionnelles Γ= {
f1, f2, . . .

}
et une

formule propositionnelle g . On dit que g est une conséquence de Γ, et on note ΓÍ g ,
lorsqu’il n’existe aucune distribution de véritée telle que g soit évaluée à faux et que
toutes formules fi soient évaluées à vrai. En d’autres termes, lorsque tout modèle de
l’ensemble des fi est également un modèle de g .

Si l’ensemble Γ est un ensemble fini de n formules 15, ΓÍ g correspond simplement 16 à
f1 ∧ f 2∧ . . .∧ fn Í g .

⊤ étant l’élément neutre pour ∧, si l’on écrit « Í f » (sans rien à gauche du symbole Í,
soit Γ=;), on sous-entend ⊤Í f . Autrement dit, « Í f » signifie que f est une tautologie.

14. Attention au sens de ces expressions ! On a toujours f Í⊤ et ⊥Í f quelle que soit f .
15. Ce qui n’est pas forcément toujours le cas
16. On considère que Í a ici la précédence la plus faible, de sorte que les parenthèses sont inutiles.
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3.5 Un exemple d’utilisation

Reprenons l’exemple de l’introduction, avec les variables propositionnelles A, B et C
énoncées de la sorte :

A – il pleut ;
B – je n’ai pas de parapluie ;
C – je suis mouillé.

Considérons les trois formules propositionnelles suivantes :

A ∧B→C – s’il pleut et que je n’ai pas de parapluie, je suis mouillé ;
A – il pleut ;
¬C – je ne suis pas mouillé.

Ces trois formules peuvent-elles être toutes les trois vraies simultanément, ou en d’autres
termes admettent-elles un modèle commun?

Cela revient à se poser la question de la satisfiabilité de la conjonction des trois formules
propositionnelles, c’est-à-dire de (A ∧B→C )∧ (A )∧ (¬C ).

Pour le savoir, une solution simple est de construire la table de vérité correspondante :

A B C (A ∧B→C )∧ (A )∧ (¬C )

F F F F
F F V F
F V F F
F V V F
V F F V
V F V F
V V F F
V V V F

On constate qu’il existe une distribution de vérité (plus précisément la distribution de
vérité µ= {A 7→ V ,B 7→ F ,C 7→ F }) pour laquelle l’évaluation de la conjonction des trois
formules propositionnelle est évaluée à vrai. La conjonction des trois formules considérée
est donc effectivement satisfiable.

On peut constater par ailleurs que cette distribution de vérité est unique, et qu’elle
impose µ(B) = F, autrement dit « j’ai un parapluie ».

On peut donc écrire (A ∧B→C )∧ (A )∧ (¬C ) Í ¬B.

Ou bien encore, de façon équivalente, {A ∧B→C , A , ¬C } Í ¬B.

4 Quelques propriétés logiques

4.1 Propriétés de ∧

Théorème 8. Soient f1, f2, f3 trois formules propositionnelles quelconques.

élément neutre : ⊤∧ f1 ≡ f1 ∧⊤ ≡ f1

élément absorbant : ⊥∧ f1 ≡ f1 ∧⊥ ≡ ⊥
idempotence : f1 ∧ f1 ≡ f1

commutativité : f1 ∧ f2 ≡ f2 ∧ f1

associativité :
(

f1 ∧ f2
)∧ f3 ≡ f1 ∧

(
f2 ∧ f3

)
Ces propriétés sont assez immédiates, et se démontrent aisément en utilisant les tables

de vérité et le principe de substitution. Précisons que les noms associés aux propriétés
précédentes du connecteur logique ∧ sont liés au vocabulaire des opérateurs. En effet, ∧
(comme tout connecteur logique) peut être vu comme une loi de composition interne sur
l’ensemble des booléens B.

4.2 Propriétés de ∨

Théorème 9. Soient f1, f2, f3 trois formules propositionnelles quelconques.

élément neutre : ⊥∨ f1 ≡ f1 ∨⊥ ≡ f1

élément absorbant : ⊤∨ f1 ≡ f1 ∨⊤ ≡ ⊤
idempotence : f1 ∨ f1 ≡ f1

commutativité : f1 ∨ f2 ≡ f2 ∨ f1

associativité :
(

f1 ∨ f2
)∨ f3 ≡ f1 ∨

(
f2 ∨ f3

)

4.3 Propriétés mêlant ∧ et ∨

Théorème 10. Soient f1, f2, f3 trois formules propositionnelles quelconques.

subsomption : f1 ∨
(

f1 ∧ f2
) ≡ f1

f1 ∧
(

f1 ∨ f2
) ≡ f1

distributivité : f1 ∧
(

f2 ∨ f3
) ≡ (

f1 ∧ f2
)∨ (

f1 ∧ f3
)

f1 ∨
(

f2 ∧ f3
) ≡ (

f1 ∨ f2
)∧ (

f1 ∨ f3
)

lois de De Morgan : ¬(
f1 ∨ f2

) ≡ ¬ f1 ∧¬ f2

¬(
f1 ∧ f2

) ≡ ¬ f1 ∨¬ f2
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4.4 Propriétés de ↔

Théorème 11. Soient f1, f2, f3 trois formules propositionnelles quelconques.

élément neutre : ⊤↔ f1 ≡ f1 ↔⊤ ≡ f1

négation : ⊥↔ f1 ≡ f1 ↔⊥ ≡ ¬ f1

réflexivité : f1 ↔ f1 ≡ ⊤
commutativité : f1 ↔ f2 ≡ f2 ↔ f1

associativité :
(

f1 ↔ f2
)↔ f3 ≡ f1 ↔

(
f2 ∧ f3

)
Le terme de réflexivité qualifie usuellement, en mathématique, des relations. Les connec-

teurs logiques binaires peuvent en effet être vus comme des relations entre formules
propositionnelles, puisqu’une formules propositionnelles telle que f ↔ g , par exemple,
sera vraie ou fausse.

La propriété de commutativité de ↔ (considéré comme une loi de composition interne
sur B) peut donc être également vue comme une propriété de symétrie (en considérant ↔
comme une relation sur B).

On peut également ajouter une propriété, fréquemment utilisée dans les raisonnements,
qui mélange ↔ et ∧ :

Théorème 12. Soient f1, f2, f3 trois formules propositionnelles quelconques.

transitivité :
(

f1 ↔ f2
)∧ (

f2 ↔ f3
) Í f1 ↔ f3

Cela fait de ↔ une relation d’équivalence sur l’ensemble des booléens B (d’où le nom
donné au connecteur logique !)

4.5 Propriétés de →

Théorème 13. Soient f1, f2, f3 trois formules propositionnelles quelconques.

réflexivité : f1 → f1 ≡ ⊤
antisymétrie :

(
f1 → f2

)∧ (
f2 → f1

) ≡ f1 ↔ f2

transitivité :
(

f1 → f2
)∧ (

f2 → f3
) Í f1 → f3

Ces propriétés confèrent à →, lorsqu’on le considère comme une relation entre formules
propositionnelles, un caractère de relation d’ordre.

Rappelons que la loi de composition interne associée à → n’est pas commutative, comme
nous l’avons vu avec sa table de vérité. Elle n’est pas non plus associative ((⊥→⊥)→⊥ est
par exemple évaluée à faux, tandis que ⊥→ (⊥→⊥) est évaluée à vrai).

Là encore, les deux dernières propriétés exposées précédemment sont des idées utilisées
fréquemment dans les raisonnements.

4.6 Propriétés de ⊕

Théorème 14. Soient f1, f2, f3 trois formules propositionnelles quelconques.

élément neutre : ⊥⊕ f1 ≡ f1 ⊕⊥ ≡ f1

négation : ⊤⊕ f1 ≡ f1 ⊕⊤ ≡ ¬ f1

nilpotence : f1 ⊕ f1 ≡ ⊥
commutativité : f1 ⊕ f2 ≡ f2 ⊕ f1

associativité :
(

f1 ⊕ f2
)⊕ f3 ≡ f1 ⊕

(
f2 ⊕ f3

)
On remarquera par ailleurs que

(
f1 ⊕ f2

)⊕ f2 ≡ f1, ce qui se révèle assez fréquemment
utile en électronique et en informatique.

4.7 Outils pour les raisonnements

Nous avons vu précédemment quelques propriétés logiques utiles pour le raisonnement.
Il en existe de nombreuses autres. En voici quelques-unes :

Théorème 15. Soient f1, f2, f3 trois formules propositionnelles quelconques.

tiers exclu : f1 ∨¬ f1 ≡ ⊤
modus ponens : f1 ∧

(
f1 → f2

) Í f2

modus tollens :
(

f1 → f2
)∧¬ f2 Í ¬ f1

disjonction de cas :
(

f1 → f2
)∧ (¬ f1 → f2

) Í f2

double implication :
(

f1 → f2
)∧ (

f2 → f1
) ≡ (

f1 ↔ f2
)

contraposition :
(

f1 → f2
) ≡ (¬ f2 →¬ f1

)
raisonnement par l’absurde :

(¬ f1 →⊥) ≡ f1

ex-falso quodlibet : ⊥ Í f1

Ces propriétés peuvent évidemment être combinées. Par exemple, de la double implica-
tion et de la contraposition, on peut en déduire que

(
f1 → f2

)∧ (¬ f1 →¬ f2
) ≡ (

f1 ↔ f2
)
.

Précisons que la dernière propriété ne présente guère d’intérêt pratique... Elle affirme
simplement qu’une contradiction permet de démontrer n’importe quoi. Ce qui fait que
l’on ne s’intéresse généralement qu’à des théories non-contradictoires, sinon n’importe
quelle affirmation est vraie (de même que sa négation).
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5 Formes normales et formes canoniques

5.1 Formes conjonctives et disjonctives

Pour faciliter la manipulation de propositions logiques, il est utile de pouvoir se ramener
à une forme aussi simple et standard que possible. Les formes conjonctives et disjonctives
remplissent cet office.

Définition. On appelle littéral toute formule propositionnelle de la forme v ou ¬v où v
est une variable propositionnelle (A , B, C ...)

On appelle conjonction des formules propositionnelles f1, ..., fn la formule proposition-
nelle f1 ∧ f2 ∧ . . .∧ fn .

On appelle disjonction des formules propositionnelles f1, ..., fn la formule proposition-
nelle f1 ∨ f2 ∨ . . .∨ fn .

On qualifie de forme conjonctive une conjonction de disjonction de littéraux.

On qualifie de forme disjonctive une disjonction de conjonction de littéraux.

Par exemple :
• « (A ∨C )∧ (B∨C )∧D » une forme conjonctive ;
• « A∧B∨A ∧D∨B∧C » est une forme disjonctive 17.

Il s’agit en quelque sorte des équivalents des notions de « forme factorisée » et « forme
développée » des propositions mathématiques.

5.2 Formes normales

Théorème 16. Pour toute formule propositionnelle, on peut trouver une formule proposi-
tionnelle équivalente ayant une forme conjonctive, ainsi qu’une formule propositionnelle
équivalente ayant une forme disjonctive.

Définition. On dit qu’une proposition logique est sous forme normale conjonctive (FNC)
lorsqu’elle est écrite sous une forme conjonctive, et sous forme normale disjonctive
(FND) lorsqu’elle est écrite sous une forme disjonctive.

Démonstration. Pour démontrer l’affirmation précédente, le plus simple est d’exhiber
une méthode permettant de construire des propositions logiques équivalentes sous
forme conjonctive et disjonctive.

Si l’on considère la table de vérité associée à une proposition logique, il est trivial que de

17. On rappelle que ∧ est prioritaire sur ∨.

construire une disjonction de conjonction de littéraux équivalente à cette proposition
logique : il suffit en effet de traduire les différentes lignes de la table correspondant à des
résultats « vrais ».

Pour trouver une conjonction de disjonctions de littéraux équivalente à une proposition
f , on détermine une disjonction de conjonction de littéraux équivalente à ¬ f (ce qui
revient à dresser la liste des lignes de la table de vérité correspondant à des résultats
« faux ») puis on utilise une loi de De Morgan pour transformer la forme disjonctive en
forme conjonctive.

Par exemple, pour la proposition logique f = ((A ⊕B)∨B∧¬C )∧A , on construit la
table de vérité :

A B C ((A ⊕B)∨B∧¬C )∧A

F F F F
F F V F
F V F F
F V V F
V F F V
V F V V
V V F V
V V V F

Cette table de vérité contient trois lignes pour lesquelles f est évaluée à vrai. La formule
propositionnelle f est donc équivalente à la disjonction des trois conjonctions correspon-
dantes :

A ∧¬B∧¬C ∨ A ∧B∧¬C ∨ A ∧¬B∧C .

Les cinq autres lignes correspondent aux modèles pour la négation de notre formule pro-
positionnelle, ¬ f =¬(((A ⊕B)∨B∧¬C )∧A ). ¬ f est donc équivalente à la disjonction
des cinq conjonctions suivantes :

¬A ∧¬B∧¬C ∨ ¬A ∧B∧¬C ∨ ¬A ∧¬B∧C ∨ ¬A ∧B∧C ∨ A ∧B∧C .

Par conséquent, notre formule propositionnelle f est équivalente à :

¬
(
¬A ∧¬B∧¬C ∨ ¬A ∧B∧¬C ∨ ¬A ∧¬B∧C ∨ ¬A ∧B∧C ∨ A ∧B∧C

)
.

En utilisant les lois de De Morgan sur le terme de droite, on en déduit que f est équiva-
lente à la conjonction des cinq disjonctions suivantes :

(A ∨B∨C ) ∧ (A ∨¬B∨C ) ∧ (A ∨B∨¬C ) ∧ (A ∨¬B∨¬C ) ∧ (¬A ∨¬B∨¬C ) .

Les formes conjonctive et disjonctive ainsi obtenues ne sont pas les seules possibles, la
formule f est par exemple équivalente aux deux formes suivantes, plus succintes :

f ≡ A ∧¬B ∨ A ∧¬C ≡ A ∧ (¬B∨¬C ) .
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5.3 Formes canoniques

Définition. Soit un ensemble V = {A ,B, . . . } de n variables propositionnelles.

Un maxterme sur V est une disjonction de n littéraux où chacune des n variables
propositionnelles apparaît exactement une fois.

Un minterme sur V est une conjonction de n littéraux où chacune des n variables
propositionnelles apparaît exactement une fois.

On qualifie de conjonctive canonique un conjonction de maxtermes, et de forme dis-
jonctive canonique un disjonction de mintermes.

Les dénominations « maxterme » et « minterme » méritent un mot d’explication. Comme
on l’a évoqué, il est fréquent d’associer à F la valeur 0, et à V la valeur 1. Dans ce cadre,
l’évaluation d’une disjonction de plusieurs termes revient à prendre le maximum de
l’évaluation de chacun des termes : en effet, le résultat vaudra « 0 » si et seulement si tous
les termes sont évalués à 0, et 1 dès qu’au moins un terme est évalué à 1. De la même façon,
l’évaluation d’une conjonction de plusieurs termes revient à conserver le minimum des
évaluations de chacun des termes.

Théorème 17. Pour toute formule propositionnelle f sur un ensemble V = {A ,B, . . . }
de n variables propositionelles, il existe une unique (à une permutation près des termes)
forme conjonctive canonique équivalente à f , et une unique forme disjonctive canonique
équivalente à f .

Démonstration. La méthode pour construire les formes normales conjonctives et dis-
jonctives dans la preuve précédente construit en fait des formes normales conjonctives
et disjonctives canoniques, ce qui permet d’affirmer leur existence.

Pour justifier leur unicité, on peut remarquer que les mintermes et maxtermes appa-
raissant dans les formes normales canoniques correspondent exactement aux lignes
d’une table de vérité. Par conséquent, deux formes conjonctives canoniques distinctes
(autrement que par permutation des termes) conduisent à des tables de vérité différentes,
et ne peuvent donc pas être sémantiquement équivalentes.

5.4 Les problèmes « k-SAT »

Les problèmes « k-SAT » s’efforcent de répondre à la question suivante : une proposition
logique sous forme normale conjonctive est-elle satisfiable ?

Dans ce cadre, une disjonction de littéraux est généralement appelée « clause ». On parle
de « k-clause » lorsque la clause fait intervenir k littéraux.

Par exemple, (A ∨D) et (B∨C ∨¬E ) sont des exemples de clauses (respectivement une
2-clause et une 3-clause).

Les formules propositionnelles qui nous intéressent ici sont donc des conjonctions de
clauses. Par exemple, on s’intéresse à la satisfiabilité de la proposition

(A ∨D)∧ (¬A ∨¬B∨C )∧ (B∨¬D)∧ (¬C ∨E )∧ (C ∨E )∧ (B∨¬C ∨¬E )

Cet proposition logique est bien satisfiable, avec, par exemple, la distribution de vérité
{A 7→ V ,B 7→ F ,C 7→ F ,D 7→ F ,E 7→ V }.

Un problème « k-SAT » s’intéresse spécifiquement à la satisfiabilité de conjonction de
k-clauses. Le problème « 1-SAT » est trivial (la conjonction est satisfiable si et seulement si
un littéral et sa négation n’apparaissent pas tous deux dans la conjonction).

Il a été montré qu’il était possible de déterminer si une conjonction de 2-clauses était
satisfiable (problème « 2-SAT ») avec un algorithme dont la complexité est polynomiale.
De même, il a été montré que l’on pouvait résoudre la question de la satisfiabilité d’une
conjonction de k-clauses avec k > 3 aussi efficacement que la question de la satisfiabilité
d’une conjonction de 3-clauses (problème « 3-SAT »).

L’essentiel des recherches actuellement porte sur ce problème « 3-SAT ». À l’heure ac-
tuelle, on ne connaît pas d’algorithme permettant de déterminer si une telle conjonction
est satisfiable en temps polynomial, même si l’on peut vérifier en temps polynomial si une
distribution de vérité donnée est un modèle pour la conjonction.

Des problèmes de ce type sont qualifiés par les chercheurs en théorie de la complexité
de problème « NP ». Le problème « 3-SAT » a une particularité supplémentaire : il a été
montré que n’importe quel problème NP peut être résolu en résolvant un problème de type
« 3-SAT ». Les problèmes « 3-SAT » sont en quelque sorte les problèmes les plus difficiles
parmi les problèmes « NP ».

Ainsi, trouver un algorithme permettant de déterminer si une conjonction de 3-clauses
est satisfiable en temps polynomial aurait pour conséquence que pour tout problème
dont une solution peut être vérifiée en temps polynomial, il existerait nécessairement
un algorithme permettant de décider en temps polynomial si une telle solution existe ou
non. C’est le fameux problème dit « P

?= NP », un problème considéré comme l’un des
plus importants en informatique, notamment en raison de ses nombreuses conséquences
pratiques (par exemple, les nombreux moyens d’authentification et de chiffrement actuels
reposent sur des problèmes pour lesquels il est possible de vérifier en un temps raisonnable
si une solution est correcte, mais que trouver une solution correcte est en revanche bien
trop coûteux en temps de calcul).
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