Introduction au langage Caml

Présentation

1.1 Lelangage Caml

Le langage Caml est un langage créé par I'INRIA en 1985. La version actuelle du langage,
OCaml, activement développée et largement utilisée, est celle imposée par le programme
d’option informatique !. La documentation officielle du langage peut étre obtenue sur le
site de 'INRIA, a I’adresse http://caml.inria.fr/

En principe, Caml est un langage compilé, c’est-a-dire qu'une fois le programme Caml
écrit, on utilise un compilateur qui traduit, une fois pour toute, le code Caml en une suite
d’instructions qui seront directement compréhensibles et exécutables par le processeur.
Toutefois, des environnements de développement tels que WinCaml et MacCaml ? (res-
pectivement pour Windows et OS-X) permettent de simuler une utilisation interactive du
langage, ce qui permet, si on le souhaite, d’exécuter les commandes une a une et d’étudier
le résultat qu’elles fournissent.

1.2 Philosophie du langage

Il existe différentes facons d’aborder la notion de programmation.

La programmation impérative est basée sur la notion de machine abstraite, constituée
d’'une mémoire et d’'une suite d’instructions qui modifient I'état de la mémoire 3. La gestion
de la mémoire est, souvent, en grande partie a la charge du programmeur.

La programmation fonctionnelle, quant a elle, repose avant tout sur la définition et
I’évaluation de fonctions, et évite le mécanisme d’affectation. Il n’est donc pas besoin de
se soucier de la facon dont la mémaoire est gérée.

1l existe également une programmation dite objet, centrée autour des données que 'on
manipule, auxquelles sont directement associées des méthodes agissant sur ces données.

1. A compter de janvier 2018. Avant cette date, le programme imposait Caml Light, une version antérieure du
langage, dont la syntaxe est quelque peu différente. Gardez cela en téte si vous parcourez des ouvrages ou des
annales se référant a I'ancien langage.

2. Quel'on trouvera al’adresse http://jean.mouric.pagesperso-orange.fr/. Attention, OCaml et Caml
Light sont tous deux disponibles, il faudra bien choisir le bon langage via le menu CamlTop.

3. Clest le style de programmation que vous avez principalement utilisé en Python.

OCaml, comme la plupart des langages modernes * permet d'utiliser les trois styles de
programmation, comme nous le verrons, mais est d’abord un langage fonctionnel. Pour
cette raison, nous étudierons dans un premier temps cet aspect du langage, avant de
revenir sur le style impératif qui vous est plus familier.

Premiers pas

2.1 Calculer avec l'interface

Linterface qui nous est proposée est divisée en deux. La partie gauche est un éditeur
de texte dans lequel nous allons taper les différentes commandes. Ces commandes sont
ensuite exécutées dans la partie droite, laquelle fournira la différents résultats. Un rac-
courci clavier (Ctrl-Entrée sous Windows, par exemple) permet d’exécuter la commande
actuellement mise en valeur dans I'éditeur a gauche.

Effectuer un calcul avec Caml est simple. Il suffit d’entrer une expression que I’on termine
par un double point-virgule. Ce double point-virgule indique, en Caml, la terminaison
d’une expression, d'une commande ou d'une définition. le symbole # ne fait pas partie de
Pexpression, mais il est indiqué ici pour distinguer les expressions envoyées a Caml des
retours.

Intéressons-nous a la réponse de Caml. Il nous indique trois éléments. Au centre est
précisé le type du résultat, ici un entier (int). Le résultat proprement dit se trouve a droite
du signe égal, ici 5. Nous reviendrons plus tard sur I'’élément a gauche des deux points.

Pour les calculs sur les entiers, on dispose des opérateurs d’addition (noté +), de soustrac-
tion (noté -), de multiplication (noté *) et de division entiere (noté /). Il n'y a en revanche
pas d’opérateur pour I'exponentiation.

Il est également possible de travailler avec des flottants, mais il y a une subtilité spécifique
a Caml. En effet, la solution « naturelle » provoque une erreur :

# 1. v 801488
Characters 2-
+

AAAA

Error: This expression has type float but
an expression was expected of type int

4. Dont Python!



La raison de cette erreur est que Caml utilise des opérateurs différents pour chaque type
qu'’il peut manipuler.

Pour les nombres flottants, les quatres opérateurs courants sont suivis d’'un point (soit +.
-. x. et/.). On dispose aussi d'un opérateur d’exponentiation, cette fois sans point (*x).

# 1. +. . **%
- : float =

Naturellement, les priorités habituelles des opérateurs (puissance prioritaire sur la
multiplication et la division, elles-mémes prioritaires sur I'addition et la soustraction) sont
respectées

# + *
- : int =

’

Si 'on souhaite effectuer les opérations dans un ordre différent, il est naturellement
possible d’utiliser des parentheses :

# (2 +

) * 5;;
- :1nt =

En 'absence de régle de priorités, I'évaluation se fait de gauche a droite, excepté I'expo-
nentiation évaluée de droite a gauche (comme en Python) :

# - - )y

= int =

# *%x 1. *% 2
= float =

2.2 Typage fort

Si l'utilisation d’opérateurs différents en fonction du type peut paraitre contraignante,
ce choix a été fait pour permettre a Caml de déterminer automatiquement, aussi souvent
que possible, les types des opérandes.

Par exemple, lorsque 'on écrit x + y, Caml peut en déduire que les identifiants x et y
sont a des entiers.

Par ailleurs, Caml utilise ce que I’on appelle un typage fort, c’est-a-dire qu’il n’essaiera
jamais, de lui méme, de changer le type d’'un objet pour pouvoir réaliser une opération .
Ainsi, la somme suivante provoque une erreur :

5. Python a également un typage fort (par exemple, range(2.0) est refusé), mais comme c’est un langage
polymorphe et que les fonctions et opérateurs usuels s'accomodent de types différents, c’est moins évident.

# 3.0 +. 2;;
Characters 9-
+.

Error: This expression has type int but
an expression was expected of type float

En effet, 'opérateur +. attend impérativement des flottants pour chacun de ses deux
opérandes, or 2 est un entier. Ce que laisse clairement comprendre la réponse de Caml
dans I’exemple précédent.

Quand bien méme la conversion d'un entier en flottant ne poserait ici aucun probleme
particulier, Caml ne le fera jamais de lui-méme 8. Il en est de méme sur ce second exemple :

#2+3.05;
Characters 7-
+

Error: This expression has type float but
an expression was expected of type int

11 est heureusement possible de convertir un type en un autre, a condition de le faire
explicitement. Ainsi, la fonction float_of_int permet de convertir un entier en flottant :

# 3.0 +. float_of_int 2;;
- : float =

De méme, int_of_float permet d’effectuer la conversion inverse (en tronquant la
valeur réelle si nécessaire) :

# 2 + int_of_float 3.0;;
- . int =

# 2 + int_of_float 3.5;;
- . int =

Notons ici 'absence de parenthéses encadrant I'argument des fonctions, et qu’en terme
de priorités le calcul de float_of_int 2 ou int_of_float ont été effectués avant
I'addition, nous y reviendrons un peu plus tard.

6. Python non plus, mais 'opérateur + en Python accepte une grande quantité de types pour chaque opérande,
et notamment float pour 'opérande de gauche et int pour celui de droite; le résultat est alors un flottant, le
calcul étant fait sur des flottants en convertissant préalablement I'entier en flottant. La conversion n’est PAS
automatique, c’est 'implémentation de I'opérateur + qui le demande explicitement dans cette situation.



Définitions

3.1 Définitions globales

Il est possible d’associer un nom (un ensemble de chiffres et de lettres, commencant par
une lettre) a une valeur grace a 'instruction let. C’est une définition.

Cette définition n’est pas modifiable, méme s'il est possible de définir a nouveau le nom
pour I'associer 4 une autre valeur .

# let x = 2;;
val x : int = 2

La troisieme information que nous retourne Caml, la plus a gauche, correspond donc au
nom auquel est associé le résultat. Si aucun nom n’est défini, on trouvera simplement un
tiret - a gauche.

Une fois le nom défini, il peut étre utilisé dans des calculs.

# let x = 2;;
val x : int = 2

#x *x 3+ 4;;
- : int = 10

Dans la définition, on peut parfaitement utiliser une expression. Celle-ci est évaluée
immédiatement, et c’est le résultat obtenu qui est associé au nom.

# let x = 2;;
val x : int = 2

#lety = x + 5;;
val y : int

1
~

#y;;
- :int =7

Puisque c’est le résultat qui est associé au nom y, une nouvelle définition de x n’a aucune
incidence sur celle de y :

# let x = 2;;
val x : int = 2

(* On définit ici le nom x *)

7. La distinction est subtile, nous y reviendrons un peu plus tard.

# let y = x + 5;;
val y : int = 7

(x On définit a présent le nomy  *)

# let x = 6;; (* On redéfinit le nom x *)
val x : int = 6
#y;; (* Cela n'a aucune incidence sur y %)

- :int =7

11 est par ailleurs possible d’effectuer plusieurs définitions d'un seul coup, grace au
mot-clé and :

# let x =7 and y = 8;;
val x : int =7
val y : int = 8

Attention, les définitions sont interprétées simultanément et non successivement,
comme on peut le voir si I’'on redéfinit x et y en écrivant :

# let x = 7 and
val x : int =7
val y : int = 8

y = 8;;

# let x = 0 and y = x;;
val x : int = 0
val y : int = 8

(* Le valeur associée a x dans la seconde %)
(x définition est celui de la définition %)
(x précédente, c'est-a-dire x=7 et non x=0 %)

Cela permet de redéfinir deux noms en échangeant les valeurs associées :

# let x =1 and y = 2;;
val x : int =1
val y : int = 2

# let x =y and y
val x : int = 2
val y : int =1

1
x

3.2 Définitions locales

11 est également possible de définir un nom qui n’existera que le temps de I'évaluation
d’une expression, grace au mot-clé in.



#leta=1+11ina* 3;; n Les fonctions
- :1int = 6

4.1 Fonctions avec un unique argument

On peut vérifier que la définition n’existe que le temps d’évaluer 'expressiona + 3:
Il existe de nombreuses fagons de définir des fonctions en Caml. Par exemple, on peut

" ) vouloir créer une fonction f définie par?® :
ai;

R— R
Characters 2-3:

a;; x— 3x°
Error: Unbound value a La facon la plus simple de procéder est d’écrire
On peut également faire des définitions locales multiples : # let f x = 3. *. x %% 2.;;

val f : float -> float = <fun>
=1land b =2 in a + b;;

# let a

X La signature obtenue indique que f désigne a présent une fonction (<fun>) qui prend en
- : in

argument un flottant et retourne un flottant. Lusage d'un opérateur spécifique pour les

nombres flottants a permi a Caml d’identifier correctement le type attendu pour I’argument
Il est possible d’utiliser une définition globale d'un nom qui a déja été défini globalement. de la fonction.

La définition globale n’est pas affectée :

3

On utilise ensuite cette fonction de la sorte :

# let x = 0;; #f 4.0;;
x : int = 4 - : float = 48.0
# let x = 5 in x + 6;; ou bien encore
- :int = 11
# let z = 2.5 in f z;;
# x5 - : float = 18.75
- . int = 0
Il est également possible de définir localement des fonctions, par exemple :
Il est possible d’'imbriquer les définitions, par exemple #let gx=x*3ing4:;
- :int = 12
# let x = 7 in let x = x - 8 in x + 9;;
- : int = 8 # g5
En fait, on peut décoder cette instruction un peu obscure en identifiant plus clairement Characters 2-3:
les deux définitions qui interviennent : g5
Error: Unbound value g
# let x = 7 in let xx = x - 8 in xx + 9;;
- : int = 8 J
8. La fonction ne sera pas réellement définie sur R mais simplement sur les flottants.




On remarque que le langage Caml n'utilise pas de parentheses autour de 'argument lors
de la définition de la fonction. En mettre ne provoquera pas une erreur, mais ce n’est pas
I'usage car elles ne sont pas nécessaires. De la méme facon, on n’en utilise pas non plus
lorsque I'on fait appel a la fonction.

Il y a cependant une exception a cette régle, lorsque I’argument est négatif. Il convient
d’écrire

#f (-4.0);;
- : float =

En effet, ne pas mettre les parenthéses déclenche une erreur :

#f -4.0;;

Characters 2-
f-4.05;
Error: This expression has type float -> float
but an expression was expected of type int

Dans ce dernier cas, Caml pense que I'on a essayé de soustraire I'entier? alentier
f, et constaté que f était non pas un entier, mais une fonction prenant en argument un
flottant et retournant un flottant, d’ot1 le message d’erreur.

Compte tenu de 'ambiguité, il n’a pas pu reconnaitre que le signe moins était I'opérateur
unaire utilisé pour définir les nombres négatifs, et non 'opérateur binaire de soustraction.
L'usage de parentheses permet de résoudre cette difficulté.

4.2 Le mot-clé « function »

Une autre maniere de définir une fonction est d’utiliser le mot-clé function, qui utilise
une syntaxe treés proche des mathématiques :

# let f = function x -> 3.0 *x. x *. X;;
val f : float -> float = <fun>

La signature obtenue est exactement la méme, et sont utilisation est identique :

#f 4.0;;
- : float =

J

9. 4.0 n'est évidemment pas un entier, mais pour Caml, les deux éléments a gauche et a droite de I'opérateur -
devraient I'étre. S’il n’y avait pas eu une erreur de type pour f, il y aurait eu une erreur de type sur 4. 0.

En fait, on retrouve en Caml deux syntaxes similaires a celles qui, en Python, permettent
de définir une fonction, 'approche « classique » :

def f(x) :
return * X**%

et celle inspirée des langages fonctionnels utilisant le mot-clé lambda '°

f = lambda x : * Xkk ]

Comme lambda en Python, function en Caml permet de définir anonymement une
fonction. Il est ensuite possible d’associer un identifiant a la fonction via 1et (oul’opérateur
d’affectation en Python).

4.3 Arguments multiples

1l est possible d’utiliser les constructions précédentes pour définir ce qui s’apparente a
des fonctions a plusieurs variables.

Par exemple, on peut écrire

# let f = function x -> function y -> x + y;;
val f : int -> int -> int = <fun>

En fait, la fonction f est une fonction qui prend en argument un élément de Z et retourne
une fonction de Z a valeur dans Z.

Une telle construction correspond, mathématiquement, a :
Z— (Z— 7Z)

f zZ—7Z
x|—>

C’est'interprétation qu’il faut donner a la signature fournie par Caml. Elle est équiva-
lente a int -> (int -> int), méme sil'interpréteur n'indiquera pas, dans ce cas, les
parentheses, car la signature est lue de gauche a droite.

Si l'on fournit un int a la fonction f, on obtient donc une fonction de signature
int -> int. Ainsi,

#f 25
- : int -> int = <fun>

10. Cette seconde syntaxe n’est pas exigible aux concours, et est a utiliser avec parcimonie.



On peut donner un nom a cette fonction, puis s’en servir :

# let g = f 2;;
val g : int -> int = <fun>

#g 3;;
- :int = 5

Heureusement, il n'est pas nécessaire d’aller si loin pour utiliser la fonction f. Par
exemple, on pourrait envisager de déterminer f 2, puis d’appliquer le résultat a 3, en
imposant cet ordre d’évaluation grace a des parenthéses :

- :int =5

# (f 2) 3;; }

Plus simplement encore, Caml évaluant les expression de la gauche vers la droite (on
parle d’association a gauche), 'expression f 2 3 est équivalente a (f 2) 3:

#f 2 3;;
- :int =5

Utiliser le mot-clé fonction (lequel ne permet de définir que des fonctions avec un
unique argument) de la sorte étant un peu lourd, on dispose d'un autre mot-clé, fun qui
est une sorte de raccourci :

# let f = fun x y -> x + y;;
val f : int -> int -> int = <fun>

#f 2 3;;
- :int =5

On remarque que la signature est exactement la méme, et que f se comporte exactement
de la méme facon.

On peut également définir f d’'une troisieme et derniére facon, encore plus breve :

#let f xy=x+y;;
val f : int -> int -> int = <fun>

#f 2 3;;
- :int =5

4.4 Signature de la fonction

Comme on a pu le voir sur les exemples précédents, Caml détermine automatiquement
le type des arguments de la fonction, ainsi que le type du résultat. Cela est rendu possible
par le fait que les opérateurs nous renseignent sur la nature des opérandes. Il n'y a par
exemple aucune ambiguité dans les définitions suivantes :

# let f x y = int_of_float x + y;;
val f : float -> int -> int = <fun>

#let g f=°Ff1+. 2.;;
val g : (int -> float) -> float = <fun>

Cela permet a Caml de détecter tres tot d’éventuelles erreurs :

# let h x y = int_of_float x +. y;;

Characters 15-29:
let h x y = int_of_float x +. y;;
AAAAAAAAAAAAAA
Error: This expression has type int but
an expression was expected of type float

Il arrive parfois cependant qu’il ne soit pas possible de déterminer le type d'un argument,
comme dans les exemples ci-dessous :

# let premier x y = x;;
val premier : 'a -> 'b -> 'a = <fun>

# let second x y = vy;;
val second : 'a -> 'b -> 'b = <fun>

Ce sont des fonctions dites polymorphes. Le type 'a (ou 'b) indique que n'importe quel
type est accepté. Cependant, dans la premiere fonction par exemple, le type du résultat
sera, tout naturellement, le type du premier argument!

On peut ainsi utiliser les fonctions précédents avec des types différents :

# premier 1 2;;
- :int =1

# premier 1.0 2.0;;
- : float

1]
N
S




Ces fonctions peuvent étre réutilisées dans d’autres fonctions, et le mécanisme de déter-
mination des types tachera toujours de déterminer le type d'un maximum d’arguments et
de résultats :

# let somme x y = premier x y + second x y;;
val somme : int -> int -> int = <fun>

# let somme x y = premier x y + second y Xx;;
val somme : int -> 'a -> int = <fun>

Dans les deux définitions précédentes, la présence de I'opérateur + impose que les
résultats des appels a premier et second sont tous deux des entiers. Dans le premier cas,
cela impose le type de x et y, mais dans le second cas, cela n'impose que le type de x, d’out
les signatures différentes.

I Les principaux types manipulés par Caml

5.1 Les entiers

Caml peut, on I'’a vu, manipuler des entiers. Ils sont stockés sur 63 bits ! (le 64¢ bit est
en fait réservé pour un usage interne), en utilisant la regle du complément a deux pour
représenter les entiers négatifs, ce qui signifie que I'on peut manipuler des entiers compris
entre —2%% = —4611686018427387904 et 252 — 1 = 4611686018427387903.

En cas de dépassement, il y a un débordement, qui peut avoir des conséquences néfastes
sil’'on n'y prend pas garde :

# + 155
- :int = -

- int = -

Le nom max_int désigne le plus grand entier positif représentable (soit 26 — 1), et
min_int est son pendant négatif.

# max_int;;
- . int =

On dispose, on I'a vu, des opérateurs d’addition (+), de soustraction (-), de multiplication
(*) et de division (/). Dans ce dernier cas, le résultat étant un entier, c’est le quotient de la

11. Ou bien 31 bits sur une machine 32 bits.

division entiere qui est retourné. Pour obtenir le reste de cette division entiéere, on dispose
de 'opérateur mod.

# / HH

- . int =

# mod M
- . int =

5.2 Les flottants

Il est également possible de manipuler des nombres flottants. Ce sont des nombres
flottants sur 64 bits respectant la norme IEEE 12 avec les limitations inhérentes en terme
de précision et de valeurs représentables.

Lalettre « e » permet de définir un exposant (qui doit étre entier). En1’absence d’exposant,
le séparateur décimal (un point) est requis pour éviter toute confusion possible avec des
entiers.

Nous avons déja signalé I'existence des opérateurs courants (+. —. *. /. et x%), auxquels
s’ajouent de nombreuses fonctions mathématiques (sqrt, exp, log, sin, cos, tan, asin,
acos, atan...) Précisions que le logarithme fourni a travers la fonction log est le logarithme
népérien et non décimal.

# let pi =
- : float

in tan (pi /. 4.0);;

# log oS
- : float

# sqrt (exp 1.0);;
- : float =

5.3 Les caracteres et chaines de caracteres

Caml propose un type char pour désigner les caracteres. On les représente encadrés du
symbole ' (guillemets droits simples).

# let car = 'f';;
val car : char = 'f'

12. Soit, en particulier, un bit de signe, onze bits pour I'exposant et cinquante-deux bits pour la mantisse.



Les chaines de caracteres, qui regroupent plusieurs caracteres, sont d'un type différent,
string. On les représente entourées de " (guillemets droits supérieurs doubles).

# let ch = "nénuphar”;;
val ch : string = "nénuphar”

La concaténation de chaine est possible grace a I'opérateur * (circonflexe) :

"micro” * "mega";;
- : string = "micromega”

La fonction String. length retourne la longueur d'une chaine fournie en argument :

# String.length;;
- : string -> int = <fun>

String.length ch;;
- . int =

11 est possible extraire le i¢ caractere d'une chaine de caracteres grace a la fonction
String.get, le résultat étant évidemment un caractere :

+

String.get;;
string -> int -> char = <fun>

+H

String.get ch 4;;

- : char = 'p

Notons que I'indexation commence a 0, comme trés souvent en informatique.

Comme c’est une opération courante, il existe une autre maniere d’accéder a un caractere
dans une chaine :

# ch.[4];;
- : char = 'p'

On peut également extraire une sous-chaine d'une chaine de caracteéres en spécifiantl'in-
dice de départ et la longueur de la sous-chaine souhaitée, grace a la fonction String.sub:

# String.sub;;
- : string -> int -> int -> string = <fun>

+

String.sub ch HE
- : string = "ph”

De méme qu’il est possible de convertir des entiers en flottants et inversement, on
peut convertir des valeurs numériques en chaines de caractéres et inversement avec
les fonctions string_of_int, string_of_float, float_of_stringet float_of_int.On
dispose également de char_of_int et int_of_char pour convertir un code ASCII en
caractere et inversement. La bibliotheque standard de Caml fournit encore bien d’autres
fonctions pour manipuler les chaines de caractéres, que vous pourrez retrouver dans la
documentation du langage.

5.4 Letypeunit

Il n'est pas rare que certaines fonctions effectuent une opération particuliére (modifica-
tion de données, par exemple '3) mais n’'aient pas de résultat a retourner. Pour des raisons
de cohérence, Caml impose que toute fonction retourne quelque chose, aussi dispose-t-on
d’un type particulier désignant en fait, en quelque sorte, la notion de « rien ». C’est le type
unit, qui compte () comme seul et unique représentant du type .

C’est par exemple le type retourné par les fonctions effectuant des affichages. 1l existe
une fonction d’affichage pour tous les types courants :

# print_int 3;;
- . unit =

# print_float 3.14;;
- :unit =

# print_string "Blop”;;
Blop- : unit = ()

La lecture de la réponse n’est pas facile, ici, car I'affichage demandé se confond avec la
valeur de retour de la fonction. Il ne faut pas oublier que Caml n’est pas, a l'origine, un
langage interactif, et les types et valeurs retournés par les fonctions n’apparaissent pas
lorsqu’on exécute normalement le programme. Seul les affichages produit par les fonctions
print_ sont visibles, d’oui leur importance.

Caml n'effectue aucun retour a la ligne, afin de permettre plusieurs affichages sur la
méme ligne. La fonction print_newline permet d’obtenir ce retour a la ligne. En principe,
elle ne devrait pas nécessiter d’argument, mais si I'on met uniquement le nom de la
fonction, on obtient simplement sa signature!

# print_newline;;
- : unit -> unit = <fun>

13. On dit qu’elles ont un « effet de bord ».
14. Le type unit correspond au type NoneType de Python, dont le seul représentant est None, et qui existe pour
des raisons similaires.



Aussi pour faire appel a la fonction, on lui fournit en argument un objet de type unit,
soit nécessairement () :

# print_newline ();;

- :unit = O

5.5 Les booléens
Caml dispose également d'un type booléen, bool, qui n’a que deux représentants, true
et false (sans majuscule).

On note !5 88 'opérateur logique « et », et | | I'opérateur logique « ou ». Lopérateur
unaire not permet d’obtenir la négation d'une valeur booléenne.

Lopérateur not a la plus grande priorité, suivi de && et enfin de | | :

# true &% true || false && false;;
- : bool = true

+H

not false || true;;
bool = true

Mais on peut naturellement utiliser des parenthéses pour changer cet ordre d’évaluation :

N

# not (false || true);;
- : bool = false

Caml dispose de différents opérateurs pour comparer deux éléments : on écrira = pour
tester 1'égalité, <> pour tester la « non-égalité », et enfin < <= > >= pour ce qui est
des comparaisons. Ces opérateurs ont priorité sur les opérateurs logiques. Ce sont des
opérateurs polymorphes, qui acceptent n'importe quel type :

# 3.14 = 1.41;;
- : bool = false

# |al <> ‘Z';;
- : bool = true

# "toto" <= "blop";;
- : bool = false

15. Signalons que Caml tolére l'utilisation de or ala place de | | (mais pas de and, qui est réservé pour des
définitions multiples!), de méme que & a la place de && (Mais pas de | ici, réservé pour un usage que nous verrons
un peu plus tard).. Nous éviterons ces notations dans la suite.

On notera que P'égalité s’écrit avec un unique signe égal, et sa négation avec <> 6.

Pour qu’'une comparaison soit valide, cependant, il faut que les deux éléments comparés
soient impérativement de méme type :

#3=3.05;

Characters 6-

)
AAA

Error: This expression has type float but
an expression was expected of type int

Dans le cas des chaines de caracteres, c’est I'ordre lexicographique qui est utilisé. Pour
comparer les caracteres entre eux, la relation d’ordre fait référence au code ASCII 17 18,

Signalons enfin que I'évaluation des expressions booléennes est paresseuse, c’est-a-dire
qu’elle cesse dés que I'on a pu déterminer avec certitude le résultat, sans évaluer la totalité
des expressions, comme le montrent ces exemples (I’expression contenant une division
par zéro dans la premiere expression n’est jamais évaluée) :

#2<3 || (1/0) == 42;;
- : bool = true

#2>3 || (1/0) == 42;;
Exception: Division_by_zero.

Caml définit d’autres fonctions polymorphes liées a la notion de comparaison. Les fonc-
tions max et min acceptent deux arguments de méme type, et retournent respectivement le
plus grand et le plus petit des deux '°.

# max;;

- : 'a->"a->"'a=<fun>

# max "toto"” "blop”;;
- : string = "toto”

16. On aura tot fait de remarquer que == et ! = existent, et semblent fonctionner de la méme fagon, mais ce sont
des opérateurs d’identité et non d’égalité (ils correspondent aux opérateurs is et is not en Python).

17. Ce qui correspond a I'ordre alphabétique, mais uniquement pour comparer des minuscules non accentuées
ou des capitales non accentuées. Une capitale est notamment toujours considérée plus petite qu'une minuscule.

18. Le type string en Caml manipule des caracteres sur 8 bits. Méme s’il est possible d’utiliser des caracteres
accentués, comme on l'a vu, la gestion de caractéres non-ASCII en OCaml est compliquée, et nous ne nous y
étendrons pas. Il existe des extensions a OCaml pour supporter plus efficacement les chaines non-ASCII, et
notamment unicode, tel que le module Rope.

19. En cas d’égalité, min retourne le premier argument et max le second.



La fonction compare, elle, attend deux arguments x et y de méme type et retourne 0 si

= y, un entier positif si x > y et un entier négatif sinon 2°.

x
|

# compare;;

'a => 'a -> int = <fun>

# compare 80
- . int = -

# compare 3. -8 8
- :int = -

n Plus loin dans les définitions de fonctions

6.1 Filtrage de motif

Supposons que 'on souhaite créer une fonction sinc, définie de R dans R comme le
prolongement par continuité en 0 de x — sin(x)/x, c’est-a-dire :

R—1R
0—1

sinc :

sin(x) si x#0

X

X —

En I'absence du prolongement, nous avons vu que nous pouvions définir la fonction de
cette facon :

# let sinc = function x -> sin(x) /. x;;

val sinc : float -> float = <fun>

Mais cette définition laisse de coté le cas x = 0. Caml nous propose une solution élégante
de définir la fonction sinc, tres similaire aux mathématiques :

# let sinc = function
| 0.0 > 1.
| x => sin(x) /. x;;

val sinc : float -> float = <fun>

20. Lavaleur du résultat, en dehors de son signe, n’est pas spécifiée.
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Ce type de structure est appelé filtrage par motif. On associe ainsi un ensemble de motifs
(a gauche des fleches) avec des expressions. Dans cette situation, Caml essaiera d’associer
successivement I'argument de la fonction avec chacun des motifs, et utilisera I'expression
associée au premier motif qui convient.

Ainsi, sinc utilisera la premiere des expressions, tandis que sinc utilisera la
seconde, I'identification de avec le premier motif ayant échoué. x pouvant représenter
n'importe quelle valeur, I'identification s’est bien passée. Dans |'expression associée, le
nom x est défini localement comme I’argument de la fonction.

Dans le cas ou I'argument correspond a plusieurs cas possibles, Caml s’arréte sur le
premier qui convient. Il est donc important de faire figurer le motif -> ... avantcelui
x => ...

Sil'on n’a pas besoin de I’argument dans I’expression, on peut spécifier _ dans le motif,
qui peut étre identifié avec n'importe quoi, la valeur étant « perdue » lorsque 1'on évalue
I'expression.

# let est_nul = function
| -> true
| _ -> false;;

val est_nul int -> bool = <fun>

Contrairement a ce que I'on pourrait penser, on ne peut pas se servir des motifs pour
construire simplement une fonction polymorphe :

# let est_nul = function
| -> true
| 0.0 => true
| = > false;;

Characters 49-
| 2.0 => true
AAA
Error: This pattern matches values of type float
but a pattern was expected which matches values of type int

Dés qu'un motif permet de déterminer le type de 'argument (que ce soit explicitement,
a gauche de la fleche, ou en étudiant I'utilisation du motif a droite de cette méme fleche),
celui-ci ne peut plus étre changé.

Ainsi, dans I'exemple précédent, la premiere ligne du filtrage a permi de déterminer que
I’argument était un entier. La seconde ligne du filtrage, qui fait référence a un argument
flottant, ne saurait donc convenir.



6.2 Motifs gardés Caml n’est pas toujours capable de déterminer I'exhaustivité d’'un motif :

Il est possible de définir des conditions dans un motif, grace au mot-clé when. On parle # let signe = function
de motif gardé: | o -> "nul”
| x when x > 0 -> "strictement positif”
# let est_positif = function | x when x < 0 -> "strictement négatif”;;
| x when x >= 0 -> true
| _ -> false;; Characters 18-139:
............ function
est_positif : int -> bool = <fun> | 0 -> "nul”
g | x when x > 0 -> "strictement positif”
Caml détectera si un motif n’est pas exhaustif : | x when x < 0 -> "strictement négatif”..
# let signe = function Warning 8: this pattern-matching is not exhaustive.
| @ -> "nul” Here is an example of a value that is not matched:
| x when x<0 -> "strictement négatif”;; 1
Characters 18-85: (However, some guarded clause may match this value.)
............ function
| @ -> "nul” val signe : int -> string = <fun>
| x when x<0 -> "strictement négatif”..
Pour cette raison, on préférera I’écriture suivante, équivalente (car le dernier motif ne
Warning 8: this pattern-matching is not exhaustive. sera considéré que si les précédents ne conviennent pas) :
Here is an example of a value that is not matched:
1 # let signe = function
| 0 -> "nul”
(However, some guarded clause may match this value.) | x when x > 0 -> "strictement positif”
| _ -> "strictement négatif”;;
val signe : int -> string = <fun>

signe : int -> string = <fun>

Dans le cas présent, il a raison, le cas de I'entier 1 n’est pas considéré.

On s’efforcera d’éviter, autant que possible, les motifs non-exhaustifs. Mais ce n’est Dans certains cas, Caml identifiera I'inutilité d"un motif:

qu’un avertissement, la fonction est quand méme définie (Caml nous a fourni sa signature)

A [ .o 21 .+ 1 - # let double = function
et peut étre utilisée, mais déclenchera une erreur “* si’on utilise comme argument une | x -> 2.0 *. x
valeur qui ne figure pas parmi les motifs possibles : | 0.0 _>'® @
# signe 0;;
: —n " Characters 50-53:
- : string = "nul
| 0.0 -> 0.0;;
# signe 1;; Warning 11: thi tch i d
Exception: Match_failure ("//toplevel//", 225, 12). arning 1i: 1s match case 1s unused.

val double : float -> float = <fun>

21. En fait, une exception
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Remarquons que cela n’a pas empéché la définition de la fonction. Sur ce point encore,
Caml n’est cependant pas capable de tout remarquer :

# let parité = function

| x when x mod 2 = 0 -> "pair”

| x when x mod 2 = 1 -> "impair”

| x -> "ni pair ni impair”;;
val parité : int -> string = <fun>

Dans ce dernier cas, si l'on retire le dernier motif, inutile, Caml protestera contre un
filtrage non-exhaustif! Il faudra également réécrire le second motif pour le satisfaire.

Attention, les noms dans les motifs ne désignent jamais de valeur, méme si le nom
existe en dehors. Par exemple, dans le cas suivant, le x du premier motif ne désigne pas 0,
comme en témoigne I'avertissement de Caml :

# let nul =
let x = 0 in function

| x => true

| _ -> false;;
Warning unused variable x.
Characters 68-69:

| _ -> false;;
A

Warning this match case is unused.
val nul 'a -> bool = <fun>

La signature également peut nous interpeler : si’on comparait I’argument a zéro, nous
ne devrions pas avoir une fonction polymorphe... Il faudrait plutdt écrire 22

# let nul =
let x = 0 in function
| vy when y = x -> true
| _ -> false;;

val nul int -> bool = <fun>

22. Enfin... il faudrait surtout I'écrire completement autrement, car c’est une facon trés tarabiscotée de vérifier
sil’argument est égal a 0!
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Attention, si function permet le filtrage par motif, ce n’est pas ?® le cas de fun.

Il est possible d'utiliser ce mécanisme hors du cadre d’'une fonction, grace a la structure
match exprwith qui peut étre employée a tout endroit o1 'on peut mettre une expression.
Par exemple, sinestégala17,ona:

# let parité n =
let reste = n mod in
match reste with
| -> "pair"
| _ => "impair";;

val parité : int -> string = <fun>

Cette construction permet par ailleurs de filtrer le résultat d'une expression (ce que ne
permet pas function) :

# let parité n =

match n mod 2 with
| -> "pair"
| _ => "impair";;

val parité : int -> string = <fun>

6.3 Fonctions récursives

Sans vouloir entrer trop dans les détails (nous consacrerons un chapitre aux fonctions
récursives un peu plus tard), une fonction récursive est, grossierement, une fonction qui
s’appelle elle-méme. Il n’est pas possible de définir une fonction récursive en Caml sans
une petite astuce, car au moment ot '’on définit notre fonction f, elle n’existe pas encore,
donc il n’est pas possible de I'utiliser dans la définition. On signale donc a Caml qu’il faut
faire une petite entorse a ses habitudes en ajoutant un « rec » juste apres le let.

Par exemple, il est trés simple de définir récursivement la fonction fact représentant la
factorielle en mathématiques :

# let rec fact = function
| ->
| n-=>n % fact (n-1);;

val fact int -> int = <fun>

23. En OCaml en tout cas, car c’était possible avec le langage Caml Light, et vous risquez de le rencontrer dans
des ouvrages ou des annales.



Nous verrons un peu plus tard que cette définition, trés proche de la définition mathé-
matique, n’est pas la plus efficace, mais nous nous en contenterons bien pour l'instant.

On rappelle que Caml travaille sur des entiers sur 31 bits, donc pour de « grandes » valeurs
de n (plus de... 20), on aura un résultat incorrect (fact 21 est négatif, puis le résultat sera
nul pour n = 64).

On peut, de fagon similaire, réécrire une fonction déterminant la parité d'un entier?* :

# let rec est_pair = function
| -> true

| -> false

| n -> est_pair (n-2);;

val est_pair : int -> bool = <fun>

Pour tenir compte un peu plus efficacement des nombres négatifs, on peut ajouter, dans
le filtrage, une condition supplémentaire entre la seconde et la troisieme :

# let rec est_pair = function
| -> true
-> false
-> est_pair (-n)

I
| n when n<
| n -> est_pair (n-2);;

val est_pair : int -> bool = <fun>

J

Une autre fagon de déterminer la parité d'un entier serait d’utiliser deux fonction récur-
sives, qu’ils nous faut définir simultanément grace au mot-clé and :

# let rec est_pair = function

| -> true

| n when n<0 -> est_pair (-n)

| n -> est_impair (n-1)
and est_impair = function

| -> false

| n when n<0 -> est_impair (-n)

| n -> est_pair (n-1);;

int -> bool = <fun>
int -> bool = <fun>

val est_pair :
val est_impair :

24. En principe positif, mais dans le cas d'un nombre négatif, on aura un débordement et la fonction marcherait
quand méme en théorie, apres plusieurs miliards de milliards d’appels récursifs.
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Exercices

Ex. 1.1 - Calculs

Déterminer les résultats des calculs suivants, effectués a ’aide de Caml :

+ 2 % 3;;
- * /25,
/. - MK
* *% *% / ¥
log ( exp( ) ** EE:

Ex. 1.2 - Définitions

Déterminer les réponses de Caml aux définitions suivantes :

let a = 1;;

let fn=3%xn-1;;

let a =2 in f a;;

let a=f ainf a;;

let a=faand b =f ain f b;;

let x =

let x =5and y = 2 in
let x = xty and y = x-y in

* x /Y5

Ex. 1.3 - Composition
On définit deux fonctions f et g de la fagon suivante :

*n;; ]

On souhaite définir une fonction h comme la composition de ces deux fonctions, soit
h = go f, et calculer h(5). Parmi les définitions suivantes, lesquelles sont correctes?

let fn=n+2and gn =




leth =gf in h 5;;
let hn=gfn in h 5;;
let hn= (g f)n inh 5;;
let hn=g (fn) 1in h 5;;
let h n = g(f) (n) in h 5;;
let hn =g (f (n)) in h 5;;

Ex. 1.4 - Typage

Proposer des expressions Caml qui ont pu donner les signatures suivantes :

val f : int -> int -> int = <fun>
val g : (int -> int) -> int = <fun>

val h : int -> (int -> int) -> int = <fun>

Déterminer le type des expressions suivantes :

fun f x y > f x y;;
fun f g x > g (f x);;

fun f g x > (f x) + (g x);;

Méme chose avec ces expressions, ol1 les noms sont moins révélateurs :

fun x y z -=> (x y) z;;
fun x y z > x y z;;
fun x y z -=> x (y z x);;

fun x y z -=> (x y) (z X);;

14

Ex. 1.5 - Différences finies

On suppose qu’une suite (1) e d'éléments de R est définie en Caml par une fonction
u qui, a tout entier n positif, associe le terme u,, € R. Par exemple :

# let u = function n ->
let fl_n = float_of_int n in
*. fl_n x. (1.0 -. fl_n);;

val u : int -> float = <fun>

Ecrire une fonction delta qui, a2 une suite (u,,) nen associe la suite (14,41 — Up) neN-

Quelle est sa signature?
Ex. 1.6 — Logique

Ecrire une fonction Caml prenant en argument deux booléens et retournant le booléen
associé a I'opérateur logique = dont la table de vérité est rappelée ci-dessous :

a|b|a=>b
010 1
011 1
10 0
1|1 1

On considere I'expression logique suivante, définie pour quatre booléens a, b, cet d :
«bet(aetdounonaetnond)oudet(aetnonboub etnona)»

Remplir le tableau logique ci-dessous et en déduire une fonction Caml aussi simple que
possible retournant I'expression logique demandée.

c|c|c|c¢c
d|d|d|d
a b
a_ b
a b
a b

Ex. 1.7 - Cherchez I'erreur

On souhaite écrire une fonction qui prend en argument un entier strictement positif p et
un entier relatif n, et retourne 'entier n' compris entre 0 et p-1 vérifiant n' — n =k x p ot
k est un entier (pour n et p positif, il s’agit donc du reste de la division entiere).



On propose la fonction suivante :

let modulo p n = fun
| nwhen 0 <=nand n<p ->n
| n when n < -> modulo p n+p
| n when n >=p -> modulo p n-p;;

Saurez-vous retrouver les erreurs et modifier la fonction pour qu’elle soit juste?
Ex. 1.8 — Fonction mystérieuse

Déterminer la signature et le résultat de la fonction suivante :

let f = function
| 0 -> "0"
| x -> let rec g = function
| —> nn
| x when x mod 2 = 1 -> g (x/2) ~ "1"
| x -> g (x/2) *» "o"
in g x;;

Ex. 1.9 - Facteurs premiers

Un entier positif est un nombre de Hamming si et seulement s'il s’écrit sous la forme
2" x 3P x 59 o1 n, p et g sont des entiers positifs ou nuls.

Ecrire une fonction récursive hamming de signature int -> bool prenant en argument
un entier positif et retournant un booléen indiquant si I'argument est un nombre de
Hamming.

Proposer une fonction récursive divisible de signature int -> int -> bool prenant
deux arguments entiers strictement positifs n et d et retournant un booléen qui indique si
n est divisible par un entier compris entre d et /7.

En déduire une fonction premier de signature int -> bool qui indique sil’entier stric-
tement positif passsé en argument est un nombre premier.
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Structures de données complexes

Dans ce second chapitre, nous verrons comment créer, en fonction des besoins, de
nouveaux types, et comment il est possible de définir de la sorte des listes chainées. Puis
nous verrons comment utiliser le type 'a list que nous fournit le langage Caml. Enfin,
nous introduirons le concept d’ arbre et nous verrons comment les représenter en Caml.

Bl Les couples

1.1 Principe

11 est parfois utile de pouvoir « regrouper » plusieurs éléments. Ceci est possible a travers
des « tuples » ott les différents éléments sont regroupés entre parenthéses ' et séparés par
des virgules.

Par exemple, on peut considérer une paire d’entiers telle que :

#(2,3);;

- : int % int = (2, 3)

1l est possible de grouper ainsi un nombre quelconque d’éléments, qu’ils aient ou non le
méme type. Le type de I'objet ainsi construit correspond au produit cartésien des types
des différents éléments, et est noté *.

Lexemple suivant regroupe par exemple un flottant, une chaine de caracteres, et une
fonction :

# ( 3.14, "pi", function x -> x**2. );;

- : float * string x (float -> float) = (3.14, "pi", <fun>)

On peut utiliser une définition pour associer un nom a un tel couple, telle que

# let grp = ( , "pi”, function x -> xx%2. );;

val grp : float x string x (float -> float) = (3.14, "pi", <fun>)

Dans I'’exemple précédent, le nom grp désigne donc le groupe des trois éléments.

1. Comme en Python, les parenthéses ne sont en fait pas requises s'il n'y a pas d’ambiguité.
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De tels groupes peuvent étre utilisés comme arguments d’'une fonction. On peut par
exemple écrire une fonction effectuant la somme de deux entiers ainsi :

# let somme (x,y) = x +y;;
val somme : int * int -> int = <fun>
# let somme = function (x,y) -> x + y;;
val somme int * int -> int = <fun>

Ces deux déclarations sont équivalentes. On peut voir qu'un groupe est bien considéré
comme un seul et unique élément, ce qui permet d’utiliser function. Dans le second cas,
on utilise en fait un filtrage par motif.

On aurait pu écrire (sans que cela soit tres pertinent, mais pour illustrer le principe) :

# let somme = function
| (0,0) ->
[ (x,y) => x+y;;

somme int * int -> int = <fun>

Pour utiliser ces fonctions, on utilise un unique argument, un couple :

# somme (2,3);;
- :int =

La présence de parenthéses, et de virgules séparant chaque élément, rend la syntaxe tres
proche de ce qui est utilisé dans d’autres langages. Toutefois, on a affaire & un objet un peu
différent des fonctions présentées dans le premier chapitre, que ’on avait définies avec
I'une des variantes (toutes trois équivalentes) suivantes :

# let somme_cur x y = x +y;;
val somme : int -> int -> int = <fun>

# let somme_cur = fun x y -> x + y;;
val somme : int -> int -> int = <fun>

# let somme_cur = function x -> function y -> x + y;;
val somme : int -> int -> int = <fun>

Les formes proposées dans le premier chapitre sont dite « currifiées > ». On remarquera

2. Du nom du mathématicien et logicien Haskell Brook Curry, qui a popularisé cette notation, méme s’il
semblerait qu’elle ait été initialement proposée par Moses Shonfinkel. Trois languages de programmation ont été
nommeés en son honneur, Haskell, Brook et Curry, le premier des trois restant une référence dans le domaine de
la programmation fonctionnelle.



en particulier la différence de signature entre les deux approches, que 'on peut résumer
ainsi (formes currifiées a gauche) :

72— (Z—7Z)

ZxZ— 7
somme
X, )—x+y

somme_cur Z— 7
X—
y—x+y
En fait, la currification est]'opération qui consiste a transformer une fonction a plusieurs
variables (par exemple ici définie sur Z x Z a valeur dans Z) en une fonction a une unique
variable retournant une fonction sur le reste des arguments (par exemple ici une fonction
définie sur Q a valeur dans I’espace des fonctions Z — Z).

La forme currifiée, plus souple, est davantage utilisée en Caml. Il est en effet par exemple
plus aisé de créer une application partielle, c’est-a-dire une fonction annexe ol le premier
des parametres est fixé, avec la forme currifiée d'une fonction :

# let ajoute_1 = somme_cur 1;;
val ajoute_1 int -> int = <fun>

Méme s’il reste possible de créer une application partielle avec une fonction non curri-
fiée :

# let ajoute_1 = function x -> somme (1,x);;
val ajoute_1 int -> int = <fun>

Pour extraire un élément d'un groupe, on peut créer une fonction :

# let premier_parmi_trois (a,b,c) = a;;

val premier_parmi_trois : 'a *x 'b x 'c -> 'a = <fun>
# let deuxiéme_parmi_trois (a,b,c) = b;;

val deuxieme_parmi_trois 'ax 'bx 'c > 'b=<fun>

# let troisieme_parmi_trois (a,b,c) = c;;
val troisieme_parmi_trois 'ax '"bx 'c > 'c=<fun>

On peut alors écrire :

# premier_parmi_trois grp;;
- : float =

# troisiéme_parmi_trois grp (premier_parmi_trois grp);;
- : float =
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Pour des paires (des groupes de deux éléments), il existe déja deux fonctions fournies
par le langage, f'st et snd, qui effectuent exactement ce travail :

# fst;;

-: 'ax'b->"'a=<fun>
# snd;;

-: 'ax'b->"'b=<fun>
# let paire = (2, 3);;
paire : int * int = 2,

# snd paire;;
- :int =

Il n’existe en revanche pas de solution toute préte dans le langage pour un nombre
d’éléments supérieur a deux.

1.2 Couples et filtrages

Sil'on préfere en général les formes curryfiées, il est parfois pratique d’utiliser un couple
(ou un tuple) comme argument si on souhaite effectuer un filtrage. En effet, seul le mot-clé
function permet d’effectuer un filtrage par motif, fun ne le permet pas.

Par exemple, pour calculer le PGCD de deux nombres par I’algorithme d’Euclide, on ne
peut pas écrire :

# let rec pgcd = fun
| a -> a
| ab -> pged b (a mod b);;

Characters =
| a -> a

A

Error: Syntax error

On peut en revanche écrire :

# let rec pgcd = function
| (a, 9) -> a
| (a, b) > pged (b, a mod b);;

val pged : int * int -> int = <fun>




Pour obtenir une fonction currifiée, on peut utiliser une fonction auxilliaire :

# let pgecd a b =
let rec pgcd_aux =
| (a, 9) -> a
| (a, b) -> pgcd_aux (b, a mod b)
in pgcd_aux (a, b);;

function

val pged : int -> int -> int = <fun>

Remarquons qu’ici, on peut en fait se passer de cette pirouette 3, car il suffit de filtrer le
second parametre de la fonction :

# let pgcd a = function
| 0 -> a
| b -> pged b (a mod b);;

val pgcd : int -> int -> int = <fun>

Les types construits

Il est possible de définir ses propres types en Caml, grace au mot-clé type. Ce sont des
assemblages de différents types existants et/ou de constantes. Les possibilités offertes,
comme nous allons le voir, sont assez importantes.

2.1 Type «union » (ou type « somme »)

On peut tout d’abord définir un type comme un choix entre plusieurs « constantes »
que 'on précise. Ces constantes sont des identifiants commencant par une majuscule. Le
«pipe » | joue le réle de « ou » logique pour séparer plusieurs valeurs possibles.

Par exemple, on peut définir un type direction représentant les quatre points cardinaux
45
par®”:

# type direction = Nord | Est | Sud | Ouest;; }

3. Il est en fait bien évidemment toujours possible de filtrer argument par argument, mais 1’écriture peut
devenir assez lourde.

4. Laréponse de Caml pour une déclaration de type, lorsqu’elle est syntaxiquement correcte, consiste juste a
afficher le type nouvellement défini; on omettra donc les réponses de Caml pour les déclarations de type.

5. Le type booléen de Caml aurait ainsi pu étre défini par type bool = true false|, si ce n'est que les
constantes ne commencent pas ici par une majuscule.
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Dorénavant, Nord, Est, Sud et Ouest sont des constantes de type direction:

# let dir = Ouest;;
val dir : direction = OQuest

On peut également concevoir une direction comme un angle en degrés (0.0 correspon-
dant au nord, 90.0 a I’est, 180.0 au sud et ainsi de suite) :

Nord | Est | Sud | Ouest | Angle of float;; ]

# type direction =

Pour utiliser ensuite a cette possibilité, on utilise I'étiquette « Angle » qui a été définie
dans le type, ce qui permet a Caml d’identifier le type correctement :

# let dir =
val dir :

Angle 45.0;;
direction = Angle 45.

En fait, Angle est un « constructeur » qui se comporte comme une fonction, prenant en
argument un flottant et retournant un object de type direction.

Attention toutefois, Caml ne peut bien évidemment pas deviner nos intentions :

# Sud = Angle 180.0;;
- : bool = false

Les déclarations de types peuvent étre récursives, par exemple :

Nord | Est | Sud | Ouest | Angle of float
| Mediane of direction * direction;;

# type direction =

On considérera que la médiane de deux directions, dans la définition précédente, est
la direction « médiane » de I'angle inférieur 2 180 ° formé par les deux directions ®. Ce qui
permet de définir trés librement d’autres directions a partir des quatres points cardinaux” :

# let sudEst = Mediane (Sud, Est);;
val sudEst : direction = Mediane (Sud, Est)

# let sudSudEst = Mediane (Angle 180.0, sudEst);;
val sudSudEst : direction = Mediane (Angle 180., Mediane (Sud, Est))

La encore, Caml a défini ici, en méme temps que le type, un constructeur Mediane qui
prend cette fois un couple de deux objets de type direction et retourne un objet de type
direction.

6. On supposera que ces deux directions ne sont pas opposées.
7. Les noms de ces nouvelles directions commencent par des minuscules, car il ne s’agit pas de constructeurs
ou de valeurs déclarés a I'intérieur d'une définition de type.



2.2 Type « enregistrement » (ou type « produit »)

Une coordonnée GPS est constituée de deux éléments : une latitude et une longitude.

Pour représenter un élément de ce genre, on peut créer un type regroupant des types
existants. La déclaration se fait au moyen d’accolades, en donnant un nom (souvent appelé
étiquette) a chacun des éléments du groupe, afin de pouvoir y référer ultérieurement.

On peut par exemple définir une position (définie donc par sa latitude nord/sud et sa
longitude est/ouest) en écrivant :

# type position = { n_s : float;
e_o : float };;

type position = { n_s : float; e_o : float; }

Le type position est donc constitué de deux flottants, ces deux flottants étant désignés
par les étiquettes n_s et e_o.

Pour créer un objet de ce type, on renseigne les différents « champs », en utilisant le
signe « = » cette fois pour séparer I'étiquette et la valeur qui lui est associée :

# let pos = { e_o .5;

n_s = ik
val pos : position = {n_s = .2; e_o = 4.5}
Il est a noter que I'ordre n’a pas d’importance® :
# let pos = { n_s = ;
e_o = 4.5 3};;
val pos : position = {n_s = .2; e_o = 4.5}

Mais il faut impérativement renseigner tous les champs :

# let pos = { e_o = 4.5; };;
Characters -25:
let pos = { e_o = 4.5; };;

AAAAAAAAAAAAA

Error: Some record field labels are undefined: n_s

J

On a défini en fait un type tres similaire au type float * float, a ceci pres que I'ordre,
utilisé dans la paire pour identifier les deux éléments, est remplacé dans le cas du type
position par des étiquettes.

8. Iln'est pas non plus nécessaire d’aller a la ligne entre chaque champ, on le fait ici uniquement dans un but
de lisibilité.

Cela facilite la récupération des données, il suffit de faire suivre le nom désignant un
objet de type position par un point suivi du nom d’une I'étiquette :

# pos.e_o;;
- : float =

A présent, on peut essayer de convertir la donnée d’'une distance dans une direction en
une position.

Dans un premier temps, nous allons écrire une fonction permettant de « ramener » un
angle dans 'intervale ]-180.0, 180.0] :

# let rec modulo = function
| x when x > -> modulo (x -. 2
| x when x <= - -> modulo (x +. J)
[ x > X;;

val modulo : float -> float = <fun>

Puis grace a un filtrage pour analyser les différentes situations possibles, on détermine
I'angle qu'une direction quelconque (plus précisément un élément de type direction)
fait avec le nord ? :

# let rec calcAngle = function

| Angle a -> a
| Nord ->
| Est ->
| Sud ->
| Ouest ->
| Mediane (dirl1, dir2) ->

let anglel calcAngle dir1
and angle2 = calcAngle dir2
in match modulo (angle2 -. anglel) with
| .0 -> failwith "Directions opposées”
| diff -> anglel +. diff /. 2.;;

direction -> float = <fun>

val calcAngle :

Ce qui permet par exemple de calculer 'angle avec le nord de la direction sud_sud_est :

calcAngle sudSudEst;;
- : float =

9. Onremarquerale failwith "Directions opposées” quidéclenchera une erreur sil’on tente de calculer
la médiane de deux directions opposées.



Puis on crée la fonction qui nous intéresse :

# let calcPosition dist dir =
let pi = 3. in
let angle = (calcAngle dir) *. pi /.
in { n_s = dist *. cos(angle);
e_o = dist x. sin(angle) };;

val calcPosition : float -> direction -> position = <fun>

Ainsi, un déplacement de 50 m vers le sud-sud-est

# calcPosition
- : position =

sudSudEst;;

{n_s = -46. ; e_o = . }

correspond donc a un déplacement d’environ 46 m vers le sud et 19 m vers I'est!

Créer une liste chainée

Supposons que 'on souhaite créer une liste d’entiers. Une liste est une suite ordonnée
d’éléments. On peut donc considérer qu'une liste est constituée de « cellules » contenant
une valeur entiére, et un moyen d’accéder a la cellule suivante dans la liste.

ma_liste » 3 | » 1 |[H—» 4 | > 1 |

Po oo

Ce qui suit un élément dans la liste d’entier est une liste d’entiers. On peut donc envisager
de décrire une liste d’entiers par le type suivant :

# type liste_int = { valeur : int; suivant : liste_int };; ]

Lennui avec la définition précédente est que les listes n'ont pas de fin! On doit pouvoir
avoir un « bouchon » qui indique la fin de la liste. Suivant doit donc désigner, au choix, soit
une cellule '° constituée d’'un entier et d’un suivant, soit le « bouchon ».

ma_liste | » 3 || » 1 |H—» 4 |1 > 1 |

On peut donc définir notre liste de la facon suivante :

# type liste_int =

Fin | Cellule of { valeur : int

; suivant : liste_int };;

10. Dans la définition, le cellule sans majuscule désigne un type, le Cellule est une étiquette permettant
d’identifier a quel « cas » du type union on a affaire.
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On peut ensuite définir une liste :

# let ma_liste = Cellule { valeur = ; suivant =
Cellule { valeur = ; Suivant =
Cellule { valeur = ; suivant =

Cellule { valeur = ; suivant = Fin } } } };;
val ma_liste :
Cellule
{valeur = 3;
suivant =
Cellule
{valeur = 1;
suivant =
Cellule {valeur = 4;
suivant = Cellule {valeur =

liste_int =

; suivant = Fin}3}}}

Ce n’est pas une facon tres pratique de définir la liste. On préférera enfiler les éléments
un par un comme des perles sur un fil. On peut aisément définir une fonction qui ajoute
un élément a gauche de la liste :

# let ajouteGauche liste elem =
Cellule { valeur = elem ; suivant = liste };;

val ajouteGauche : liste_int -> int -> liste_int = <fun>

Il ne reste ensuite qu’a insérer les éléments un a un, en partant de la fin :

# let ma_liste = Fin;;
val ma_liste : liste_int = Fin

# let ma_liste =
val ma_liste :

ajouteGauche ma_liste 1;;
liste_int = Cellule {valeur = 1; suivant = Fin}
# let ma_liste = ajouteGauche ma_liste 4;;
val ma_liste : liste_int =

Cellule {valeur = 4; suivant = Cellule {valeur = 1; suivant = Fin}}
# let ma_liste =
val ma_liste :

ajouteGauche ma_liste 1;;
liste_int = ...

# let ma_liste =
val ma_liste :

ajouteGauche ma_liste
liste_int = ...

)




On peut ensuite vouloir écrire des fonctions qui agissent sur la liste. On travaille alors
par filtrage. 1l faut toutefois prendre garde a la possibilité que la liste soit vide. Un nom
désignant une liste peut désigner deux choses, d’apres le type liste_int:

e Une cellule, désignée par Cellule, contenant une valeur (de type int) et un
suivant (de type liste_int);
» La constante Fin, indiquant la terminaison de la liste.

Les fonctions agissant sur des objets liste_int vont donc généralement utiliser un
filtrage correspondant aux deux cas du dessus. Par exemple, le seul élément directement
accessible estI’élément en téte de liste, et il est aisé de I’obtenir.

function
v ; suivant = _ } > v
-> failwith "Liste vide !";;

# let tételListe =
| Cellule { valeur =
| Fin

val tételListe : liste_int -> int = <fun>

On remarquera la fagon dont le filtrage nous permet d’accéder aux différents éléments
du type enregistrement.

On pourrait également écrire !! :

# let tételListe = function
| Cellule ¢ -> c.valeur
| Fin -> failwith "Liste vide !”;;

val téteListe : liste_int -> int = <fun>

Pour obtenir une liste privée du premier élément, c’est également assez simple :

# let queuelListe = function

| Cellule { valeur = ; suivant = s } -> s

| Fin -> failwith "Liste vide !";;
val queueliste : liste_int -> liste_int = <fun>
Ou bien, de facon équivalente :
# let queuelListe = function
| Cellule ¢ -> c.suivant
| Fin -> failwith "Liste vide !”;;
val queuelListe : liste_int -> liste_int = <fun>

11. C’est essentiellement un choix de style, vous pouvez choisir celui avec lequel vous étes le plus a I'aise.
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Obtenir le dernier élément de la liste est un peu plus difficile, mais ce n’est pas insur-
montable en utilisant la récursion :

# let rec dernierListe = function
| Cellule { valeur = v ; suivant = Fin } -> v
| Cellule { valeur = _ ; suivant = s } -> dernierListe s
| Fin -> failwith "Liste vide !";;

val dernierListe liste_int -> int = <fun>

Ou bien encore :

# let rec dernierListe = function
| Cellule c when c.suivant =
| Cellule c
| Fin

Fin -> c.valeur
-> dernierlListe c.suivant
-> failwith "Liste vide !";;

val dernierListe

liste_int -> int = <fun>

De la méme facon, on peut obtenir la longueur de la liste :

# let rec longueurListe = function
| Cellule { valeur = _ ; suivant = s } -> longueurListe s +
| Fin -> 0;;

val longueurListe : liste_int -> int = <fun>

Ou bien

# let rec longueurListe = function
| Cellule ¢ -> longueurListe c.suivant +
| Fin -> 0;;

val longueurListe : liste_int -> int = <fun>

L'un des inconvénients de notre type liste est qu’il ne peut contenir que des entiers. On
peut faire un peu mieux, et définir une liste polymorphe, contenant des éléments certes
tous de méme type, mais d'un type que I'on choisira, en écrivant :

# type 'a liste =

Fin | Cellule of { valeur : 'a ; suivant 'a liste };;

Toutes les fonctions définies précédemment restent correctes, sous réserve de les définir
apresla définition du type 'a liste, mais leur type va bien évidemment changer!



A commencer par la liste ma_liste, qui, quelle que soit la facon dont on la crée, aura un
type différent :

ma_liste : int liste = Cellule {valeur = 3;

suivant = ... ]

Etil est, a présent, possible d’y glisser des flottants a la place des entiers, sans changer
la définition du type (mais la liste doit toujours contenir des éléments qui sont tous du
meéme type) :

ma_liste : float liste = Cellule {valeur = 3.0; suivant = ... }

Et les signatures de nos différentes fonctions ont également évolué, par exemple :

val ajouteGauche : 'a liste -> 'a -> 'a liste =

<fun> ]

n Les listes Caml

4.1 Création et manipulation

Nous n’irons pas plus loin dans cette direction car... Caml a son propre type 'a list
pour décrire des listes d’éléments, et dans la suite, nous utiliserons le type proposé par
Caml. Toutefois, I'implémentées des listes Caml est similaire a celles que nous venons de
construire, ce qui aidera a mieux comprendre ce qui se passe.

Les listes en Caml sont des conteneurs immutables pouvant contenir un nombre quel-
conque d’éléments, dont le type peut étre librement choisi (les éléments peuvent d’ailleurs
étre des listes). Elles sont représentées entre crochets, les éléments étant séparés par des
points-virgules '2 :

# let ma_liste = [ 1; 2; 3; 4 1;;
val ma_liste : int list = [1; 2; 3; 4]

# let ma_liste = [ "Hello"”; "World"” 1;;
val ma_liste : string list = ["Hello”; "World"]

# let ma_liste = [ [ 1.47; 18 [C T.08 2:0%
val ma_liste : float list list = [[1.41; ;

# let ma_liste = [ sin; cos 1;;
val ma_liste : (float -> float) list = [<fun>; <fun>]

12. Attention, laliste [ 1, 2, ] est une liste a un seul élément, un tuple (de type int * int * int).
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Il est impératif que tous les éléments d’'une liste soient du méme type :

# let ma_liste = [ 1; ; 5 15,
Characters -25:
let ma_liste = [ 1; ; 5 155

AAA

Error: This expression has type float
but an expression was expected of type int

On dispose d'un nouvel opérateur, appelé « conse», noté « : : », qui permet de construire
une liste constituée d’'un nouvel élément accroché a gauche d'une liste :

#1 :: [ 2; 3; 4, 51;;
- : int list = [1; 2; 3; 4; 5]

Il n'y a pas d’insertion a droite, car Caml implémente les listes comme des listes chainées
trés semblables a celles que nous avons nous-méme définies. Lopérateur conse attend
donc un élément d’'un certain type a gauche, et une liste d’éléments de méme type (ou une
liste vide) a droite. Il est donc incorrect d’écrire :

# [ 2; 3; 4; 5 15 2 655
Characters -21:
[ 2; 3; 4; 51 :: 6;;

Error: This expression has type int

but an expression was expected of type int list list

De méme, on dispose d'un opérateur de concaténation de deux listes (contenant des
éléments de méme type), noté « @ » :

#L1; 2
- : int list =

lefl 5 61;;
[ig 25 83 &5 @

La liste vide est simplement désignée par [] et son type, faute d’élément, est 'a list.
C’est la seule liste qui accepte, via l'opérateur : :, un élément de n'importe quel type :

# let ma_liste
val ma_liste :

= [1;;
'a list = []

# let ma_liste = ;1 ma_liste;;
val ma_liste : int list = [1]




La fonction 3 List . hd permet d’obtenir le premier élément d’une liste : toucher a la liste passée en parametre.

# List. hd: - Cependant, les listes (allogée ou raccourcie) qui en résultent sont créées sans que les
-: 'a . li;”c -> 'a = <fun> éléments qui les constituent ne soient recopiés. Plusieurs listes peuvent partager les mémes
' éléments, ce qui ne peut se comprendre qu’en interprétant les choses en terme de listes
# List.hd [ 1; 2; 3; Iy chainées.
- . int = Par exemple, considérons la séquence d’instructions suivante :
De méme, la fonction List. t1 retourne la liste privée de son premier élément 1 : # let liste = [ 3; 1; 4; 1 1;;
; N val liste : int list = [3; 1; 4; 1]
# List.tl;;
- o 1! 1 - ' 1 = g . .
: 'a list -> 'a list = <fun> # let liste_2 = List.tl liste;;
it ] val liste_2 : int list = [1; 4; 1]
# List.t ;25 3, M-
- ¢ int list = [2; 3; 4] # let liste_3 = 4 :: liste_2;;
. . . . . R . val liste_3 : int list = [4; 1; 4; 1]
Notons que la « queue » d'une liste d’entiers sera toujours une liste d’entiers, méme si

elle est vide. On ne pourra pas insérer autre chose qu'un entier dans une telle liste. Le résultat, en mémoire, est quelque chose qui s'apparente a cette construction :

# let ma_liste = [];; liste ——® 3 |4
val ma_liste : 'a list = []

# let ma_liste = 1 :: 1st;; liste 2 | / 1 |H—» 4 |H—» 1 I——P@

val ma_liste : int list = [1]

liste_3 P 4 | (¢

# let ma_liste = List.tl ma_liste;;

val ma_liste : int list = [] On remarquera en particulier que les listes ont une partie de leurs éléments en commun.
4 .. ma liste: : Conjugué avec le let rec, on peut méme obtenir des listes « sans fin ». Par exemple,
o : # let rec liste = 1::4::1::1iste;;
aracters ; val liste : int list = [1; 4; 1; <cycle>]
ma_liste;;
. ) i . has t int list # let liste_2 = 3::liste;;
rror: 1S expres§1on as type int lis . val liste_2 : int list = [3; 1; 4; 1; <cycle>]
but an expression was expected of type float list

Ces définitions correspondent a la situation suivante :

4.2 Immutabilité des listes liste \

Il convient de bien garder en téte que les listes étant des objets immutables, I'utilisation liste 2 | » 3 | » 1 |1 » 4 || » 1 |H

de l'opérateur conse« : : » ou de la fonction List. t1 produisent de nouveaux objets sans ( v
13. Les noms hd et t1 sont des abbréviations des termes anglais « head » et « tail », désignant respectivement la . . L. R ,

téte et la queue. On remarquera que Caml détecte la boucle dans la liste et indique <cycle> plutét qu'une
14. Aucun élément n'a été « enlevé », il s’agit bien d’une partie de la liste passée en argument. infinité de termes, méme s’il ne précise pas quels sont les termes qui sont répétés.
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4.3 Autres fonctions sur les listes

La fonction List.length permet d’ obtenir le nombre d’éléments qu’elle contient :

# List.length;;
- : 'a list -> int = <fun>

+H

List.length [ 1; 2; 3;
- :int =

188

La fonction List.nth permet d’obtenir le n® élément de la liste :

# List.nth;;

- : 'a list -> int -> 'a = <fun>

+H

List.nth [ 1; 2; 3; 4 1 3;;
- : int =

Attention, cette opération peut étre couteuse, car elle implique de parcourir la liste
jusqu’al’élément souhaité (comme c’était le cas pour nos listes chainées)!

La fonction List.mem permet de tester 'appartenance '° d’'un élément dans une liste :

# List.mem;;
- : 'a -> 'a list -> bool = <fun>

# List.mem L 1; 2; 3;
- : bool = false

138

Enfin, la fonction List. rev permet d’obtenir une nouvelle liste contenant les mémes
éléments que la liste passée en argument, mais dans I'ordre inverse :

# List.rev;;

- : 'alist -> 'a list = <fun>
# List.rev [ 1; 2; 3; 4 1;;
- : int list = [4; 3; 2; 1]

4.4 Ecrire des fonctions sur les listes

Créer une fonction sur une liste est tres similaire avec ce que nous avons écrit avec nos
propres listes chainées. On utilisera ainsi largement le filtrage par motif.

15. Ou, pour étre plus précis, 1'égalité entre un élément de la liste et I'élément fourni en parametre.
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Lopérateur '6 : : permet d’extraire aisément les éléments pertinents. En effet, le motif
t: :qest reconnu par n'importe quelle liste non-vide, t désignant ensuite I'élément en téte
de liste, et g le reste de la liste.

Par exemple, la fonction List.hd, retournant le premier élément d’'une liste peut s'im-
plémenter de la sorte :

# let tete = function

| [1 -> failwith "Liste vide”
| ti:_ > t;;
val tete 'a list -> 'a = <fun>

De méme, pour obtenir la liste privée de son premier élément :

# let queue = function
| [1] -> failwith "Liste vide”
| t::q -> q;;
val queue : 'a list -> 'a list = <fun>

On peut utiliser plusieurs « conse » dans un filtrage. Par exemple, la fonction suivante
permet d’obtenir le deuxiéme élément d'une liste :

# let deuxieme = function

| t1::t2::q9 —> t2

| _ -> failwith "Liste trop courte”;;
'a = <fun>

val deuxieme 'a list —>

Une liste contenant un seul élément peut étre reconnue de différente facons, par exemple
t::[]. On peut ainsi écrire une fonction extrayant le dernier élément d'une liste :

# let rec dernier = function
| t::[1 >t
| t::qg -> dernier g
| [] -> failwith "Liste vide";;

val dernier :

'a list -> 'a = <fun>

On aurait pu également écrire le premier motif t: : [] de la sorte :

| [t] -> t ]

16. Il ne s’agit pas en fait d'un opérateur dans cette situation.



On peut de la méme facon écrire une fonction retournant la longueur d’une liste :

# let rec longueur = function

val longueur : 'a list -> int = <fun>

Une fonction retournant le n¢ élément d’une liste :

# let rec nieme = function

val nieme 'a list -> int -> 'a = <fun>

On peut également définir une fonction membre indiquant si le premier élément est
présent dans la liste correspondant au second argument :

# let rec membre x = function
| [] -> false
| t::_ when t=x -> true
| _::q -> membre Xx q;;
'a list -> bool = <fun>

val membre 'a >

C’est'occasion de revenir sur quelques points concernant le filtrage. Tout d’abord, un
nom ne peut pas faire référence a une valeur dans un motif, aussi ne peut-on écrire :

# let rec membre x = function
| [1 -> false
| x::q -> true

| _::q -> membre x q;;

(x <- Attention, incorrect ! %)

Ou plus précisément, on « peut » I’écrire, mais cela ne correspond pas a ce que I'on
pourrait espérer, comme en témoignent I'avertissement et la signature de la fonction :

Characters -90:
| _::q -> membre x q;;

AAAA

Warning this match case is unused.

val membre 'a -=> 'b list -> bool = <fun>
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En effet, le nom « x » qui apparait dans le motif filtrage est distinct du nom x qui identifie
le premier parametre (un nom apparaissant dans un motif de filtrage est un nom qui
n’'existe que le temps du motif et de sa conséquence, et qui masquera tout autre nom
identique).

Enfin, pour une fonction qui concaténe deux listes :

# let rec concat lstl 1lst2 =
match 1st1 with
| [1 -> 1st2
| t::q -> t::(concat q 1st2);;
'a list -> 'a list = <fun>

val concat 'a list >

4.5 Cott en temps des opérations sur les listes

Lune des questions que I'on se posera souvent a I’avenir est le « cotit », notamment en
temps de calcul, d'une fonction.

Prenons par exemple le cas de la fonction List.mem (ou notre équivalent, membre). Dans
le pire des cas, elle devra examiner les éléments de la liste un par un pour les comparer a
I'élément recherché, aussi le temps de calcul, dans une telle situation, sera proportionnel
alalongueur de la liste.

Il en est de méme pour la fonction List. length (ou notre équivalent, longueur), déter-
minant la taille d'une liste. Dans tousles cas, cette fois, il faudra parcourir la totalité de la
liste pour connaitre sa longueur.

Les fonctions List.hd et List.tl, elles demandent un temps constant, que la liste
contienne dix, cent ou cent mille éléments. En effet, les valeurs qu’elles retournent sont
directement accessibles dans la premiere « cellule » de la liste.

En revanche, accéder a un élément au milieu (ou a la fin) de la liste avec List.nth est,
comme on I'a déja dit, d’autant plus cofiteux qu'’il est loin 7.

Il existe un ensemble de notations pour qualifier et manipuler plus facilement les cofits
(en terme de temps de calcul, mais pas simplement), d'une fonction, d'un algorithme ou
d’un programme.

On dira qu’une fonction travaillant sur un ensemble de n données a une complexité
maximale en 7 en temps de calcul (et on notera cette complexité O(n)) si et seulement s’il
existe ng € IN et a € R** tels que, pour tout n = ng, le temps #(n) d’exécution de la fonction
vérifie t(n) < a x n quelles que puissent étre les n données a traiter.

17. Ce qui est tres différent des listes en Python, pour lesquelles accéder a un élément est immédiat quelle que
soit sa position (obtenir la taille d'une liste est également immédiat, sans besoin de la parcourir)... Dans d’autres
situations, la méthode choisie par Caml pour représenter une liste conduira a des opérations plus efficaces, ily a
donc des choix a faire en fonction des situations.



Cette notation pour majorer le cofit fonctionne exactement comme la notation identique
que vous avez peut-étre déja croisée en mathématiques. O(n) n’est bien évidemment pas
le seul majorant possible, les plus courants étant :

¢ O(n) (ou linéaire) : le temps de calcul peut étre majoré (pour n assez grand) par
une fonction proportionnelle a la quantité de données a traiter; c’est par exemple le
cas de la recherche d’'un maximum ou d’'un minimum dans une liste, puisque 'on
considére chacun des termes un a un

o O(n?) (ou quadratique) : le temps de calcul peut étre majoré (pour 7 assez grand)
par une fonction proportionnelle au carré du nombre d’éléments constituant les
données; par exemple dans le cas du tri sélection

¢ O(1) (ou constant) : le temps de calcul peut étre majoré par une constante qui ne
dépend pas de la quantité de données a traiter; c’est un cas assez rare, mais une
fonction qui retourne le premier élément d'une liste a par exemple une complexité
en O(1)

e O(log(n)) (ou logarithmique) : le temps de calcul peut étre majoré (pour n assez
grand) par une fonction proportionnelle au logarithme du nombre de données a
traiter; c’est le cas de la recherche dichotomique dans une liste triée qui a été étudiée
I'an dernier

e O(n xlog(n)) : le temps de calcul peut étre majoré par une fonction proportionnelle
au produit du nombre de données a traiter par le logarithme de ce méme nombre;
c’est un cas relativement courant, et nous allons en voir de suite un exemple

e O(k™) :le temps de calcul peut étre majoré (pour n assez grand) par une fonction
proportionnelle a k" (k étant une constante donnée, fréquemment égale a 2)

Ce n’est pas une liste exhaustive, seulement les situations les plus courantes que I'on
rencontre. Précisons qu'une fonction dont la complexité en temps est en O(n) a, de facto,
aussi une complexité en O(n?), puisque de fagon évidente n < n?. Lorsque 1'on précise la
complexité, on choisit le plus « petit » majorant possible. Parmi celles citées précédemment,
ordonnées de la meilleure (algorithme le plus rapide pour de grands n) a la moins bonne,
on trouve :

0(1) =0(n(n) = 0(n) <0(nln(n) < 0n? <OKk™

Attention toutefois, la complexité d'un algorithme peut changer d'un langage a I'autre,
ou d’'une machine a I’autre. Comme on a déja eu 'occasion de le souligner, obtenir la
longueur d'une liste, accéder a son dernier élément, ou insérer un élément dans une liste
n’a pas du tout le méme cotit en Caml et, par exemple, en Python.

De facon générale, pour déterminer la complexité d'un algorithme, il suffit d’estimer,
en fonction de n, le nombre de fois qu’est effectué I'instruction qui est exécutée le plus
souvent par le programme (par exemple, dans le cas présent, une comparaison) et de ne
conserver que le terme d’ordre le plus élevé (en prenant garde cependant que certaines
opérations ne nécessitent pas, elles-mémes, un temps constant).
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Prenons par exemple le cas de la concaténation deslists [ 1; 2; 3 Jet[ 4; 5 Javec
notre fonction Concat. Si 'on décompose les appels, les choses se passent de la facon
suivante :

concat [ 1; 2; 31 [ 4; 51

it (concat [ 2; 3 1L 4;51)
(2:: (Cconcat [ 31 L4 51))
(2:: (3 ::concat (LIL4 51)))
(2::(3::04;,51))
(2::0[3;4,51)

0 [02; 3; 4; 51

15 25 35 45 5]

On utilise trois fois le motif de filtrage pour extraire les trois éléments de la liste utilisée
comme premier argument, avant d’utiliser le second motif de notre fonction Concat, puis
on utilise trois fois également l'opérateur : : pour recoller chacun des éléments a la liste
utilisée comme second argument. On effectue également quatre appels a concat, et autant
de filtrages.

Le cotit en terme de calcul de cette fonction est donc une fonction affine de la longueur
de la liste de gauche. Si 'on note n le nombre d’éléments de cette liste, on dira que la
fonction a un cotit en O(n).

Parfois, on peut faire mieux que simplement majorer le temps de calcul, et 'encadrer.
S’il existe ny € IN et deux réels strictement positifs a et b tels que pour tout ensemble de
n données avec n > ny, le temps de calcul est compris entre a x n et b x n, on dira que la
complexité est en O(n).

Si 'on reprend les fonctions que I'on a déja présentées sur les listes, en notant n le
nombre d’éléments dans la liste :

e List.hdetList.tl ontune complexité en temps en O(1);

¢ List.length aune complexité en temps en O(n);

e List.revaune complexité en temps en O(n);

e List.mema une complexité en temps en O(n) (on n’a pas besoin de parcourir toute
la liste si on trouve I'élément recherché parmi les premiers);

e List.nthaunecomplexité en temps en ©(k) ou k est'indice deI'élément recherché;

¢ l'opérateur : : a une complexité en temps en ©(1);

o l'opérateur @ a une complexité en temps en ©(n) ol n est le nombre d’éléments de la
liste de gauche.

4.6 Fonctionnelles agissant sur les listes

Outre le filtrage, un certain nombre de mécanismes permettent d’écrire plus simplement
des opérations sur des listes, en appliquant, de diverses fagons, une fonction donnée a
tous les éléments d’une liste.



11 convient de s’en servir avec parcimonie, car si ces écritures peuvent régulierement
simplifier les expressions, elles peuvent tout aussi bien les rendre illisibles, surtout sans un
mot d’explication!

Lafonction List.iter

Le mécanisme le plus simple est fourni par la fonction List.iter, qui prend en argu-
ment une fonction et une liste, la fonction devant accepter des éléments de méme type
que ceux présents dans la liste. Cette fonction est alors appliquée a tous les éléments de la
liste, de gauche a droite :

# let ma_liste = [ 1; 2; 3;
val ma_liste : int list = [1; 2; 3; 4; 5]

# List.iter print_int ma_liste;;
- . unit = O

Puisqu'une fonction ne peut retourner qu’'un seul élément, la fonction List.iter prend
en parameétre des fonctions retournant un type unit (comme print_int):

# List.iter;;
- : ('a -> unit) -> 'a list -> unit = <fun>

Bien évidemment, la fonction List. iter n’a d’'intérét que sila fonction passée en argu-
ment a un effet de bord sur I'environnement, comme par exemple un affichage!

La fonction List.map

Si la fonction que I'on veut utiliser sur tous les éléments de la liste retourne un résultat,
on peut vouloir récupérer les résultats de 'application de la fonction a tous les éléments
de la liste. Pour ce faire, on dispose de la fonction List.map qui attend une fonction et une
liste :

# List.map;;
- : ('a->"'b) -> 'alist -> 'b list = <fun>

# let f n = float_of_int n *xx 2.0;;

val f : int -> float = <fun>

# List.map £ [ 1; 2; 3; 4; 5 1;;

- : float list = [1.; 4.; 9.; . ]

Alaliste [a;, ay,...a,], on associe donc la liste [f(a), f(az),...f(an)].
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Afin de mieux comprendre le fonctionnement de List.map, remarquons que I'on peut
considérer I'expression Asin(wf + ¢) sous une forme arborescente :

Ainsi, pour calculer Asin(w? + ¢), on calcule le produit de w avec t, puis on ajoute ¢; on
prend le sinus du résultat, et on multiplie enfin le tout par A. De la méme fagon, une liste
est simplement le résultat d’utilisations successives de : : sur une liste vide [ ], insérant un
par un les éléments par la gauche. Ainsi, une liste [a;, ay, ...a,] peut étre représentée par :

Lutilisation de List.map correspond donc a la transformation ci-dessous, dans laquelle
on a inséré la fonction f entre chacun des éléments de la liste et les « conse » :




Tout se passe comme si la fonction List.map était définie de la sorte :

# let rec map f = function
| [ > 1[]
| t::q > (f t)::(map T q);;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

La fonction List.fold_right
LafonctionList.fold_right, quantaelle, prend en argument une fonction f attendant

deux arguments de types différents, une liste [a;, ay, ...a,] d’éléments du premier type et
un élément b du second, et retourne f (ay, f (a2, f (... (an — 1, f(an, D)) ...))).

=] @

List.fold_right

(4

Elle effectue donc la transformation suivante :

N
N

Sa signature est la suivante (on remarquera au passage que les a; et!’élément b ne sont
pas nécessairemement de méme type) :

# List.fold_right;;
-: ('a->"b->"'b) -> 'alist -> 'b -> 'b = <fun>

Cette fonction pourrait étre implémentée en Caml de la fagon suivante :

let rec fold_right f 1st b =
match 1st with
[ 1 —=>b
| t::q > f t (fold_right f q b);;

val plie_droite : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

Lafonction List.fold_right, utilisée a bon escient, permet de simplifier I'écriture de
nombreux algorithmes opérant sur des listes. On évite ainsi la nécessité d’écrire explicite-
ment une récursion (ou, on le verra, une boucle).
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On pourra, par exemple, obtenir la somme des éléments d’'une liste L d’entiers avec :

# let somme a b = atb
in List.fold_right somme [ 1; 2; 3; 4; 1 09;;
- . int =

Pour déterminer la longueur d’une liste L, on peut écrire :

# let compte a b = b+
in List.fold_right compte [ 1; 2; 3; 4; 51 0;;
- . int =

Pourquoi « compte a b = b+1»? Simplement parce que, pour chaque élément a; de la
liste, sa longueur (initialisée a 0 pour []) augmente de 1, et cela quelle que soit la valeur
de a;. En d’autres termes, la transformation réalisée ici peut étre résumée par le schéma
suivant :

On peut s’en servir pour définir des fonctions, par exemple somme_liste:

# let somme_liste 1lst =
List.fold_right (fun a b -> atb) 1lst 0;;

val somme_liste : int list -> int = <fun>

Ou bien encore longueur :

# let longueur 1lst =
List.fold_right (fun a b -> b+1) 1st 0;;

val longueur : 'a list -> int = <fun>

Sil’on veut obtenir le plus grand élément d'une liste, le choix du troisieme argument de
List.fold_right est un peu plus délicat.



Habituellement, en programmation impérative, pour déterminer le plus grand élément
d’une liste, il est d'usage de partir d'un élément quelconque de la liste. On peut de la méme
facon prendre ici la téte de la liste comme « élément b » (et n"appliquer List.fold_right
qu’ala queue de la liste puisque le premier élément a déja été pris en compte).

On définira donc maximum_liste ainsi:

# let maximum_liste 1Ist =
List.fold_right max (List.tl 1lst) (List.hd lst);;
'a = <fun>

val maximum_liste : 'a list ->

Débuter le « repliement » par un élément de la liste permettra par ailleurs de conserver le
caractere polymorphe de la fonction max, et il est possible d’obtenir le plus grand élément
de listes contenant n'importe quel type d’éléments (entiers, flottants, caracteres, chaines
de caracteres, etc.).

La transformation que I'on a effectué est donc :

Signalons enfin que si le type de b est une liste, on peut parfaitement utiliser
List.fold_right pour obtenir une liste. Par exemple, il est possible de redéfinir
List.map:

# let rec map f lst =
List.fold_right (fun a b -> (f a)::b) 1st [1;;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
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Lafonction List. fold_left

Lafonction List.fold_right aun pendant, List.fold_left, quiréalise une transfor-
mation tres similaire, mais associe a la liste [a;, ay, ...a,] et un élément b le résultat de
f(f(.(fb,a1),),az,..), an). Elle est équivalente a la fonction suivante :

let rec fold_left f b = function
[ LI ->b
| t::q -> fold_left f (f b t) q;;
<fun>

val plie_gauche : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =

Attention, I'ordre des parametres n’est pas le méme que List.fold_right, laliste vient
cette fois en troisieme et dernier parametre. De la méme fagon, la fonction passée en
parameétre doit prendre en second argument les éléments a; de la liste (et en premier
argument, des éléments du type de b).

On prendra également garde au fait que, du fait de cette inversion, dans la signature, les
a; sont donc de type 'b et b est de type 'a:

-:('a->"'b > 'a) > 'a->'b list -> 'a = <fun>

# List.fold_left;; ’

Cette fonction effectue donc la transformation suivante :

List.fold_left

Le fait que la liste se trouve en dernier parametre permet de définir encore plus simple-
ment une fonction sommant les éléments :

# let somme_liste =
List.fold_left (fun b a -> b+a) 0;;

val somme_liste : int list -> int = <fun>




Ou calculant la longueur de la liste 18 :

# let longueur =
List.fold_left (fun b a -> b+1) 0;;

val longueur : '_a list -> int = <fun>

Nous verrons un peu plus tard que la fonction List.fold_left est un peu plus perfor-
mante que List.fold_right.

Les deux fonctions existent car elles ne répondent pas tout a fait aux mémes besoins. 11
est un peu délicat d’écrire une fonction List.map a partir de List.fold_left alors que
la chose était facile avec List.fold_right. La raison en est que I'opérateur : : ajoute les
éléments a gauche, or List.fold_left tend a retourner la liste.

List.fold_left permet en revanche aisément de retourner une liste :

# let retourne =
List.fold_left (fun 1lst e -> e::1st) [1;;

val retourne '_a list -> '_a list = <fun>

Ce retournement serait plus difficile a obtenir avec List.fold_right.

A propos des langages fonctionnels

Les fonctions List.map, List.fold_left etList.fold_right sont présentes dans la
quasi-totalité des langages fonctionnels. Parfois, seul un équivalent de List.fold_left
est disponible (appelé reduce en Clojure, Ruby, D, fold en F#, etc.) et on se sert d'un
renversement de liste pour obtenir I'alternative.

C’est d’ailleurs le cas en Python, qui, bien que n’étant pas al'origine un langage fonction-
nel, dispose néanmoins d'une fonction map (quoi qu’elle fasse double emploi avec le mé-
canisme de compréhension de liste, plus puissant) et d'une fonction functools.reduce
qui se comporte comme List.fold_left.

18. Onremarquera une bizarrerie dans la signature (parfois, on verra également ' _weak1 en lieu et place de

_a, ce qui est équivalent), sur laquelle nous reviendrons quelque peu ultérieurement : la fonction obtenue n’est
pas totalement polymorphe, elle accepte des listes contenant un type quelconque, mais la premiére utilisation
« fixera » ce type. Par exemple, apres avoir calculé longueur [ 1; 2 ], longueur seradetype int list -> int.
1l n’est pas possible de définir une fonction polymorphe a partir d'une application partielle. Pour éviter ce
probleme, on fera explicitement apparaitre le troisiéme argument dans la définition de la fonction. Les raisons de
cette subtilité dépassent grandement le cadre de ce cours.

'
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Les arbres

5.1 Présentation

Outre les listes, une autre structure de données est tres utile en informatique : les arbres.
Un arbre est formellement défini comme un graphe connexe, acyclique et orienté (la
définition précise de ces termes sera abordée en seconde année). Sans entrer dans ces
termes techniques pour le moment, un arbre comme une structure telle que la suivante,
similaire a celles que I'on a déja manipulées :

Une partie du vocabulaire pour décrire ces structures est emprunté aux arbres généa-
logiques : chacun des éléments de I'arbre, a '’exception de 'un d’entre eux, a un unique
parent (ou pére, antécédent). lls peuvent avoir un ou plusieurs enfants (ou fils). C'est
'orientation des arétes reliant les éléments qui compte ici, indépendamment du sens de
représentation de I'arbre, méme si généralement les arétes sont toutes dirigées dans le
méme sens, vers le bas. Enfin, on appelle descendants d'un élément I'’ensemble de ses fils,
des fils de ses fils, et ainsi de suite. Et ascendants]’ensemble de son pere, du pére de son
pere, et ainsi de suite.

D’autres termes sont empruntés a la botanique. L'élément orphelin a partir duquel on
peut accéder a tous les autres (ici A) est appelé racine, quand bien méme il se trouve
souvent en haut au mépris de toutes les régles de la botanique. Les éléments dépourvus
d’enfants (ici H, M, E, J, K et L) sont appelés feuilles (ou parfois nceuds extérieurs). Les
autres éléments sont qualifiés de nceuds (ou neeuds internes). Enfin, un chemin de proche
en proche dans un arbre en suivant les arétes orienté est appelé une branche.

Le nombre de descendants d'un nceud est appelé arité du nceud. On remarquera en-
fin que n'importe quel nceud est la racine d'un arbre constitué de lui-méme et de ses
descendants. On qualifiera cet arbre de sous-arbre de 'arbre initial.

Les arbres sont utiles car ils permettent de décrire de trés nombreux objets. Par exemple,
comme nous I’avons déja vu, des expressions mathématiques telles que Asin(wt + ¢), ou
uneliste [ 1; 3; 5; 4; ] (qui correspond en fait a :[1).



5.2 Représenter un arbre

Compte tenu des structures tres différentes que peuvent avoir les arbres, par exemple en
terme d’arité des noeJuds, que I'on aura a manipuler, il n’existe pas de structure toute préte
en Caml pour représenter un arbre. Il n'est cependant pas bien difficile de créer de telles
structures.

Comme une liste chainée est décrite comme un élément auquel est éventuellement
accroché la suite de la liste, un arbre peut étre considéré comme un élément auquel est
associé un ensemble, éventuellement vide, de sous-arbres.

On peut par exemple définir le type suivant pour représenter un arbre :

{ element :
fils :

type 'a arbre = a ;

'a arbre list };;

On remarquera que tous les éléments de I’arbre, dans le cas présent, sont nécessairement
de méme type.

Larbre pris précédemment en exemple peut alors étre décrit par :

# let ex = { element="A"; fils=[
{ element="B"; fils=[
{ element="D"; fils=[
{ element="H"; fils=[] } ;
{ element="1"; fils=[
{ element="M"; fils=[]1 } 1} 1} ;
{ element="E"; fils=[] };
{ element="F"; fils=[
{ element="J"; fils=[] } 1} 13} ;
{ element="C"; fils=[
{ element="G"; fils=[
{ element="K"; fils=[] } ;
{ element="L"; fils=[]1 } 1} 1} 13};;

Comme pour les listes chainées, on préférera rapidement écrire des fonctions permettant
de construire, étape par étape, un arbre (en créant d’abord des sous-arbres et en les
regroupant, nceud par nceud, jusque la racine), plutot que le définir de la sorte!

Souvent, on préférera utiliser un couple plutét qu'un type produit pour associer I'élément
et ses enfants (car cela raccourcit quelque peu les écritures, quand bien méme il convient
alors de se souvenir de ce a quoi correspondent chacun des éléments du couple), en
écrivant par exemple :

# type 'a arbre = Noeud of 'a * 'a arbre list;; J
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La déclaration de I’arbre devient alors :

# let ex = Noeud ("A", [
Noeud ("B", [
Noeud ("D", [

Noeud ("H", []1) ;

Noeud ("I", [
Noeud ("M", [1) 1) 1) ;
Noeud ("E", [1) ;

Noeud ("F", [
Noeud ("J", [1) 1) 1) ;
Noeud ( "C”, [
Noeud ("G", [
Noeud ("K", []1 ) ;
Noeud ("L", [1) 1D 1) 1;;

5.3 Propriétés d’'un arbre

Définition. La failledun arbre est le nombre d’éléments qu'il contient (nceuds internes
et feuilles). La hauteur d'un arbre est la longueur de sa plus grande branche, c’est-a-dire
le nombre de liens de filiation que celle-ci contient.

En combinant beaucoup de choses vues dans le présent chapitre, on peut facilement
calculer la taille d'un arbre, en s’efforcant de rester lisible :

# let rec taille = function
Noeud(_, lst)
-> let somme_liste = List.fold_left (fun a b -> atb)
in 1 + somme_liste (List.map taille 1st);;

val taille : 'a arbre -> int = <fun>

De méme que sa hauteur :

# let rec hauteur = function
| Noeud(_, [1) —>
| Noeud(_, lst)
-> let max_liste 1 = List.fold_left max (List.hd 1) (List.tl 1)
in 1 + max_liste (List.map hauteur 1lst);;

val hauteur : 'a arbre -> int = <fun>




5.4 Arbres binaires stricts
Définitions

Dans la suite, on se limitera a certains arbres bien particuliers, les arbres binaires, ot
chaque nceud (interne) a, au plus, deux fils.

On peut utiliser les types précédents pour représenter de tels arbres, mais il est plus utile
de créer un type spécifique, a la fois pour éviter de construire par erreur des arbres qui ne
sont pas binaires, et pour faciliter I'acces aux enfants d'un nceud.

On s’intéresse dans un premier temps aux arbres binaires stricts, ou chaque nceud
(interne) a exactement deux nceuds. On peut donc remplacer la liste des enfants précédente
par un couple ! d’enfants, en définissant le type par

# type 'a arbre =
| Noeud of 'a * 'a arbre x 'a arbre
| Feuille of 'a;;

Comme tous les nceuds ont deux fils (deux sous-arbres), ils ne peuvent convenir pour
les feuilles, aussi est-il indispensable d’ajouter spécifiquement un cas pour les feuilles.

11 est a noter que, comme les feuilles sont traitées différemment des nceuds, on peut
choisir des types différents pour les objets stockés dans les feuilles et ceux stockés dans les
neeuds :

# type ('a, 'b) arbre =
| Noeud of 'a *x ('a, 'b) arbre x ('a, 'b) arbre
| Feuille of 'b;;

C’est tres utile pour un arbre représentant une expression mathématique, par exemple,
ol les nceuds contiennent des opérateurs, et les feuilles des valeurs.

Attention, il n’est pas rare de voir les arbres binaires stricts définis, de fagon équivalente,
par

# type ('a, 'b) arbre =
| Noeud of ('a, 'b) arbre x 'a x ('a, 'b) arbre
| Feuille of 'b;;

les éléments constituant les données d’'un nceud ayant été réordonnées pour mieux faire
apparaitre la position de chacun des sous-arbres par rapport au nceud.

19. Un enregistrement, tel que Noeud of \{ element: 'a ; filsg: 'a arbre ; filsd: 'a arbre\},
conviendrait également.
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Pour manipuler les arbres binaires, on utilise 8 nouveau le filtrage. La fonction Hauteur

déterminant la hauteur de 'arbre pourra s’écrire, pour un arbre binaire strict, de la fagon
suivante :

# let rec hauteur = function
| Noeud (_, filsg, filsd) -> 1 + max (hauteur filsg) (hauteur filsd
| Feuille -> 0;;

val hauteur : ('a, 'b) arbre -> int = <fun>

Pour obtenir la taille de I’arbre, on aurait :

# let rec taille = function
| Noeud (_, filsg, filsd) -> 1 + taille filsg + taille filsd
| Feuille _ = g¢g

val taille : ('a, 'b) arbre -> int = <fun>

Pour obtenir le nombre de feuilles, on aurait :

# let rec nbFeuilles = function
| Noeud (_, filsg, filsd) -> nbFeuilles filsg + nbFeuilles filsd
| Feuille -> 1::

- L]

val nbFeuilles : ('a, 'b) arbre -> int = <fun>

Pour le nombre de noeuds internes :

# let rec nbNoeuds = function
| Noeud (_, filsg, filsd) -> 1 + (nbNoeuds filsg) + (nbNoeuds filsd)
| Feuille _ -> 0;;

val nbNoeuds : ('a, 'b) arbre -> int = <fun>

5.5 Arbres binaires

Définitions

Dans un arbre binaire, les noeuds ont au plus deux fils, et non nécessairement exactement

deux. Il est souvent utile de conserver la distinction entre « fils gauche » et « fils droit »,



et les types que nous définirons dans la suite le feront, mais ce n’est pas toujours le cas.
Auquel cas, les types seront quelque peu différents.

On l'aura compris, il y a de fres nombreuses fagons de représenter un arbre, selon le
probléme rencontré. On pourrait envisager d’ajouter deux cas supplémentaires :

# type ('a, 'b) arbre =
| Noeud of 'a x ('a, 'b) arbre * ('a, 'b) arbre
| Noeud_G of 'a x ('a, 'b) arbre (x Seulement un fils a gauche *
| Noeud_D of 'a x ('a, 'b) arbre (x Seulement un fils a droite *
|

Feuille of 'b;;

Une autre possibilité consiste a conserver uniquement des noeuds avec deux fils, et de
définir une étiquette « Nil » qui, comme le « Fin » de notre liste chainée, indiquerait « il n'y
a plus rien par 122° », et on pourrait vouloir écrire :

(* mauvaise définition %)
'b) arbre x ('a, 'b) arbre

# type ('a, 'b) arbre =
| Noeud of 'a * ('a,
| Feuille of 'b
| Nil;;

Un neeud avec seulement un fils a droite, par exemple, correspondrait donc a un élément
de type Noeud (val, Nil, filsd).

Seulement, il y a cependant un souci avec la définition précédente. Les Shadoks disaient
qu’il y avaient trois types de casseroles : celles avec un manche a gauche, celles avec un
manche a droite, et celles sans manche, qu'on appelle communément des autobus.

Dans la définition de notre type, on a des nceuds avec uniquement un fils gauche, des
neceuds avec uniquement un fils droit, des nceuds avec deux fils... et des nceuds sans aucun
fils, qui se trouvent donc étre des feuilles!

Comme il est difficile d’empécher ce dernier cas, c’est le cas Feuille que nous allons
supprimer, une feuille devenant simplement un Noeud dont les deux fils sont Nil.

# type 'a arbre =
| Noeud of 'a * 'a arbre x 'a arbre
| Nil;;

Principal inconvénient de cette représentation, on perd la possibilité d’avoir un type
différent pour les feuilles et les nceuds.

Dans la suite de ce cours, c’est cette représentation que nous utiliserons.

20. Bien que Caml ne lui donne pas de sens particulier, Nil est, en informatique, plus ou moins le terme
consacré pour indiquer la terminaison d'une branche ou d’une liste.
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Un tel arbre s’utilise avec un filtrage comme ci-dessous, en prenant garde a I’ordre des
motifs : le cas de la feuille doit se trouver en premier, et celui du nceud avec deux fils en
dernier, car celui-ci accepte n'importe quel objet Noeud pour n'importe quels fils, Nil

compris?!.

let foo = function

| Noeud (val, Nil, Nil) -> ... (% Cas d'une feuille %)

| Noeud (val, filsg, Nil) -> ... (* Seulement un fils & gauche %)
| Noeud (val, Nil, filsd) -> ... (* Seulement un fils a droite *)
| Noeud (val, filsg, filsd) -> ... (* Noeud avec deux fils %)

| Nil => ... (% Arbre "vide" )

Il n'est généralement pas besoin de traiter les nceuds avec un seul fils a part :

# let rec nbFeuilles = function
| Nil -> 0
| Noeud (_, Nil, Nil) -> (* Cas d'une feuille *)

| Noeud (_, filsg, filsd) -> (nbFeuilles filsd)
+ (nbFeuilles filsg);;

val nbFeuilles : 'a arbre -> int = <fun>

# let rec nbNoeudsInternes = function
| Nil -> 0
| Noeud (_, Nil, Nil) -> 0 (x Cas d'une feuille %)

| Noeud (_, filsg, filsd) -> 1 + (nbNoeudsInternes filsd)

+ (nbNoeudsInternes filsg);;

val nbNoeuds : 'a arbre -> int = <fun>
# let rec taille = function
| Nil -> 0
| Noeud (_, Nil, Nil) -> (* Cas d'une feuille %)

| Noeud (_, filsg, filsd) -> 1 + (taille filsd) + (taille filsg);;

val taille : 'a arbre -> int = <fun>

Dans certaines situations, et notamment ce dernier cas, il n’est méme pas besoin de
distinguer le cas des feuilles et des nceuds. Le second motif de filtrage de la fonction taille
peut tout a fait étre supprimé!

21. Sauf évidemment a préciser filsg <> Niletfilsd <> Nil.



Dans le cas du calcul de la hauteur d'un arbre, la hauteur d'un arbre vide (Ni1) n’est pas
aisée a définir. Mais il est fréquent que I'on choisisse —1 comme hauteur d'un arbre vide,
car cela permet d’écrire trés simplement :

# let rec hauteur = function
| Nil -> -
| Noeud (_, filsg, filsd) -> 1 + max (hauteur filsd)
(hauteur filsg);;

val hauteur : 'a arbre -> int = <fun>

Quelques propriétés des arbres binaires

Théoréme 1.

o si un arbre binaire a une hauteur h, alors il possede au plus 2" feuilles, et au plus 2" —1
neeuds (internes);

e si un arbre binaire strict possede n nceuds et f feuilles, alors f =n+1.

De telles propriétés peuvent étre démontrées par exemple en utilisant le principe de
récurrence sur la hauteur de I'arbre. Pour ce qui est de la premiére propriété :

Démonstration. Supposons qu’elle soit vraie pour toute hauteur comprise entre 0 et h
(nous aurons besoin ici d'une récurrence forte).

Un arbre de taille 2 + 1 est constitué d'un nceud, d'un sous-arbre de hauteur égale a & et
éventuellement d’un sous-arbre de hauteur ' inférieure ou égale 2 h.

Larbre de taille i + 1 compte donc, au plus, (2") + (Zh’) feuilles, soit au plus 2/*! feuilles
puisque 1’ < h.

De méme, il compte au plus 1 + [Zh -1)+ (2” - 1) neeuds, soit au plus 2"+! — 1 neeuds
puisque i’ < h.

Par ailleurs, la propriété est vraie pour un arbre de hauteur % = 0, ne contenant aucun

nceud et une seule feuille. D’apres le principe de récurrence forte, la propriété est donc
vraie pour un arbre de hauteur quelconque. O

Le raisonnement est similaire pour la seconde propriété, qui n’est cependant vérifiée
que pour des arbres binaires stricts (il est aisé de trouver un contre-exemple pour un arbre
binaire qui ne l'est pas, par exemple un arbre avec un seul nceud et une seule feuille).

Démonstration. Supposons qu’elle soit correcte pour n'importe quel arbre binaire strict
de hauteur comprise entre 0 et &, et considérons un arbre binaire strict de taille h + 1.

Le sous-arbre de gauche, de taille au plus #, contient fg feuilles et ng neeuds, avec
fg = ng + 1. Le sous-arbre de droite, de taille également au plus h, contient f, feuilles et
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ng neeuds, avec fy = ng + 1. On a ici besoin que I'arbre binaire soit strict car cela garantit
que I'on ait bien un arbre, éventuellement réduit & une simple feuille, de chaque coté.

Notre arbre de hauteur &+ 1 contient donc 1 + ng + ng nceuds, et fg + f; feuilles, avec
fe+ fa=(ng+1)+(ng+1) = (ng +ng+1)+1, ce qui correspond a la propriété pour une
hauteur h+ 1.

Un arbre de hauteur 0 contient une feuille et aucun nceud, donc par application du
principe de récurrence forte, la propriété est vraie pour toute hauteur /! O

5.6 Parcours possibles d’'un arbre

Parcours en profondeur

Terminons ce tour d’horizon des arbres binaires en parlant un peu de parcours des
arbres : pour une fonction explorant I'arbre dans son ensemble, comme les fonctions
précédentes, dans quel ordre les nceuds sont-ils visités?

Sil'on y regarde de plus pres, dans les cas présentés dans ce chapitre, on a un parcours
de l'arbre dit en profondeur??. C est-a-dire que I'on explore complétement une branche
de 'arbre, jusqu’a la feuille, avant de remonter et d’explorer une autre branche.

En effet, dans le cas de la fonction hauteur, par exemple, on évalue tout d’abord la taille
du sous-arbre de gauche, ce qui nécessite de le parcourir intégralement, avant de s'intéres-
ser, dans un second temps, au sous-arbre de droite (et enfin de calculer le maximum et
d’ajouter un).

Dans un tel parcours en profondeur, tout se passe comme si ’on explorait 'arbre en
suivant ses « contours », comme ci-dessous :

Pour tout traitement des nceuds de I'arbre en O(1), I’exploration d’'un arbre nécessite
naturellement un temps proportionnel a sa taille. Les fonctions récursives sur les arbres

22. On parle de « depth-first » en anglais



s’appellant sur chacun des fils auront en général une complexité correspondant a la
complexité du traitement d'un nceud multipliée par la taille de I’arbre.

On peut aisément voir que, dans un parcours en profondeur, chaque feuille est visitée
une unique fois. Les nceuds internes, en revanche, sont généralement visités plusieurs fois.

Dans le cas d’'un arbre binaire strict, par exemple, ces nceuds internes sont visités trois
fois : une premiere fois avant d’explorer le sous-arbre de gauche, une seconde fois entre
I'exploration des deux sous-arbres, et une troisieme fois apres ’exploration du sous-arbre
droit.

Variantes des parcours en profondeur

Dans le cas d'un arbre binaire strict, quand on s’intéresse précisément au moment oll
sont traités les nceuds internes, on distingue parfois plusieurs variantes de parcours en
profondeur :

« le parcours en profondeur dit suffixe, ouI'on traite d’abord les deux fils, puis le noceud
lui-méme;

e le parcours en profondeur dit préfixe, ou I'on traite d’abord le nceud, puis chacun des
deux fils;

« le parcours en profondeur dit infixe, out]'on traite d’abord le fils gauche, puis le nceud,
puis le fils droit.

La plupart des fonctions que I’on écrira sur les arbres se trouvent étre des parcours
suffixes (pour la taille de I'arbre, par exemple, la somme est nécessairement effectuée apres
I'estimation de la taille des deux sous-arbres! Il peut cependant arriver que 1'on effectue
des traitements lors de deux ou lors des trois visites des nceuds internes.

Cette distinction est particulierement importante si la visite des nceuds a un effet im-
médiat. C’est par exemple le cas lorsque I'on écrit une fonction affichant I’ensemble des
étiquettes de I'arbre.

Dans le cas d'un parcours suffixe, les deux appels affichent toutes les étiquettes des deux
sous-arbres, et I'affichage de la racine est effectué en dernier :

# let rec parcoursSuffixe = function
| Nil -> O
| Noeud (v, filsg, filsd) -> parcoursSuffixe filsg;
parcoursSuffixe filsd;
print_string v;;
val parcoursSuffixe : string arbre -> unit = <fun>
# parcoursSuffixe arbre
GLHDIEBJKFCA- unit = ()
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Dans le cas d'un parcours préffixe, la racine est traitée en premier :

# let rec parcoursPréfixe = function
| Nil -> ()
| Noeud (v, filsg, filsd) -> print_string v;
parcoursPréfixe filsg;
parcoursPréfixe filsd;;
val parcoursPréfixe : string arbre -> unit = <fun>
# parcoursPrefixe arbre
ABDGHLEICFJK- : unit = ()

Dans le cas d'un parcours infixe, tout se passe comme si on avait « compressé » 'arbre
verticalement :

let rec parcoursInfixe = function
| Nil -> (O
| Noeud (v, filsg, filsd) -> parcoursInfixe filsg;
print_string v;
parcoursInfixe filsd;;
val parcoursInfixe : string arbre -> unit = <fun>
# parcoursInfixe arbre
GDLHBEIACJFK- : unit = ()

Ces situations ne sont pas mutuellement exclusives, il n’est pas inhabituel que I'on ait,
pour un neceud interne, a la fois un traitement préfixe et un traitement suffixe.

Parcours en largeur

Un autre parcours possible d’un arbre est le parcours hiérarchique (ou en largeur) *3, qui
consiste a traiter les éléments de 'arbre « étage par étage ». Le plus souvent de la racine
vers les feuilles, autrement dit dans I’ordre ABCDEFGHIJKL.

Ce parcours peut étre programmé, mais il nécessite 'utilisation d’une structure de
donnée appelée file que nous introduirons un peu plus tard. Nous reviendrons a cette
occasion sur le principe du parcours hiérarchique d'un arbre.

23. « broadth-first » en anglais.



Exercices

Ex. 2.1 — Gérer les éléments d’une liste

1. Surle modele de la fonction dernier, écrire une fonction avantDernier prenant en
argument une liste Caml et retournant son avant-dernier élément. On déclenchera une
erreur (avec failwith) sila liste contient moins de deux éléments.

2. Ecrire une fonction retire prenant en argument une liste et un entier 7, et retourne
une liste identique a la liste fournie, mais privée du n¢ élément. On déclenchera une erreur
sila liste est trop courte.

3. Ecrire une fonction insére prenant en argument une liste, un entier n et un élément,
etretourne une liste identique a la liste fournie, mais dans laquelle on a inséré I’élément
fourni juste avant le n¢ élément de la liste passée en argument.

4. Déterminer la complexité (en temps) de chacune de ces fonctions. Comparer ces
complexités avec les équivalents de ces fonctions en Python.

Ex. 2.2 - Réordonner les éléments d’une liste

1. Ecrire une fonction rotG de complexité linéaire prenant en argument une liste et
retourne une liste dans laquelle est éléments ont subi une permutation circulaire vers la
gauche. Par exemple, rotG [ 1; 2; 3; Jldoitdonner [ 2; 3; 4; 1.

2. Ecrire une fonction rotD de complexité linéaire prenant en argument une liste et
retourne une liste dans laquelle est éléments ont subi une permutation circulaire vers la
droite. Par exemple, rotD [ 1; 2; 3; Jldoitdonner [ 4; 1; 2; 1.

Ex. 2.3 — Préfixes et suffixes

1. Proposer une fonction suffixes prenant en argument une liste d’éléments (de type
quelconque) et retournant la liste de ses suffixes. Par exemple, suffixes [ 1; 2; 3 ]
doit retourner par exemple [ [ 1; 2; 1; [ 2 1 ; [ 31 ] (Tordre des listes
dans la liste fourni comme résultat n’a pas d’'importance).

2. Un peu plus difficile, proposer une fonction prefixes prenant en ar-
gument une liste d’éléments (de type quelconque) et retournant la liste de
ses préfixes. Par exemple, prefixes [ 1; 2; 3 ] doit retourner par exemple
CC131;C0C1; 2715 CLC71; 2; 3717 ordre des listes dans la liste fourni comme
résultat n’a pas d'importance).

3. Quelle est la complexité de ces deux fonctions?
Ex. 2.4 — Suppression de doublons

1. Quelle est la signature de la fonction suivante, et que fait-elle?
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let rec foo f = function
| t::q when f t -> t::(foo f q)
| t::q -> foo f ¢
| — -> [1;;

2. En déduire une fonction prenant en argument une liste et retournant une liste dans
laquelle on a retiré les éléments n'apparaissant pas pour la derniere fois. Le résultat de
lafonctionsurlaliste [ 1; 2; 3; 2; 4; 5; Jdevraétrelaliste [ 1; 3; 2; 5; 1.
Quelle est sa complexité?

Ex. 2.5 - Factorielle

1. Proposer une fonction multiplie qui prend en argument une liste d’entiers et re-
tourne le produit de ses éléments (ou 1 sila liste est vide). On pourra réfléchir a une version
utilisant le filtrage, et une version utilisant List.fold_lef't.

2. Ecrire une fonction prenant un entier n et retournant la liste des entiers de n a 2
(inclus, rangés par ordre décroissants) si n = 2 et une liste vide sinon.

3. En déduire une fonction fact prenant en argument un entier n et retournant sa
factorielle.

Ex. 2.6 — Booléens et listes

Caml fournit deux fonctions de signature ('a -> bool) -> 'a list -> bool, nom-
méesList.existsetList.for_all, prenant donc en argument une fonction et une liste,
et retournant un booléen indiquant

« sila fonction retourne true pour au moins un élément de la liste dans le cas de la
fonction List.exists?2?;

« silafonction retourne true pour tous les éléments de la liste dans le cas de la fonction
List.for_all?®.

1. Proposer des fonctions Caml réalisant ces deux fonctions, en procédant dans un
premier temps par filtrage, puis en utilisant List.fold_left.

2. Ecrire une fonction de signature ('a -> bool) -> 'a list -> 'aretournant le
premier élément de la liste vérifiant la propriété (définie par la fonction utilisée comme
premier parametre).

3. Ecrire une fonction de signature ('a -> bool) -> 'a list -> int -> 'aretour-
nant le n¢ élément de la liste vérifiant la propriété.

4. Ecrire une fonction de signature ('a -> bool) -> 'a list -> 'aretournantle
dernier élément de la liste vérifiant la propriété.

24. Léquivalent en Python serait any(fun(x) for x in liste).
25. L'équivalent en Python serait all(fun(x) for x in liste).



Ex. 2.7 — Produit cartésien

Proposer une fonction de signature 'a list -> 'b list -> 'a % 'b list prenant
en argument deux listes et retournant une liste de couples résultat du produit cartésien

des deux listes fournies en argument (les couples se trouvant dans un ordre quelconque).

produit [ 'a'; 'b'; '¢" 1 [ 1; 2; ] retournera ainsi par exemple :
- : (int % char) list = [(1, 'a'); (1, 'b"); (1, 'c");
(2, “a)i (2, "bE)EE(2, “ct )i (3, “a'); (3, 'b)s (3, ‘c')l

Ex. 2.8 - Fonctionelle List.iter

Pour écrire une fonction réalisant la méme tache que List.iter, est-il plus simple
d’utiliser List.fold_left oulList.fold_right? Proposer une telle fonction.

Ex. 2.9 - Maxima dans un arbre

On consideére un arbre binaire strict, dont les noeuds et feuilles contiennent des éléments
'a pouvant étre comparés, et dont le type est

type 'a arbre =
| Feuille of 'a
| Noeud of 'a *

a arbre x 'a arbre

1. Proposer une fonction maxFeuille de signature 'a arbre -> 'aprenantun arbre
en parameétre et retournant le plus grande feuille de 'arbre.

2. Créer de méme une fonction maxArbre de signature 'a arbre -> 'a prenant un
arbre en parametre et retournant le plus grand élément de 'arbre.

Ex. 2.10 - Elagage d’un arbre

On considere des arbres binaire sans étiquettes définis par le type

Nil | Noeud of arbre * arbre

type arbre =

Ecrire une fonction prenant en argument un tel arbre et un entier n, et retournant un
arbre dont les branches ont été coupées a la longueur 7 (les nceuds a la profondeur n
devenant des feuilles, les éléments situés plus loin de la racine étant ignorés).

Ex. 2.11 - Symétrie et arbres

On considére des arbre binaire sans étiquettes, définis par le type
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type arbre = Nil | Noeud of arbre * arbre ]

1. Ecrire une fonction identiques prenant en argument deux arbres et retournant true
si les deux arbres sont identiques (on s’intéresse ici a leur forme).

2. Ecrire une fonction miroirs prenant en argument deux arbres et retournant true si
les deux arbres sont image 'un de 'autre par une symétrie verticale.

3. Ecrire une fonction symetrique prenant en argument un arbres et indiquant si 'arbre
admet une symétrie verticale.

Ex. 2.12 — Numérotation d’'un arbre

La numérotation des nceuds d'un arbre binaire strict de Sosa-Stradonitz vise a associer a
chaque nceud de I'arbre un entier unique strictement positif, de facon a pouvoir identifier
sans ambiguité ledit nceud. Elle fonctionne de la facon suivante :

e on associe 1 alaracine de I'arbre;
 siun nceud est numéroté n, alors son fils gauche est numéroté 2n et son fils droit
2n+1.

On suppose le type arbre défini de la facon suivante :

Feuille of 'a | Noeud of 'a * 'a arbre x 'a arbre

type 'a arbre =

1. Proposer une fonction numeroteArbre dont la signature Caml serait
'a arbre -> (int * 'a) arbre qui crée un nouvel arbre dans lequel, a chaque
élément (nceud ou feuille) de I'arbre fourni en parametre, on adjoint son numéro.

2. Justifier que n'importe quel entier positif correspond potentiellement a un nceu dans
un arbre, et écrire une fonction chemin prenant en argument un entier et retournant une
liste de caracteres indiquant le chemin de la racine au nceud correspondant, en utilisant
'g' pour indiquer un passage au fils gauche, et 'd' pour le fils droit. Par exemple, chemin
retournera[ 'g'; 'd' 1J.



Programmation impérative

Durant les deux premiers chapitres, nous nous sommes intéressés a des exemples de pro-
grammation dite fonctionnelle, mettant en avant la définition et I'évaluation de fonctions.
C’est le cceur des langages de la famille ML, donc Caml fait partie.

Toutefois, au contraire de langages fonctionnels purs comme Haskell, Caml (et les lan-
gages ML) ne sont pas limités a la seule programmetion fonctionnelle, et il est possible
d’utiliser également une programmation impérative, ce qui sera le sujet de ce chapitre.

Bl Programmation impérative

La programmation impérativerepose sur I'idée que Von Neumann se faisait de I’architec-
ture d'un ordinateur : une mémoire contenant les données et les instructions constituant
le programme, les instructions étant exécutées tour a tour, sous la direction d’un controleur
d’exécution par une unité de calcul, et ont pour effet des modifications du contenu de la
mémoire !. On adjoint généralement a cette architecture des entrées-sorties qui permettent
al'ordinateur de communiquer avec l'extérieur.

—_— Ps . P
Unité arithmétique
Controleur etlogique (ALU)
d’exécution - Entrées
’ Accumulateur(s) ‘
l T l T T Sorties
‘ Mémoire ‘

Dans la suite de ce cours, nous introduirons les principales structures couramment
rencontrées en programmation impérative (séquences d’instructions, boucles, boucles
conditionnelles) ainsi que des objets mutables qui seront indispensable, nous le verrons,
pour rendre compte du caractere « évolutif » du contenu de la mémoire dans ce type de
programmation.

1. Modifications des données ou bien du programme lui-méme!
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Outils de programmation impérative

2.1 Séquences d’instructions

Dans une programmation de style impératif, les instructions se succedent les unes aux
autres. Il est donc nécessaire de pouvoir exécuter plusieurs instructions a la suite.

En Caml, les instructions sont séparées par des points-virgules (méme si un retour a la
ligne sépare les deux instructions).

# let foo x =
print_string "Le carré de
print_string " est "
print_string ".";
print_newline ();;

n

; print_int x;
; print_int (x * x);

val foo : int -> unit = <fun>

On remarquera qu’il n’est pas besoin de ne mettre qu'une instruction par ligne, tant
qu’elles sont séparées par des points virgules, méme sil’on tend a le faire pour faciliter la

lecture des fonctions 2.

Le résultat de la derniére expression est celui qui sera retourné par la fonction :

# let foo x =
print_string "Calcul du carré de ";
print_int x;
print_newline ();
X * X;;
<fun>

val foo : int -> int =

Dans cette derniere fonction, on procéde d’abord a un affichage, puis la fonction calcule
et retourne le carré de son argument (entier).

# foo 2;;
Calcul du carré de
- : int =

Bien évidemment, comme une fonction ne retourne qu'un seul argument, chacune des
instructions excepté la derniere devrait retourner I’élément () de type unit!

2. Ilen est d’ailleurs de méme en Python, il est théoriquement possible de mettre plusieurs instructions sur
une méme ligne en les séparant par des point-virgules, mais cette pratique est tres forcement déconseillée.



Ce n’est pas rigoureusement requis (si ce n’est pas le cas, les calculs intermédiaires sont
simplement perdus), quoique Caml fournira un avertissement :

# let foo x =
X * X % X;
X % X;;

Characters =
X * X * X;
AAAAAAAAA
this expression should have type unit.
int -> int = <fun>

Warning
val foo :

J

C’est un simple avertissement, la fonction est définie quand méme, mais elle ne renvoie
que le carré de 'argument (la premiere instruction, ici, ne sert a rien!)

Pour que les instructions, la derniére excepté, aient un intérét, il faut impérativement
qu’elles aient un effet (affichage a I'écran, modification de la mémoire...). C’est la rai-
son pour laquelle on n’a guere eu besoin d’'utiliser des séquences d’instructions jusqu’a
présent 3.

2.2 Instructions conditionnelles
Une instruction conditionnelle est une instruction dont le comportement dépend d'une

condition, généralement le résultat d'une expression booléenne. Elle s’écrit en Caml avec
la structure

if condition then expression_1 else expression_2 ]

Si condition est vraie, alors expression_1 est évaluée et retournée, sinon c’est
expression_2 quile sera.

On peut ainsi réécrire notre fonction fact calculant la factorielle d'un entier positif :

# let rec fact n =
if n <= 1 then 1 else n * fact (n-1);;

val fact int -> int = <fun>

IIn'y a pas de différence pratique entre la forme précédente de la fonction fact et celle
que 'on a vu dans le premier chapitre utilisant un filtrage : selon la valeur de n, on retourne
I'une ou 'autre des expressions (1 ou n * fact (n-1)).

3. Excepté dans le précédent chapitre pour afficher les différents parcours d'un arbre, ou1 I'on faisait précisé-
ment des affichages a 1’écran.
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En Caml, il est possible d’utiliser cette structure conditionnelle partout ot on attend une
expression, y compris a I'intérieur d'une expression. Par exemple, dans cette fonction :

# let foo n =

n+ (if nmod 2 = 1 then 1 else -1);;

val foo : int -> int = <fun>

Attention, une expression en Caml doit toujours renvoyer un objet de méme type, aussi
le else n'est, la treés grande majorité du temps, pas facultatif :

# let foo n =
if nmod 2 = 1 then n+1;;
Characters -45:
if nmod 2 = 1 then n+1;;

AAA

Error: This expression has type int
but an expression was expected of type unit

Il n'existe qu'une exception a cette regle, une expression de type unit, auquel cas Caml
ajoutera un « else () » automatiquement, ce qui permet donc d’écrire :

let foo n =
if n mod 2 = 1 then print_int n;;
# val foo : int -> unit = <fun>
2.3 Blocs

Il n'est pas possible de mettre une séquence d’instructions entre le then etle else:

# let foo n =
if n mod 2 = 1 then
print_string "impair"”; print_newline ()
else

print_string "pair"”; rint_newline ();;

Characters =
else

AAAA

Error: Syntax error




I1 est nécessaire de « grouper » la séquence d’instructions dans un « bloc » qui se com-
portera comme une expression unique, grace aux mots-clés begin et end:

# let foo n =
if nmod 2 = 1 then
begin
print_string "impair”; print_newline ();
end
else
begin
print_string "pair”; print_newline ();
end;;
val foo : int -> unit = <fun>

C’est également indispensable pour I’expression associée au else ici, car sinon le se-
cond print_newline ne ferait pas partie de la conséquence de 1'échec de la condition
n mod 2 = 1, mais serait exécuté quelle que soit la valeur de n, puisque le else ne prendra
que I'expression qui le suit immédiatement.

Il est possible d’'utiliser des parenthéses a la place de begin ... end dans la plupart des
situations, méme si en terme de lisibilité, le bloc apparait de facon moins évidente :

# let foo n =
if nmod 2 = 1 then
(print_string "impair"”; print_newline ())
else

(print_string "pair”; print_newline ())

val foo : int -> unit = <fun>

Ce type de bloc est également utile lorsque I'on a des filtrages imbriqués, afin de préciser
a quel filtrage appartient chacun des motifs!

Considérons par exemple le cas suivant, ott les m1...m4 seraient des motifs :

match expr1 with
| m1 -> match expr2 with
| m2 -> ...
| m3 => ...
| m4 > ...

Contrairement a ce que I’on a pu vouloir écrire (ou que l’on peut comprendre en premiere
lecture), le motif m4 est un motif pour le second filtrage (on rappelle que Caml n’est pas
sensible a I'indentation).
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Sim4 est bien un motif pour le premier filtrage, comme I'indentation le laisse supposer, il
conviendrait d’écrire :

match expr1 with
| m1 -> begin
match expr2 with
| m2 -> ...
| m3 -> ...
end
| md => ...

ou bien :

match expr1 with
| m1 -> (match expr2 with
| m2 -> ...
| m3 => ...)

| md -> ...

2.4 Boucles inconditionnelles (for)

Pour effectuer un nombre déterminé de fois une série d’instructions, on écrira

for nom = expression_1 to expression_2 do sequence done ]

expression_1 et expression_2 doivent donner un résultat entier.

Le nom est alors associé successivement a tous les entiers entre expression_1 et
expression_2 (inclus), et la séquence d’instructions sequence est évaluée pour chacun
de ces entiers (notons que par la présence de do et done, il n’est pas besoin de définir
nous-méme un bloc d’instructions ici s’il faut plus d’'une instruction dans la boucle.

Ainsi, I'expression

for i = 1 to 3 do expression done ]

est équivalente a la séquence d’instructions suivante :

let i = 1 in expression;
let i = 2 in expression;
let i = 3 in expression;

Précisons que, dans le cas ou1 expression_1 donne un résultat strictement supérieur a
expression_2, il ne se passera rien.



On peut ainsi, par exemple, avec une boucle inconditionnelle, écrire une fonction qui
imprime une table de multiplication* :

# let table n =
for i = 1 to do
print_int n;

print_string " fois ";
print_int i;
print_string " égale ";

print_int (n*i);
print_newline ();
done; ;

val table int -> unit = <fun>

J

Les expressions dans la boucle devraient retourner un () de type unit, car le résultat de
ces expressions sera « jeté » par Caml aprés chaque itération °. Ainsi, la fonction

# let foo

for i

i * n;
done; ;

to do

Characters =
i * n;
AAAAAA

Warning

val foo

this expression should have type unit.
int -> unit = <fun>

est acceptée, mais ne renvoie rien, ce qui n’est probablement pas ce que ’on souhaite!

Cette fois encore, si I’expression dans la boucle n’a pas d’effet (affichage, modification
de la mémoire...), cette structure de contrdle n’a guere d’'intérét.

Il n’existe pas de structure permettant de choisir le pas lors de 'itération, ou d’itérer sur
autre chose que des entiers. On dispose cependant du mot-clé downto afin de décompter
au lieu de compter :

for nom =

expression_1 downto expression_2 do sequence done ]

4. Bien évidemment, rien n'empéche de le faire avec une écriture purement fonctionnelle et une récursion,
nous y reviendrons. On dispose simplement ici d'une autre maniere d’exprimer une telle opération.

5. Y compris la derniére, une boucle for retourne bien toujours () et non le résultat de 'expression de la
derniere itération!
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2.5 Boucles conditionnelles (while)

Parfois, le nombre d’itérations a effectuer n’est pas connu a I’avance, et 'on souhaite
effectuer une tache tant qu'une expression est vraie. Pour ce faire, on dispose de la structure
de controle suivante :

while expression do sequence done ]

Avec cette structure, sequence sera évaluée autant de fois que nécessaire, tant que
expression sera vraie. Par exemple :

while read_line () <> "Au revoir” do
print_string "Dites m'en plus !";
print_newline ();

done; ;

Encore plus que dans les exemples précédents, on a besoin ici que quelque chose se
passe pour que expression change apres un certain nombre d’itérations, sinon on sera
bloqués dans une boucle infinie! Il devient vraiment indispensable que sequence puisse
agir sur le contenu de la mémoire.

Il n’est en effet pas possible d’utiliser une définition let ... = ... alintérieur dela
boucle. Tout au plus peut on utiliser une définition locale let ... = in ..., mais
cette définition sera oubliée des la fin de l'itération dans laquelle elle apparait.

Références

3.1 Lesréférences

On l'a vu, la programmation impérative n’a de sens que sil’on est capable d’agir sur le
contenu de la mémoire, ce qui ne peut étre fait avec des définitions. Plutot que d’associer
un nom a un objet (valeur, chaine, arbre...), il est possible, grace au mot-clé ref, de créer
une référence vers un objet.

En écrivant par exemple

# let a = ref 2.2;;
val a : float ref = {contents = 2.2}

on demande a Caml d’associer le nom « a » a une référence vers un flottant (ainsi que
I'indique le float du type « float ref »), ce flottant étant initialement 2.2.

Dans un premier temps %, on peut imaginer le nom associé a une « boite » contenant

6. Nous verrons un peu plus tard que cette image peut poser quelques soucis dans certains cas.



I'entier. D’ailleurs, la réponse de Caml suggere bien que 'on manipule une « boite » avec
un contenu. Les noms sont ainsi associés aux « boites » plutdt qu’a leur contenu.

La définition let a = ref conduit donc a une situation de la sorte, ou ’on voit
que le nom a est bien associé (de facon permanente) a la boite et non au flottant qu’elle

contient :

On ne peut utiliser directement une référence comme s’il s’agissait de I'objet qu’elle
contient :

#a*x. 2.0;;

Characters 2-
a*x. 2.0;;
Error: This expression has type float ref
but an expression was expected of type float

J

Il faut donc préalablement extraire le flottant. Pour ce faire, on fait précéder le nom d’'un
point d’exclamation :

# la;;

- : float =
# la *x. 2.0;;
- : float =

Pour modifier le contenu de la case mémoire, on utilise 'opérateur « : = »:

#a:=3.7;;

- : unit = O

# la;;

- : float =

# a;;

- : float ref = {contents = 3.7}

Le contenu de la case mémoire a bien été changé, mais pas la définition de a.
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3.2 Utilisation

Les références permettent, entre autres choses, de créer des accumulateurs et des comp-
teurs, des objets que I'on retrouve trees fréquemment dans la programmation impérative.
11 est par exemple trés simple d’écrire, en style impératif, une fonction factorielle :

# let fact n =
let res = ref 1 in
for i=2 to n do
res := lres * i
done;
Ires;;
val fact int -> int = <fun>

Pour incrémenter I'entier désigné par une référence x, il suffit en principe d’écrire

Ix + ]

Toutefois, comme il s’agit d'une opération courante en programmation impérative, on
dispose d'une fonction incr qui prend en argument une référence vers un entier et réalise
la méme opération d’'incrémentation. « incr x » est donc équivalenta « x :=
De la méme facon, on dispose de la fonction decr qui décrémente d'une unité le contenu
d’une référence vers un entier.

Ix + ».

Il est possible de créer des références vers des objets de n'importe quel type. Ainsi, dans
la fonction suivante, qui compte le nombre de zéros d'une liste d’entiers, on utilise ainsi
deux références, I'une, reste, recueillant la liste des données restant a traiter, la seconde,
nombre, le nombre de zéros déja identifiés dans la liste :

let compte_zeros lst =

let nombre = ref (* un compteur de zéros *)
and reste = ref 1lst in (x éléments restant a examiner  x)

while !reste <> [] do

if List.hd !reste =
then incr nombre; (x else () implicite *)
reste := List.tl !reste (x le premier élément est traité x)

done;

!'nombre;; (x on retourne le contenu *)

La fonction précédente illustre la facon dont on traite généralement les listes dans un
style impératif. Rappelons que List. t1 ne crée pas une copie de la liste, et est bien une
opération en O(1), donc cette fonction n’est pas inefficace.

De méme, on peut tres bien avoir des références de fonctions, par exemple ici des



fonctions des entiers vers les entiers :

# let funct = ref abs;;

val foo : (int -> int) ref = {contents = <fun>}
# !funct (-37);;

- : int = 37

On peut alors y associer tout objet de type” int -> int:

# funct := fun x -> x*x*x;;
- :unit = O

# funct := min 0;;

- . unit = O

Une référence peut méme contenir une référence :

# let b = ref (ref 37);;

val b : int ref ref = {contents = {contents =

0}

Pour accéder a 'entier, il faut alors utiliser deux fois un déréférencement :

# 1 1b;;
- : int = 37

Les références sont en revanche toujours associées a un type bien particulier, et il n’est
pas possible de leur associer un objet d'un autre type :

# let a = ref 2;;
val a : int ref = {contents = 2}
#a := 4.0;;

Characters 6-9:
a = 4.0;;
AAA
Error: This expression has type float
but an expression was expected of type int

J

7. Enfait, il est méme possible d’y associer des fonctions de signature int -> 'a, 'a -> 'a, etc. Cependant,
I'objet qui se retrouvera référencé sera un objet de type int -> int, qui le restera une fois déréférencé, et qui
donc ne correspondra plus a I'objet « original ».
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3.3 Fgalité, identité

Deux noms peuvent aussi bien désigner la méme « boite », comme b et ¢ dans 'exemple
ci-dessous :

# let a = ref 2.2 and b = ref 2.2;;
val a : float ref = {contents = 2.2}
val b : float ref = {contents = 2.2}
# let c = b;;

val ¢ : float ref = {contents = 2.2}

J U

Modifier le contenu de la « boite » désignée par b aura donc des conséquences sur ¢ mais
passura:

#b :=3.7;;

- . unit = ()

# a;;

- : float ref = {contents = 2.2}
#c;;

- : float ref = {contents = 3.7}

11 est des lors naturel de se poser, dans ce genre de situation, la question du fonction-
nement de 'opérateur d’égalité ® =. En Caml, celui-ci teste une égalité de valeurs (parfois
qualifiée d’égalité structurelle), autrement dit I'opérateur regarde si les contenus sont

égaux:

#a=b;;
- : bool = true
#b=c;;
= bool = true

8. quin’est pas sans rappeler des difficultés similaires concernant 1'égalité/l'identité de deux listes en Python



Notons qu’il n’est, naturellement, possible que de comparer deux éléments de méme
type, et qu'une référence vers un flottant n’est pas comparable a un flottant :

#a=3.7;;
Characters 6-
a=3.7;5
Error: This expression has type float
but an expression was expected of type float ref

Pour tester I'identité (ou égalité physique), on utilisera I'opérateur ==:

# a == b;;
- : bool = false
#b==c;;

- : bool = true

Lopérateur ! = teste lui la « non-identité»°.

#al=b;;
- : bool = true
#b!=c;;
- : bool = false

Les opérateurs == et ! = font référence a la maniere dont les objets sont rangés en mé-
moire, et leur usage est a réserver aux objets mutables. Leur comportement sur des objets
immutables peut étre imprévisible (et varier d'un compilateur a I’autre) :

# . ==
- : bool =

L]

false

3.4 Une derniere remarque pour clore

Précisons pour terminer que si cette image de « boite » est généralement suffisante, elle
peut montrer ses limites. En effet, il est possible de créer des références distinctes vers
un méme objet (qui se trouverait alors simultanément dans deux « boites »!), comme
ci-dessous :

ref and b = ref

ref b

# let a
# let c =

9. On rappelle que c’est 'opérateur <> qui teste si deux valeurs ne sont pas égales.
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Une meilleure image serait de considérer que 1'on place dans chaque boite non pas
les objets eux-méme, mais une étiquette permettant de les retrouver, comme illustré
ci-dessous :

JUUY
hLO

Toutefois, tant que les objets auxquels on fait référence sont immutables, et ce sera le
cas dans la trés grande majorité des situations, cette distinction n'a pas d'importance.

Y Objets Caml avec mutabilité

4.1 Cas du type « enregistrement »

Supposons que 'on souhaite manipuler un annuaire en Caml, regroupant le nom et le
numéro de téléphone de différentes personnes.

On peut par exemple écrire un type « enregistrement » associant un nom et un numéro

de téléphone 10 :

type coord = { nom: string ; numéro: string };;

On peut ensuite définir un annuaire comme une liste de tels éléments !! :

let annuaire = [ { nom = "Dupont” ; numéro = "0123456789" } ;
{ nom = "Durand” ; numéro = "0246813579" } ;
{ nom = "Martin"” ; numéro = "0918273645" } 1;;

Lennui, c’est qu’il n’est pas possible de modifier un numéro si la personne en change,
sans modifier la liste de facon a retirer I'élément devenu incorrect pour le remplacer par
un nouveau.

10. On aurait pu mémoriser le numéro sous la forme d’'un entier, mais si la version de Caml utilise des entiers
32bits, ils ne permettront pas de mémoriser n'importe quel numéro a dix chiffres, et on perdrait les 0 de téte.
11. Nous verrons dans le chapitre suivant une meilleure solution pour définir un annuaire.



Ce que I'on pourrait écrire, dans un style fonctionnel, par 2 : Le résultat de la fonction est a présent de type unit, car on ne construit plus un nouvel
annuaire, on se contente de modifier I'existant, en écrivant :

# let rec modifie nom nouv_numero = function

| (t::q) when t.nom = nom # modifie "Durand” "0000056789" annuaire;;

-> { nom = nom ; numéro = nouv_numero } - s unit = ()
:: modifie nom nouv_numero q
| (t::q) -> t :: modifie nom nouv_numero q # annuaire;;
| [1] -> [1;; - : coord list =
[{nom = "Dupont”; numéro = {contents = "0123456789"}};

val modifie : string -> string -> coord list -> coord list = <fun> {nom = "Durand”; numéro = {contents = "0000056789"}};

{nom = "Martin”; numéro = {contents = "0918273645"3}}]

Cela crée un nouvel annuaire, intégrant la correction. Largument n’est lui pas modifié.
On peut aussi adopter un style plus impératif :

On peut donc par exemple utiliser la fonction modifie de la sorte :

# let modifie nom nouv_numero annuaire =

# let nouvel_annuaire = modifie "Durand” "0000012345" annuaire ;; let reste = ref annuaire in
val nouvel_annuaire : coord list = while !reste <> [] do
[{nom = "Dupont”; numéro = "0123456789"}; let coord = List.hd !reste in
{nom = "Durand”; numéro = "0000012345"}; if coord.nom = nom
{nom = "Martin”; numéro = "0918273645"}] then coord.numero := nouv_numero;
reste := List.tl !reste
On peut préférer modifier un annuaire existant, et pour ce faire utiliser des références done;;

pour le numéro, au prix d'un changement dans la déclaration de 'annuaire :
val modifie : string -> string -> coord list -> unit = <fun>

type coord = { nom: string ; numéro: string ref };;
Linconvénient de cette approche est que cela change la facon de déclarer I’annuaire

let annuaire = [ { nom = "Dupont” ; numéro = ref "0123456789" } ; (avec des ref) et de'utiliser (avec des !), ce qui peut étre parfois génant. Il existe cependant
{ nom = "Durand” ; numéro = ref "0246813579" } ; une autre fagon de procéder : Caml nous offre la possibilité de déclarer un champ du type
{ nom = "Martin” : numéro = ref "0918273645" } 1;: enregistrement comme étant mutable :

La fonction de modification peut alors s’écrire : type coord = { nom: string ; mutable numéro: string };;

let annuaire = [ { nom = "Dupont” ; numéro = "0123456789" } ;
{ nom = "Durand” ; numéro = "0246813579" } ;
{ nom = "Martin” ; numéro = "0918273645" } 1;;

# let rec modifie nom nouv_numero = function
| (t::q) when t.nom = nom
-> t.numéro := nouv_numero;
modifie nom nouv_numero q
| (t::q) -> modifie nom nouv_numero g

[ [1->QO;3;

On peut alors modifier I'élément mutable avec I'opérateur <- :

# (List.hd annuaire).numéro <- "9876543210";;

o . . . . - : unit =
val modifie : string -> string -> coord list -> unit = <fun> O

# List.hd annuaire;;
12. Notons que si'on trouve le nom recherché dans I'annuaire, on poursuit la recherche, et si le nom apparait - : coord = {nom = "Dupont”; numéro = "9876543210"}
plusieurs fois dans I’annuaire, fousles numéros seront mis a jour.
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On écrit alors notre fonction de modification par exemple de la fagon suivante :

# let rec modifie nom nouv_numero = function
| (t::q) when t.nom = nom
-> t.numéro <- nouv_numero;
modifie nom nouv_numero q
| (t::q) -> modifie nom nouv_numero q

[ [1 > QO3

val modifie : string -> string -> coord list -> unit = <fun>

Pour ceux qui se demanderaient pourquoi l’on a créé un opérateur supplémentaire <-
au lieu d'utiliser : =, dans le cas ou I’on définit un objet de la sorte

type foo = { mutable elem = int ref };; ]

il fallait bien pouvoir distinguer les deux opérations qui sont toutes les deux possibles ici!

4.2 Un autre objet mutable : les tableaux ('a array)

Certains types proposés par Caml sont « naturellement » mutables. Les chaines de
caracteres I'ont été (il était possible de « muter » un caractere d'une chaine), mais ne le
sont plus ' dans les derniéres versions de OCaml.

Les listes sont immutables, ce qui rend, on I'a vu, leur utilisation dans un style impératif
délicat. On dispse donc d’un autre conteneur, mutable, que 'on utilisera souvent dans un
style impératif : les tableaux (de type 'a array). Ce sont des objets qui peuvent contenir
un nombre prédéterminé d’éléments de méme type. On peut les définir explicitement en
placant différents éléments (impérativement tous de méme type), séparés par des points
virgules, entre [ | et |]:

# let tableau = [| 1.2; 2.3; 3.4 |1;;
val tableau : float array = [|1.2; 2.3; 3.4]|]

On peut également créer un tableau grace a la fonction Array . make, en précisant la taille
et’élément a placer dans chaque case :

# Array.make .0;;
- : float array = [|0.; 0.; 0.; 0.; 0.; 0.]]

H+

Array.make "Hello";;
- : string array = [|"Hello"”; "Hello"; "Hello"|]

13. Il existe un type bytes, trés semblable aux chaines de caracteres, qui lui est mutable.
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On peut obtenir la taille d'un tableau avec Array.length, et accéder a un élément en
indiquant, entre parentheses précédées d'un point, I'indice de I'élément souhaité :

# Array.length tableau;;
- :int =

# tableau.(1);;
- : float =

Au contraire de ce qui se passe avec les listes, ces opérations sont toutes deux effectuées
en temps constant (O(1)).

Par ailleurs, les tableaux étant des objets mutables, il est possible de modifier un élément
du tableau avec <-:

E=3

tableau. (1) <- .23;;
unit = ()

E=3

tableau;;
float array = [|1.2; .23; 3.4]1]

Il existe de nombreuses fonctions destinées a la manipulation de tableaux
(dont Array.copy, Array.sub, Array.iter, Array.map, Array.mem, Array.to_list,
Array.of_list, Array.sort...) dont la liste et le fonctionnement sont résumés dans la
documentation du langage, et que nous découvrirons en fonction de nos besoins.

Les listes et les tableaux répondent a des besoins différents, comme nous le verrons. Il
est tres facile d’obtenir une liste résultant de I’ajout ou de la suppression d'un élément en
téte d’'une liste existante (en O(1)), mais le cotlit pour accéder a un élément au milieu de
la liste est élevé (en O(n)). Par ailleurs, le contenu d’une liste est immutable. A 'inverse,
les tableaux sont des objets mutables, mais ont une taille fixe (la changer nécessite de
recopier le tableau, avec un cotit en O(n)). Ainsi, en fonction des besoins de 1'algorithme,
on préférera donc l'une ou I'autre de ces structures.

4.3 Tableaux bidimensionnels

Pour représenter un tableau en deux dimensions, il n’existe pas de type particulier, mais
comme on peut définir des tableaux de n'importe quel type, on peut définir des tableaux
de tableaux. Attention toutefois, sil’'on souhaite construire une matrice nulle de trois lignes
et deux colonnes, on ne peut écrire :

);; (x incorrect *)

115 Cle.; o.111]

# let matrice = Array.make
- : float array array = [|[]0.;

(Array.make

115 Cl1o.;




Méme si le résultat semble satisfaisant, on a créé ici un tableau qui contient trois fois la
méme ligne'*! Modifier un élément sur une ligne quelconque aurait un effet sur toutes les
autres, ce qui n’est a priori pas ce que I'on cherche...

Pour définir une matrice nulle de trois lignes et deux colonnes, on pourra en revanche
écrire :

# let matrice = Array.make 3 [|
val matrice :

155
'_a array array = [|[|11; CII13; C11311

# for i=0 to 2 do matrice. (i) <- Array.make done;;

- :unit =

# matrice;;

- : float array array = [|[|0.; 0.|1; [|0.; 0.]1; []10.; 0.]1]]

Caml fournit cependant fort obligeamment un raccourci pour effectuer cette construc-
tion, Array.make_matrix:

# Array.make_matrix
- : float array array =

CICle.; o.1]1; [lo.; @.]11; Clo.; o.]1]]

On fait référence la ligne d’indice i par :

# matrice.(1);;
- : float array = [|0.; 0.]]

Et donc al’élément situé sur la ligne d’'indice i dans la colonne d’indice j par :

# matrice. (1).(2);;
- : float =

J

Remarquons enfin que rien ne garantit, lorsque 'on a un 'a array array, que cha-
cune des « lignes » ait la méme taille, et qu’il peut tres bien ne pas s’agir d'un tableau
bidimensionnel dans le sens usuel du terme!

14. 1l s’agit exactement du méme probléeme que lorsque 'on écrit [ [0.0] * 2 ] * 3 en Python.
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Exercices

Ex. 3.1 - Fonction mystérieuse

Déterminer ce que fait la fonction suivante :

let foo x y =

X = Ix +ly;
y :=Ix - ly;
X = Ix - ly;;

Ex. 3.2 — Parité d’un coefficient binomial

On peut montrer (théoreme de Lucas) que le coefficient binomial (Z) est impair si et
seulement si, a tout 0 dans I'écriture binaire de n correspond un 0 dans I'écriture de k (a la
meéme position).

Proposer une fonction estImpair de signature int -> int -> bool prenant en argu-
ment les entiers 7 et k et retournant la parité de (Z)

Ex. 3.3 - Liste de couples

Proposer une fonction couples de signature int -> (int * int) list prenant en
argument un entier n > 0 et retournant la liste de tous les couples d’entiers (x, y) vérifiant
lsxsysn.

Ex. 3.4 - Permutations

Proposer une fonction estPermutation de signature int array -> bool indiquant
si un tableau de longueur n, passé en argument, est une permutation de 'ensemble
[0..n—1].

Ex. 3.5 - Indicatrice d’Euler

1. Proposer une fonction pgcd non-récursive de signature int -> int -> int détermi-
nant le PGCD de deux entiers a et b.

2. En déduire une fonction non-récursive phi de signature int -> int correspondant a
la fonction indicatrice d’Euler ¢ (¢p(n) correspond au nombre d’entiers inférieurs ou égaux
a n premiers avec n).

Ex. 3.6 — Codage

1. Proposer une fonction char_cesar de signature char -> int -> char prenant en
argument un caractere et un entier n et retournant :



* le méme caractere s’il ne s’agit pas d'une minuscule;

¢ la minuscule encodée grace au code de César dans le cas contraire, a savoir la mi-
nuscule se trouvant n rangs plus loin dans I'alphabet (en revenant au début si'on
dépasse la fin de 'alphabet) ; par exemple, pour n = 4, on décale les lettres de 4 rangs :
a devient e, b devient f... et z devient d.

On rappelle que 'on dispose des fonctions int_of_char et char_of_int permettant de
transformer un caractere en son code ASCII et inversement, et que les minuscules ont des
codes ASCII consécutifs.

2. En déduire une fonction cesar de signature string -> int -> string prenant
en argument une chaine de caracteres et un entier »n et retournant la chaine résultat de
I'utilisation du code de César sur chacun de ses caractéres.

Pour éviter d’utiliser de nombreuses concaténations de chaines qui pourraient conduire
a une complexité quadratique de la fonction, on pourra utiliser la fonction String. concat
de signature string -> string list -> string qui prend en argument une chaine et
une liste de chaine et retourne, en un temps linéaire vis-a-vis de la taille de la chaine
retournée, la concaténation de toutes les chaines de la liste, en insérant entre chacune la
chaine passée en premier argument.

nn

Plus simplement, String.concat 1st retourne la concaténation de toutes les

chaines dans la liste 1st.

3. Sur le méme modeéle, construire une fonction vigenere de signature
string -> string -> string prenant en argument une chaine de caractéres et
un seconde chaine de caracteres (ne contenant que des minuscules entre a et z) et encode
les minuscules de la premiere chaine de caractére grace au code de Vigenere.

Le code de Vigenere est une variante du code de César, dans lequel le décalage est
différent pour chaque caractere, et défini par la seconde chaine (la clé) : si la clé contient
p caracteres, le i® caractere de la premiére chaine est encodé avec un décalage tel que le
caractere a serait transformé en le i mod p¢ caracteére de la clé.

Par exemple, la chaine "hello”, codée avecla clé "abz", donnera la chaine "hfklp”.
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Piles, files, dictionnaires

Dans ce quatrieme chapitre, nous allons étudier quelques conteneurs trées utiles pour
I'écriture de nombreux algorithmes, les piles, les files et les dictionnaires, des structures
de données mutables pouvant contenir un nombre variable de données (de méme type),
différant dans la facon dont les données sont introduites et extraites.

Les piles

1.1 Principe

Imaginons un instant une pile de livres posée sur une table. Il est possible d’ajouter un
livre a la pile en le placant au-dessus de la pile, ou bien de retirer le livre au sommet de la
pile. Le seul livre qu'il soit possible de consulter est celui qui se trouve au sommet de la pile.
Une pile, en informatique, reprend trés exactement ce principe : c’est un conteneur qui
regroupe un ensemble d’éléments mais ne permet d’effectuer que certaines opérations.

Tout d’abord, on peut ajouter un élément au sommet de la pile. Cette opération d’empi-
lement est généralement appelée « push ».

\ \ RN

On peut, de la méme facon, reprendre I'élément au sommet de la pile. Le terme généra-
lement associé a cette opération de dépilage est « pop ».

/’

/’
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Il est fréquent qu'’il soit permi de consulter I'objet situé au sommet de la pile sans avoir
besoin de le retirer. En revanche, il n’est pas rare qu’il ne soit pas possible d’accéder aux
éléments situés en-dessous dans la pile sans retirer chacun des éléments qui les recouvrent.
Sauf mention contraire, lorsque 1’on parlera de piles, on supposera que seul I'élément au
sommet est directement accessible.

Pour pouvoir manipuler des piles, il nous faut également disposer d'une fonction per-
mettant de créer une pile vide, ainsi qu'un moyen de tester si une pile est vide ou non.

1.2 Le module Stack

Le module OCaml « stack » fournit de quoi manipuler des piles. Il propose notamment
trois fonctions pour les manipuler :
e Stack.create (unit -> 'a Stack.t), qui crée une nouvelle pile;
e Stack.push ('a -> 'a Stack.t -> unit), qui ajoute un élément au sommet de la

pile;

e Stack.pop ('a Stack.t -> 'a), qui extrait et retourne I’élément situé au sommet
de la pile;

e Stack.top('a Stack.t -> 'a), quifournit!'élément situé en haut de la pile sans le
retirer!;

e Stack.is_empty ('a Stack.t -> bool), quiindique sila pile est vide.

On notera qu'une pile est un objet de type 'a Stack.t. Comme pour les listes, les
piles ne peuvent contenir que des objets de méme type, méme si ce type peut étre un
quelconque type que Caml puisse manipuler.

Le fonctionnement est donc tres simple. On commence par créer la pile :

# let pile = Stack.create ();;
val pile '_a Stack.t = <abstr>

Initialement, on ne connait pas le type d’objets que contiendra la pile, d’otile ' _a. On
peut ensuite placer des objets dans la pile :

# Stack.push pile;;
- s unit =
# Stack.push pile;;
- :unit =
# Stack.push pile;;
- s unit =

1. Il ne s’agit pas d'une copie de I'objet, ce que retourne la fonction désigne réellement I'objet en haut de la
pile, et toute opération affectant I'objet retiré affecte également 'objet en haut de la pile.



Lajout d’entiers dans la pile a eu pour conséquence de fixer le contenu des objets
pouvant se trouver dans la pile : ce sera des entiers, comme en témoigne dorénavant le
type de pile.

# pile;;
- . int Stack.t = <abstr>

Une tentative d’insertion d’autre chose qu’un entier va échouer :

# Stack.push pile;;
Characters =
Stack.push pile;;

AAAA

Error: This expression has type int Stack.t
but an expression was expected of type float Stack.t

On peut ensuite retirer les objets placés dans la pile avec Stack.pop :

# Stack.pop pile;;
- : int =

# Stack.pop pile;;
- : int =

La fonction Stack. top permet également d’obtenir I'élément au sommet de la pile, mais
sans le retirer :

+H

Stack.top pile;;
int =

++

Stack.pop pile;;
int =

En fait, on aurait pu écrire la fonction Stack.top simplement avec les fonctions
Stack.pop et Stack. push. Il suffit en effet de retirer I'élément au sommet de la pile, puis
de le remettre avant de le retourner :

# let top pile =
let elem = Stack.pop pile
in Stack.push elem pile; elem;;
'a = <fun>

val top : 'a Stack.t ->

Cette fonction retournera naturellement une erreur si la pile est vide (comme le ferait
également la fonction Stack. top).
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La fonction Stack. is_empty enfin permet de savoir si une pile est vide ou non :

# Stack.is_empty pile;;
bool = true

E=3

Stack.push
unit = ()

pile;;

# Stack.is_empty pile;;
- : bool = false

1.3 Les exceptions

Bien évidemment, lorsque la pile est vide, une tentative de retirer un élément provoque
une erreur :

# Stack.pop pile;;
Exception: Stack.Empty.

En fait, il s’agit d'une exception. Dans beaucoup de langages, une exception est une
information indiquant que quelque chose s’est mal passé. Sil’on ne fait rien, le programme
va s’arréter. Mais il est possible d’agir lorsque le programme rencontre une exception, et
d’essayer de résoudre le probléeme (on parle de rattraper’exception). Pour ce faire, on
dispose d'une construction try ... with ...

Si la série d’instruction entre les mots-clés try et with déclenche une exception, celle-ci
est comparée avec les exceptions pour lesquelles on dispose d’une solution, indiquées
apres le with. La syntaxe est tres similaire a celle d'un filtrage par motif.

Ainsi, par exemple, pour savoir si une pile est vide, plutét que d’utiliser Stack.is_empty,
on peut procéder différemment : on retire I’élément en haut de la pile et on le remet. Si
tout se passe bien, la pile n’était pas vide. Si en revanche I'exception Stack.Empty survient
(lors de ’appel a Stack. pop), c’est que la pile était vide!

Ainsi, on peut écrire une fonction is_empty de la sorte :

# let isEmpty pile =
try
let elem =
with
| Stack.Empty -> true;;

Stack.pop pile in Stack.push elem pile; false

val isEmpty : 'a Stack.t -> bool = <fun>




Ce qui suit le mot clé with est donc un filtrage de I'exception : ici, on ne traite que le cas
de I'exception Stack.Empty qui, si elle est levée entre le try et le with, fait retourner a la
fonction true au lieu du false retourné siles appels a pop puis push se déroulent sans
probléme (on remarquera ici que I'on n’attache pas d'importance a I’élément retiré, on
veut seulement savoir si tout se passe bien sil’on y fait appel).

Sil’exception est identifiée par le filtrage, on dit qu’elle est rattrapée, et elle ne provoquera
pasl’arrét du programme. Aprés |'exécution de 'instruction ou de la séquence d’'instruction
spécifiée dans le with, l'exécution se poursuit apres letry ... with. Ce qui suit]'endroit
du programme qui a déclenché I'exception n’est donc pas exécuté.

Une exception rompt donc le cours normal de I’exécution d'un programme, ce qui peut
étre a la fois un danger et une opportunité, lorsque c’est utilisé a bon escient.

Stack.Empty est une exception définie dans le module Stack, et levée lorsque I'on tente
d’accédér a un élément d’'une pile vide, mais il en existe bien d’autres, parmi lesquelles
Out_of_memory, Divison_by_zero,Match_failure...

Ces exceptions sont levées lorsque I’on exécute une opération illégale. Mais on peut aussi
lever soi-méme une exception dans un programme, il suffit d’'utiliser le mot-clé raise

suivi du nom de I'exception a lever 2.

On peut définir ses propres exceptions (identifiées par un nom débutant par une majus-
cule) de la méme facon que I'on peut définir ses types, en écrivant

# exception MonException;; ]

Ainsi, s'il n’existe pas de break dans une boucle for en Caml, on peut néanmoins avoir
un comportement similaire grace aux exceptions, comme dans cette fonction, qui retourne
un booléen indiquant si un élément se trouve dans un tableau :

# exception Found;;

# let contient elem tab =

try
for i = 0 to Array.length tab - 1 do
if tab.(i) = elem then raise Found
done;
false (* Retourne false a 1'issue de la boucle x*)
with

| Found -> true;; (* retourne true si on trouve %)

val contient 'a => 'a array -> bool = <fun>

J

2. Lutilisation des exceptions n'est en principe pas une compétence exigible pour les concours, aussi peut-on,
en particulier en premiére lecture, ignorer la suite de cette section et passer directement a la suivante (interfaces
de programmation).
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Une exception peut par ailleurs « transporter » un élément, par exemple un entier, en la
déclarant de la sorte :

# exception MonException of int;; ]

On écrira par exemple « MonException » pour obtenir une exception MonException
associée a I'entier 42. L'élément associé a I'exception peut apporter des informations
supplémentaires sur la situation qui a causé I'exception. C’est par exemple le cas de
I'exception Invalid_argument que l'on rencontre souvent en Caml : elle est accompagnée
d’'une chaine de caracteres qui en dit davantage sur l'erreur. Ainsi, la chaine sera par
exemple "index out of bounds” sil’on tente d’accéder a un emplacement invalide dans
une chaine ou dans un tableau (index négatif ou trop grand).

Les éléments associés a une exception peuvent étre récupérés par le filtrage. Par exemple,
on peut modifier la fonction précédente pour qu’elle retourne la position de I’élément (et
-1 ¢'il n'est pas présent, puisque le type retourné doit toujours étre le méme).

# exception Position of int;;

# let position elem tab =

try
for i = 0 to Array.length tab - 1 do
if tab.(i) = elem then raise (Position i);
done;
= (x L'élément n'est pas présent dans tab x*)
with

| Position k -> k;; (* Retourne la position *)

<fun>

val position 'a -> 'a array -> int =

Notons que ces exemples sont proposés a titre d’illustration, ce n’est pas nécessairement
la facon la plus lisible de procédeer dans un tel cas, mais c’est une approche qui est
régulierement utilisée par les développeurs. Le tout est de s’en servir a bon escient (et en
commentant la démarche).

Nous avons en fait déja levé volontairement de telles exceptions grace a la fonction
failwith quiprend en argument une chaine et provoque la levée d'une exception Failure
qui contient la chaine. Si une exception a été levée par « failwith "Message” », elle
peut donc étre rattrapée par un filtrage « Failure "Message” ->» suivant une structure
try ... with.

Nous aurons 'occasion, dans les prochains cours, de croiser quelques autres utilisations
de ce mécanisme de levée et de rattrapage d’exceptions.

3. failwith "Hello” a doncle méme résultat que raise (Failure "Hello").



1.4 Interfaces de programmation

Le module Stack nous fournit les fonctions, Stack.create, Stack.push, Stack. pop,
Stack.top et Stack.is_empty, mais ne nous éclaire pas sur la facon dont ces fonctions
sont implémentées.

C’est ce que 'on appelle une interface. Lutilisateur du module peut librement utiliser
ces fonctions, dont le comportement est compléetement détaillé (arguments attendus,
résultats, effets).

En général, on précise également la complexité des fonctions. Dans le cas d'une pile,
toutes les options présentées précédemment ont un cotit constant (en O(1)).

Lutilisateur n’a en revanche pas a savoir comment ces fonctions sont programmées.

C’est une stratégie fréquemment utilisée en informatique. Pour le développeur du mo-
dule, cela présente 'avantage de la flexibilité : il peut librement choisir la facon dont les
fonctions sont implémentées, et peut méme changer la fagcon dont les fonctions sont
implémentés sans que les programmes utilisant le module ne soient impactés par le
changement.

1.5 Implémentation

11 existe de nombreuses facons d'implémenter une structure de pile, nous allons en
examiner quelques-unes.

La plus simple consiste a utiliser les nombreuses similarités entre les listes et les piles.
On définit donc une pile comme un objet mutable contenant une liste (qui recueillera
les éléments contenus dans la pile). On peut donc créer les trois fonctions élémentaires,
create, push et pop, de la fagon suivante  :

# type 'a t = { mutable contenu 'a list };;

[13;;

# let create () = { contenu =

# let push elem pile = pile.contenu <- elem :: pile.contenu;;

# exception Empty;;

# let pop pile =
match pile.contenu with
| t :: g -> pile.contenu <- q; t
[ [1] -> raise Empty;;

4. On ne s'encombre pas ici avec top et is_empty pour lesquelles nous avons vu qu'il était possible de les
définir a partir de push et pop.
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Plutdt qu'un contenu mutable, on pourrait tout aussi bien définir le contenu comme
une référence vers une liste :

# type 'a t = { contenu 'a list ref };;

# let create () = { contenu = ref [] };;

# let push elem pile = pile.contenu := elem :: !(pile.contenu);;

# exception Empty;;

# let pop pile =
match !(pile.contenu) with
| t q -> pile.contenu :=q; t
| [1] -> raise Empty;;

Puisque les ajouts en téte de liste, 'extraction de la téte et de la queue d'une liste, et la
mutation sont des opérations qui sont réalisées en temps constant, chacune de ces trois
fonctions a une complexité en O(1), c’est-a-dire qu’elles ne dépendent pas du nombre
d’éléments dans la pile.

Ces deux approches sont trés similaires, y compris en terme de rapidité a I'exécution. 11
s’agit donc essentiellement ici de préférences de style de programmation de la personne
écrivant le code.

Si une liste Caml est une structure de données particulierement adaptée pour créer une
structure de pile, car leurs fonctionnements sont similaires, ce n’est pas la seule solution
que 'on puisse envisager.

On pourrait, par exemple, utiliser un tableau ('a Array) pour contenir les données°.
La difficulté est qu'un tableau a une taille fixe, et il est hors de question, pour d’évidentes
raisons d’efficacité, de créer un nouveau tableau a chaque ajout ou chaque extraction.

Lidée consiste donc a créer un tableau d’'une certaine taille %, et de mémoriser le nombre
d’éléments présents dans la pile, car le tableau ne nous renseigne pas sur ce point. On
supposera les éléments de la pile « tassés » dans sur la « gauche » du tableau (c’est-a-dire
que I'élément d’indice 0 correspondra a I’élément le plus profond de la pile).

Il sera nécessaire de prévoir un remplacement du tableau par un tableau plus grand

5. Comme on le verra, cette approche va conduire a une solution plus complexe en terme d’'implémentation,
des concessions (certes modérées) en terme d’efficacité et un léger gaspillage de mémoire. On est en droit de se
demander si cela présente un intérét. En fait, les listes « dispersent » leurs éléments partout dans la mémoire au
lieu de les garder dans une méme zone, comme pour un tableau, ce qui a des conséquences sur la gestion de
la mémoire, voire de performances (liées a I'utilisation du cache). On n’entrera pas dans les détails, mais cette
solution utilisant un tableau présente des avantages qui ne semblent pas évident au premier abord.

6. Lors de I'ajout du premier élément, car avant cet ajout, on ne sait pas de quels types les objets seront.



lorsque celui-ci n'est plus assez grand pour contenir les données ”

quelque peu I'écriture de la fonction push.

, ce qui complique

# type 'a t = { mutable taille : int; mutable contenu : 'a array };;
# let create () = { taille = 0; contenu = [| |] };;

# let push elem pile =
match pile.taille with

| _ when Array.length pile.contenu = 0 ->
(*x La premiere insertion crée le tableau *)
pile.contenu <- Array.make 4 elem;
pile.taille <-

| n when n < Array.length pile.contenu ->
(x S'il reste de la place, on ajoute 1'élément %)
pile.contenu.(n) <- elem;
pile.taille <- n+

| n => (x S'il n'y a plus de place, on crée un nouveau tableau

et on y recopie le contenu de l'ancien %)

let n_contenu = Array.make (2*n) elem

in for i = 0 to n-1 do
n_contenu. (i) <- pile.contenu. (i)
done;
pile.contenu <- n_contenu; (* n_contenu.(n) *)
pile.taille <- n+1;; (*x contient déja elem ! x)

# exception Empty;;

# let pop pile =
if pile.taille = 0 then raise Empty;
pile.taille <- pile.taille - 1;
pile.contenu. (pile.taille);;

La taille du tableau est ici doublée a chaque agrandissement, pour conserver, en moyenne,

une complexité en O(1) lors de I'ajout d’'un élément 8

7. On pourrait également envisager de le remplacer par un tableau plus petit s'il contient beaucoup moins de

données que sa capacité, afin d’économiser de la mémoire, mais on ne se souciera pas de ce probléme ici.

8. Une fois de temps en temps, on aura effectivement a recopier toutes les données, donc un ajout en O(k),
k étant la taille du tableau. Mais si on a, lors d’'un ajout, a recopier k éléments, on n'aura pas a agrandir le
tableau durant les k — 1 ajouts suivants. Sans entrer trop dans les détails, le temps moyen d’un ajout est donc

(O(k) + (k—1)O))/ k=0(1).
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Les files

2.1 Principe

Une pile est un conteneur qualifié de LIFO (pour Last In, First Out), ou bien dernier entré,
premier sorti, car les éléments sont extraits dans ’ordre inverse de leur insertion.

On peut définir un conteneur FIFO (pour pour First In, First Out) dans lequel les objets
ressortent du conteneur dans I'ordre dans lequel ils ont été introduits. De tels conteneurs
sont appelés files, ou parfois queues. On peut les assimiler a un tuyau, dans lequel on
introduit les éléments a une extrémité et on les extrait a 'extrémité opposée.
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Comme dans une pile, on ignore le nombre d’éléments présents dans la file, et on ne
peut regarder qu’'un seul élément, celui qui sera le prochain a sortir.




2.2 Le module Queue

OCaml fournit un module Queue qui contient quelques fonctions permettant de mani-
puler une file. Ces fonctions sont? :

e Queue.create (unit -> 'a Queue.t), qui crée une nouvelle file;

e Queue.add ('a -> 'a Queue.t -> unit), quiinsere un élément dans une file;

e Queue.take ('a Queue.t -> 'a), qui extrait un élément de la file (ou leve I'excep-
tion Empty lorsque la file est vide) ;

e Queue.peek ('a Queue.t -> 'a), quifournit, sans le retirer, le prochain élément a
sortir de la file (ou leve I'exception Empty lorsque la file est vide);

e Queue.is_empty ('a Queue.t -> bool), quiindique sila file est vide ou non.

Il n'est pas possible ici de créer une fonction peek a partir de add et take : si on retire un
élément de la file, il est impossible de le remettre ol1 on I'a pris sans extraire et remettre tous
les autres éléments! En revanche, il est toujours possible de créer une fonction is_empty
si elle n’existait pas, grace aux exceptions :

# let isEmpty queue =
try
let elem =
with
| Empty -> true;;

peek queue in false

val isEmpty : 'a Queue.t -> bool = <fun>

2.3 Implémentation

Implémenter une file est un peu plus difficile que d'implémenter une pile. Il n’est plus
possible d’utiliser directement les listes OCaml car il faut pouvoir manipuler les deux
extrémités. On peut en revanche ressortir le type « liste chainée » que I'on avait élaboré
précédemment (dans la représentation ci-dessous, le suivant d'un élément se situe a sa
gauche, pour correspondre a la I'illustration précédente des files) :

# type 'a cell = { valeur : 'a ; mutable suiv : 'a 1lst }

and 'a lst = Nil | Cell of 'a cell;;

’valeur‘ suiv I—‘—b{valeur‘ suiv I—‘—b’valeur‘ suiv }—‘—@

9. En fait, Queue.push, Queue.pop, Queue. top existent également, avec des comportements identiques a
Queue. add, Queue. take et Queue. peek. Il en existe également quelques autres fonctions dans le module Queue
sur lesquelles nous ne nous étendrons pas, qui s'écartent un peu de la structure théorique des files mais per-
mettent de simplifier I'écriture de certains algorithmes.
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Une file peut alors étre représentée par une telle liste chainée, dont on mémorise les
deux extrémités, représentant 'entrée et la sortie de la file :

'a t = { mutable entree : 'a lst ; mutable sortie : 'a lst };; ]

valeur| suiv valeur| suiv valeur| suiv

sortie }—j

entree |

# type

Une file vide est représentée par une liste chainée vide, les deux extrémités pointant
alors vers une étiquette « Nil ») :

# let create () = { entree = Nil ; sortie = Nil };;

val create : unit -> 'a t = <fun>

sortie

entree t

Insérer un élément dans la file consiste a ajouter un nouvel élément a droite de la liste
chainée.

Sila file est vide (entree et sortie désignent tous deux Nil), suite a I'ajout de I'élément,
entree et sortie désignent le seul élément de la file, tout juste inséré.

Si la file n’est pas vide, I'ajout dans la liste s’effectue apres I’élément désigné par le
champ entree de notre file, qui n’avait pour I'instant pas de de suivant. Cet élément doit
étre modifié de sorte que son champ suiv désigne dorénavant l’élément nouvellement
introduit :

# let add elem queue =

let ¢ = Cell { valeur = elem ; suiv = Nil }
in match queue.entree with
| Nil -> queue.entree <- c;
queue.sortie <- ¢
| Cell d -> queue.entree <- c;

d.suiv <- c;;

val add 'a > 'at -> unit = <fun>




Retirer un élément dans la file consiste a retirer élément a gauche de la liste chainée. S’il

n'y avait aucun élément (la sortie désignant Nil), il nous faut lever une exception Empty.

Dans le cas contraire, le champ Sortie de notre file devra pointer vers I’élément suivant
celui qui vient d’étre extrait (qui peut étre Nil).

# exception Empty;;

# let take queue = match queue.sortie with

| Nil -> raise Empty
| Cell ¢ -> queue.sortie <- c.suiv;
if c.suiv = Nil then queue.entree <- Nil;
c.valeur;;
val take 'at > 'a=<fun>

Enfin, le prochain élément a sortir est celui a gauche de la liste chainée :

# let peek queue = match queue.sortie with
| Nil -> raise Empty
| Cell ¢ -> c.valeur;;

<fun>

val peek 'at->'as=

Une autre solution utilise un tableau 1° ! ('a array), ainsi que deux indices : celui de la
case ou ranger le prochain élément introduit, et celui de la case du prochain élément a
sortir. Le contenu de la file est situé entre ces deux cases.

# type 'a t = { mutable contenu 'a array ;
mutable entree int ;
mutable sortie int };;

contenu I—»{ ‘ ‘
sortie ———»| 3 r------ -7 ,/

entree ——— 6 f-----oooo_oo-- --

10. Mutable, car il sera nécessaire de faire varier sa taille en fonction des besoins, en particulier 'agrandir il
n’est plus assez grand.

11. Cette fois encore, 'implémentation est plus complexe, et il semble n'y avoir que des inconvénients, mais
une étude plus poussée permettrait de voir que cette alternative présente, comme pour les piles implémentées
avec des tableaux, des avantages en terme d’utilisation de la mémoire.
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Initialement, puisque I'on ne connait pas le type des éléments qui seront introduit dans
la file, on est forcé, comme pour les listes, de créer un tableau vide 12,

# let create () = { contenu = [| |] ; entree = 0; sortie =

5k

val create unit -> 'a t = <fun>

L'ajout se fait en placant1'élément dans la case désignée par I'indice entree. Lorsque 'on
dépasse la fin du tableau, on reprend au début '3, Si c’est le tout premier élément introduit
dans la file (le tableau a encore une taille nulle), on en profite pour créer le tableau. Si,
apres l'insertion, le tableau est plein (ce que I'on détecte lorsque entree désigne la méme
case que sortie), on crée un tableau plus grand dans lequel on recopie les données # :

# let add elem queue =
let taille = Array.length queue.contenu in
if taille = 0 then (* Insertion du premier élément, *)
begin (*x on crée un premier tableau non vide x*)
queue.contenu <- Array.make 4 elem;
queue.entree <-

end
else
begin
queue.contenu. (queue.entree) <- elem;
queue.entree <- (queue.entree + 1) mod taille;
if queue.sortie = queue.entree then (* Si le tableau est *
begin (x plein, on crée un *
let n_tab = Array.make (* nouveau tableau deux *
(taillex2) elem in (* fois plus grand dans =*
for i = 0 to taille-1 do (x lequel on va *
n_tab. (i) <- (* recopier les données x
queue.contenu. ((queue.sortie + i) mod taille)
done;

queue.contenu <- n_tab;
queue.entree <- taille;
queue.sortie <-
end
end;;

val add 'a > 'at -> unit = <fun>

12. Les valeurs de entree et sortie n'ont ici pas d'importance.
13. On parle parfois de tableau circulaire, comme sil’on avait collé I'extrémité droite a I'extrémité gauche.
14. Les données sont recopiées a partir du début du nouveau tableau, par simplicité.



Lextraction des éléments de la file est bien plus simple :

# exception Empty;;

# let take queue =

if queue.entree = queue.sortie then raise Empty;

let res = queue.qgontenu. (queue.sortie) in
queue.sortie <- (queue.sortie+1) mod (Array.length queue.contenu)
res;;
val take : 'a t -> 'a = <fun>

Les files de priorité

3.1 Principe

Les files de priorité sont des conteneurs similaires aux files « normales » a ceci pres qu’a
chaque élément est associé une priorité, c'est-a-dire une valeur appartenant a un ensemble
ordonné (généralement des entiers). Lordre d’extraction des éléments ne dépend alors
plus de I'ordre d’insertion, mais de la priorité des éléments : c’est I'’élément de plus haute
priorité qui est extrait en premier. Cela donne par exemple :
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Les files de priorités permettent souvent d’altérer la priorité d'un élément dans la file, ce
qui provoque une réorganisation des éléments dans la file (ils restent en permanence triés
par ordre de priorité décroissante).

3.2 Implémentation

Il n’existe pas d’outil directement utilisable en OCaml pour manipuler une file de prio-
rité 1°. Par ailleurs, 'implémentation d'une file de priorité est plus complexe. On en propose
ici une implémentation élémentaire, a titre d’illustration, mais une solution plus efficace
sera étudiée en seconde année.

Les fonctions a implémenter sont, comme pour une file, create, add, peek et take
(is_empty pouvant, comme précédemment, étre écrit a partir de peek). On choisit ici de
représenter la file par une liste de couples, contenant un entier (la priorité) et un élément
de type 'a (le type des éléments dans la file).

# type 'a t = { mutable contenu : (int * 'a) list };;

[13;;

# let create () = { contenu =

val create : unit -> 'a t = <fun>

Le début de la liste correspondra a la sortie de la file de priorité. Cela permettra d’accéder
au prochain élément a sortir en O(1) :

# let peek queue =
match queue.contenu with
| (_,elem) :: g -> elem
| [J -> raise Empty;;

val peek : 'a t -> 'a = <fun>

15. On trouve cependant de nombreuses bibliotheques prétes a I'usage proposant de tels conteneurs.



Méme chose pour I'extraire :

# let take queue =
match queue.contenu with
| (_,elem) :: q -> queue.contenu <- q; elem
| [] -> raise Empty;;
<fun>

val take : 'at -> 'a =

Lajout est plus délicat, car il faut placer 'élément a la bonne position dans la liste. Pour
ce faire, on utilise une fonction auxiliaire insert qui va aller insérer dans la file le couple
(priorité, élément) au bon endroit :

# let add priority elem queue =
let rec insert = function
| [1 -> [ (priority,elem) 1]
| t::q when priority >= fst t (x Placé en téte si la priorité x)
-> (priority,elem)::t::q (x est plus grande que 1'élément x)
(x présentement en téte de liste %)
| t::q => t::(insert q) (x Sinon, on essaie plus loin *)
in queue.contenu <- insert queue.contenu;;
'a t -> unit = <fun>

val add : int -> 'a —>

J

On remarque ici que I'ajout est en O(n), car sil’élément doit se retrouver a I'extrémité
droite de la file, il est nécessaire de parcourir toute la liste pour le placer.

Nous verrons I'an prochain une meilleure solution pour I'implémentation, permettant
d’avoir toutes les opérations en temps logarithmique (O (log(n))).

Y Quelques exemples d'utilisation

4.1 Vérification du parenthésage

Supposons que I'on ait une chaine contenant expression incluant des parentheses, des
crochets et des accolades. On souhaite vérifier que ces éléments soient bien équilibrés,
c’est-a-dire que I'on trouve bien une parenthése fermante a la suite d'une parentheése
ouvrante, et ainsi de suite 6.

Par exemple, "a+[b-c*{ (d/e+f)-[(g+h(i))I-k/{1+(m/n)}]+o(p)-ql+r}/s]1"

16. Ces régles sont a la base des langages de Dyck qui seront étudiés en seconde année.
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On cherche donc a écrire une fonction de signature string -> bool ignorant tous les
caracteéres qui ne sont pas des délimiteurs, et vérifiant le bon équilibrage de ces derniers.
On souhaite par ailleurs avoir une complexité linéaire vis-a-vis de la longueur de la chaine
de caracteres.

Les piles simplifient fort heureusement grandement ce type de vérification :

# let verifie ch =

val verifie

string -> bool = <fun>

4.2 Parcours hiérarchique d’'un arbre

Dans le chapitre précédent, nous avions défini un arbre binaire strict par exemple de la
sorte :

Feuille of 'a | Noeud of 'a * 'a arbre x 'a arbre

type 'a arbre =

Nous avons vu que les parcours en profondeur s’écrivaient tres simplement avec des fonc-
tions récursives, mais nous avions laissé pour plus tard I'implémentation d'un parcours en
largeur, ou hiérarchique, dans lequel on explore 'arbre « génération par génération ». On
s’'intéressera d’abord a la racine de I'arbre, puis a ses fils, puis aux fils de ses fils, etc. Ce
parcours est rendu possible grace aux files 7.

17. On travaille ici sur des arbres binaires stricts, mais I'idée sous-jacente s’étend de facon immédiate a des
arbres quelconques.



Par exemple, on peut écrire une fonction affichant les entiers contenus dans un arbre
d’entiers dans un ordre hiérarchique :

# let affiche_hierarchique arbre =

val affiche_hierarchique : int arbre -> unit = <fun>

B Les dictionnaires

5.1 Introduction

Dans le chapitre précédent, nous avons briévement étudié le probléme de la gestion d'un
annuaire. La solution proposée, une liste de couples (nom, numéro), présentait I'avantage
de la simplicité, mais elle n’est guere efficace.

En effet, la recherche d’'un numéro, connaissant le nom d’'une personne, nécessite dans
le pire des cas de parcourir I'intégralité de la liste. La consultation de ’annuaire est donc,
formellement, en O(n) ou n correspond a la taille de 'annuaire.

On pourrait envisager, comme dans un véritable annuaire papier, de conserver les noms
par ordre alphabétique. La méthode de recherche dichotomique '® permet de réduire le
temps de recherche en O(log(n)), mais elle suppose que I'on puisse accéder en un temps
en O(1) a un quelconque élément de la liste dont on connait la position.

Or, en OCaml, les listes ne permettent pas d’accéder aux éléments en O(1). Il faut donc

18. Méthode étudiée en tronc commun, mais sur laquelle nous reviendrons ultérieurement.
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se retourner vers des tableaux ! (' a array). Outre les éventuelles difficultés posées par la
taille fixe des tableaux2?, le probleme viendra de I'ajout ou de la suppression d’un élément :
dans un tableau trié, cela impose de déplacer tous les éléments suivant I’élément ajouté
ou retiré, ce qui donne une complexité en O(n) pour I'ajout ou la suppression.

Il existe en fait une structure de données bien plus adaptée a cet usage, les dictionnaires.

5.2 Principe

Un dictionnaire, ou table d’association, est une structure de données qui associe des clés
a des valeurs. Clés et valeurs peuvent étre des objets de n'importe quel type (qui seront
désignés par 'a et 'b dans la suite). On peut donc représenter un dictionnaire par un
ensemble de couples (clé, valeur) ol toutes les clés sont distinctes®!.

Cela convient donc tout a fait pour un annuaire, par exemple un annuaire d’entreprise,
dans lequel le nom de chaque employé est associé a son numéro de poste. Un employé
n’apparait qu’une seule fois 22, mais certains employés peuvent partager un méme poste.

La table d’association correspondante ressemblera par exemple a cela :

Clés (type 'a) Valeurs (type 'b)

"Durand” ——_|

I

"Dupont” _|

—

I

"Martin”

ol les noms des employés ('a = string) font office de clés tandis que les numéros de
postes ('b = int ou string) sont les valeurs qui leurs sont associées.

Dans un dictionnaire, il doit étre aisé 2% de vérifier I’existence d’une clé, d’obtenir la
valeur associée a une clé, et d’ajouter (ou de retirer) une clé (et sa valeur associée). Une
telle structure de données permet de faire beaucoup de choses trés efficacement dans les
algorithmes 4.

19. Les « listes » en Python sont en fait bien plus proches de tableaux, a ceci pres qu’il est possible de les
redimensionner.

20. Difficultés que 'on a évoquées précédemment lorsque ’on a voulu implémenter une pile avec un tableau.

21. Dans le cas de clés mutables, distinctes pour 1'égalité, pas pour I'identité, ce qui on le comprend peut
occasionner des difficultés.

22. On supposera qu'’il existe un moyen de différencier les éventuels homonymes.

23. Notamment en terme de rapidité pour exécuter ces opérations. Nous verrons qu’elles sont toutes O(1) en
moyenne dans le cas d'une implémentation normale d'un dictionnaire.

24. Et, pour une raison obscure, est trés peu utilisée dans le cadre des concours. Il vaut trés probablement
mieux, d’ailleurs, éviter de I'utiliser sauf si le sujet vous y autorise explicitement.



5.3 Le module Hashtbl

Le module Hashtbl de la bibliotheque standard fournit un ensemble de fonctions per-
mettant de manipuler des dictionnaires.

Un dictionnaire dont les clés sont de type 'a et les valeurs associées de type 'b aura pour
type ('_a, '_b) Hashtbl.t.

Le module fournit :

« une fonction Hashtbl.create de type?® int -> ('a, 'b) Hashtbl.t qui prend
en argument un entier 26 et retourne un dictionnaire vide;

¢ une fonction Hashtbl.add de type ('a, 'b) Hashtbl.t -> 'a -> 'b -> unit
qui prend en argument un dictionnaire, une clé et une valeur, et ajoute dans le
dictionnaire le couple (clé, valeur) correspondant ?”;

o une fonction Hashtbl.memde type ('a, 'b) Hashtbl.t -> 'a -> bool qui prend
en argument un dictionnaire et une clé, et retourne un booléen indiquant si la clé est
présente dans le dictionnaire;

» une fonction Hashtbl.find de type ('a, 'b) Hashtbl.t -> 'a -> 'bquiprend
en argument un dictionnaire et une clé, et retourne la valeur associée a cette clé, ou
leve I'exception Not_found sila clé n’est pas présente dans le dictionnaire;

« une fonction Hashtbl.remove de type ('a, 'b) Hashtbl.t -> 'a -> unit qui
prend en argument un dictionnaire et une clé, et retire le couple (clé, valeur) corres-
pondant du dictionnaire s’il existe (et ne fait rien si la clé n’est pas présente);

« une fonction Hashtbl.clear de type ('a, 'b) Hashtbl.t -> unit quiprend en
argument un dictionnaire et supprime tous les couples (clé, valeur) qu’il contient 28,

Onremarquera qu'il est possible, avec un dictionnaire, de trouver une valeur connaissant
la clé, mais pas de retrouver aisément une clé connaissant une valeur. Plusieurs raisons a
cela, la principale tenant a la facon dont les dictionnaires sont implémentés. Mais aussi,
nous n'avons pas imposé 'unicité des valeurs (et de fait, dans 'exemple précédent, deux
clés conduisent a la méme valeur), aussi la recherche en sens inverse serait, en 1'état,
ambigué 2.

25. Les curieux qui iraient vérifier le type trouveront une signature un peu plus curieuse, car la fonction accepte
un parametre booléen facultatif supplémentaire, que nous passerons sous silence ici par souci de simplicité.

26. Qui détermine la taille initiale de la table, la documentation recommandant de choisir une valeur de
I'ordre du nombre d’éléments qui seront rangés dans la table; nous reviendrons sur ce point en étudiant
I'implémentation des dictionnaires.

27. En fait, si la clé est déja présente, la nouvelle valeur « cache » la valeur précédemment associée a la clé,
un appel a Hashtbl.remove fait réapparaitre le couple précédent. Il existe une fonction Hashtbl.replace qui
remplacela valeur associé a la clé (et crée un nouveau couple (clé, valeur) sila clé n’était pas présente).

28. En conservant la zone mémoire utilisée pour le stockage en mémoire du dictionnaire, dont la taille a pu
croitre avec le temps. Une fonction Hashtbl.reset permet, outre de vider le contenu, de réduire la mémoire
utilisée a celle utilisée lors de la création du dictionnaire.

29. Dans I'hypothése d’unicité des valeurs, on peut assez facilement d’obtenir une structure de données
utilisable dans les deux sens, en maintenant a jour deux dictionnaires, un dans chaque sens!
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5.4 Utilisation

Lutilisation du module hashtbl est simple. On crée d’abord un dictionnaire :

# let annuaire = Hashtbl.create o0
val annuaire : ('_a, '_b) Hashtbl.t = <abstr>

On remarquera que le type des associations est (' _a, '_b).C’estle signe que l'intro-
duction du premier couple (clé, valeur) dans la table fixera de maniére définitive les types
des clés et des valeurs dans le dictionnaire.

Puis on ajoute les couples (clés, valeur) avec la fonction add :

# Hashtbl.add annuaire "Durand” HN
- :unit =

On peut vérifier que l'instruction précédente a bien fixé les types des clés et valeurs (les
premieres comme des chaines de caracteres, les secondes comme des entiers) :

# annuaire;;
- : (string, int) Hashtbl.t = <abstr>

D’autres appels a la fonction add permettent de compléter le dictionnaire en ajoutant
d’autres couples (clé, valeur) :

# Hashtbl.add annuaire "Dupont” i
- :unit = ()

# Hashtbl.add annuaire "Martin” 28
- unit = ()

On peut ensuite librement interroger le dictionnaire :

# Hashtbl.mem annuaire "Durand”;;
- : bool = true

# Hashtbl.mem annuaire "Lechéne”;;
- : bool = false

Et d’obtenir les valeurs associées aux clés :

# Hashtbl.find annuaire "Durand”;;
- :int =




Lorsque I'on tente d’accéder a la valeur associée a une clé qui n’est pas présente dans le
dictionnaire, le module leve une exception Not_found indiquant qu’il n’a pu trouver la clé
demandée :

# Hashtbl.find annuaire "Lechéne”;;
Exception: Not_found.

On peut supprimer un couple (clé, valeur) avec la commande Hashtbl. remove :

# Hashtbl.find annuaire "Dupont”;;
- ¢ int =

# Hashtbl.remove annuaire "Dupont”;;
- :unit = O

# Hashtbl.find annuaire "Dupont”;;
Exception: Not_found.

J

On peut enfin vérifier que la fonction Hashtbl. add, lorsque la clé existe déja, a pour
effet de remplacer® I'ancien couple (clé, valeur) par le nouveau couple :

# Hashtbl.find annuaire "Durand”;;
- . int =

# Hashtbl.add annuaire "Durand” 38
unit = ()

# Hashtbl.find annuaire "Durand”;;
- :int =

5.5 Implémentation naive d’'un dictionnaire

Bien que nous ayons déja suggéré que cette solution serait inefficace, il est possible
d’envisager, dans un premier temps, d'implémenter un tel dictionnaire en maintenant une
liste des couples (clé, valeur).

30. En fait, c’est un peu plus compliqué que cela... Comme on I'a dit, la nouvelle valeur « cache » I’ancienne,
mais les anciennes valeurs ne sont pas supprimées pour autant. On peut retrouver toutes les valeurs grace a
la commande Hashtbl.find_all qui retourne une liste de valeurs, rangées par ancienneté décroissante. La
fonction Hashtbl.remove a pour effet de retirer la valeur présentement associée a une clé, ce faisant rétablissant
la valeur précédente. Sile but est de supprimer la clé du dictionnaire, il faudra donc effectuer autant d’appels
Hashtbl.remove que I'on a effectué d’appels a Hashtbl . add, ou bien faire précéder les Hashtbl.add visant a
modifier une clé d'un Hashtbl. remove a chaque fois!
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Pour ce faire, on commence par définir notre dictionnaire comme un type contenant
une liste (nécessairement mutable) de couples 'a * 'b:

# type ('a, 'b) t = { mutable table

('a x 'b) list };; ]

La création d’'un nouveau dictionnaire revenant simplement a créer un objet de ce type,
associé a une liste vide :

# let create () = { table = [] };;

val create : unit -> ('a, 'b) t = <fun>

La recherche d’une clé dans la table peut étre effectuée récursivement :

# let find dict cle
let rec auxFind = function
| [1] -> raise Not_found
| (k, v)::q when k=cle -> v
| _::q -> auxFind q
in auxFind dict.table;;

val find <fun>

('a, 'b) t > 'a -> 'b =

La fonction mem s’écrirait exactement de la méme maniére, mais retournerait true plutot
que v et false plutot que de lever I'exception Not_found.

Lajout d’'un couple (ou la modification de la valeur associée 2 une clé déja présente 3! 32)

est également implémentée via une fonction récursive :

# let add dict cle valeur =
let rec auxAdd = function

| [1] -> [ (cle, valeur) ]
| (k, v)::q when k=cle -> (cle, valeur)::q
| t::q -> t::(auxAdd q)

in dict.table <- (auxAdd dict.table);;

val add

(‘a, 'b) t -=> 'a -> 'b -> unit = <fun>

31. On supposera qu'une clé ne peut apparaitre qu'une seule fois dans la liste, ce qui sera bien le cas ici sil’on
n'utilise que la fonction Add pour ajouter des couples (clé, valeur). La présente implémentation differe quelque
peu du vrai module hashtbl en ce sens que I'on n’a pas conservé la valeur antérieure associée a une clé, si elle
existait, pour la rétablir lors d'un appel ultérieur a la fonction remove.

32. En fait, pour obtenir le méme comportement que le dictionnaire fourni par Caml, il suffirait simplement
d’ajouter le couple (clé, valeur) en téte de liste, sans se préoccuper de sa présence ou non de la clé plus loin dans
laliste.



La suppression d'une clé pourrait quant a elle s’écrire :

# let remove dict cle

let rec auxRemove = function
| ] -> []
| (k, _)::q when k=cle -> q
| t::q -> t::(auxRemove Q)

in dict.table <- (auxRemove dict.table);;

val remove : ('a, 'b) t -> 'a -> unit = <fun>

Avec cette approche,
¢ larecherche d’'une clé (ou de la valeur associée) est en temps linéaire O(n) en fonction
du nombre 7 de couples (clé, valeur);
¢ I'ajout d'une clé pourrait étre en O(1), mais comme il nous faut vérifier que la clé
n’existe pas encore, on a un ajout en O(n) également;
¢ enfin, la suppression d'une clé serait également en O(n).

On pourrait envisager améliorer les choses en utilisant un tableau que I'’on maintiendrait
trié selon I'ordre des clés 33, ce qui permettrait de retrouver une clé et la valeur qui lui
est associée en O(log(n)) par une recherche dichotomique. Mais dans ce cas, I'ajout d'un
couple est en O(n) car I'insertion du nouveau couple nécessite de décaler les éléments
dans le tableau 3*.

On peut en fait obtenir bien mieux que cela. Une solution possible est d’utiliser, en lieu
et place de tableaux, des arbres, dits arbres binaires de recherche, pour implémenter cette
idée de recherche dichotomique dans un ensemble trié.

5.6 Arbres binaires de recherche

Structure d’un arbre binaire de recherche

Définition. On considére un ensemble £ muni d’'un ordre total <.
Un arbre binaire étiqueté par £ est qualifié d’arbre binaire de recherchelorsqu’il est soit
vide, soit de la forme (Fg, x,F,) et tel que

 Fg et F; sont des arbres binaires de recherche;

* tout étiquette y d’'un nceud de Fg vérifie y < x;

o tout étiquette y d'un nceud de F; vérifie y > x.

33. En supposant qu'il existe un ordre total sur 'ensemble des clés.
34. Onn'apas ce probléme avec une liste, mais il n’est pas possible d'implémenter une recherche dichotomique
en temps logarithmique dans une liste chainée, car il est impossible d’accéder au milieu de la liste en O(1)!
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L'arbre binaire ci-dessous a par exemple la structure d'un arbre binaire de recherche
pour la comparaison usuelle < :

Recherche d’un élément

Nous nous servirons principalement des arbres de recherche pour représenter un en-
semble, les étiquettes (généralement supposées toutes distinctes) représentant les élé-
ments de I'’ensemble. Dans la suite, nous dirons qu'un élément de £ se trouve « dans
I'arbre » sl est égal a une des étiquettes de I'arbre.

Pour tester la présence d'un élément y dans un arbre binaire de recherche, on peut écrire
une fonction récursive, utilisant les propriétés de tels arbres :

« I'élément n'est pas présent dans un arbre vide;
¢ pour un arbre [Fg,x, Fd), si I'élément x # y, alors il suffit de chercher y dans le
sous-arbre Fg si y < x et dans le sous-arbre F; dans le cas contraire.

Larecherche de la présence d'un élément dans ’arbre a, de fagon évidente, une com-
plexité majorée par la hauteur de I'arbre, soit en O(h(A)). On ne vérifie donc qu'un nombre
d’éléments qui peut étre trés petit devant |A| (de 'ordre de log(JA]) si, a chaque étape de
I'algorithme, les tailles du sous-arbre gauche et du sous-arbre droit sont similaires), ce qui
fait tout I'intérét de la structure d’arbre binaire de recherche par rapport a un conteneur
linéaire tel qu’une liste.

La traduction en OCaml est immédiate;

# let rec contient y = function
| Nil
| Noeud (_, x, _) when y=x -> true
| Noeud (fg, x, _) when y<x -> contient y fg
| Noeud (_, _, fd) -> contient y fd;;

-> false

val contient 'a -> 'a arbre -> bool = <fun>




Plus petit/plus grand élément

De part la structure d'un arbre de recherche, pour trouver le plus petit élément pour la
relation <, il suffit de suivre la branche de gauche tant que I'’on n’atteind pas « Nil » (notons
que le nceud que 'on recherche n’est pas nécessairement une feuille, mais simplement n’a
pas de fils gauche). Cette recherche aura une complexité temporelle en O(h(A)).

Un arbre vide n’ayant pas de plus petit élément, il parait naturel de provoquer une erreur
sil’on tente de trouver un plus petit élément dans un tel arbre. Beaucoup de fonctions ne
pouvant retourner un résultat pour un arbre vide, il est utile de créer une exception :

# exception Empty ]

La fonction retournant le plus petit élément s’écrira donc ainsi :

# let rec plusPetit = function
| Nil -> raise Empty
| Noeud (Nil, x, _) -> x
| Noeud (fg, _, _) -> plusPetit fg;;

val plusPetit 'a arbre -> 'a = <fun>

Alternativement, on pourrait, de facon équivalente, systématiquement chercher le plus
petit (plus grand) élément dans le fils gauche (droit) et sans chercher a savoir s'il est vide,
et si cette recherche leve I'exception Empty, retourner I'étiquette de la racine :

# let rec plusPetit = function

| Nil -> raise Empty

| Noeud (fg, x, _) -> try plusPetit fg with Empty -> x;;
'a = <fun>

val plusPetit 'a arbre ->

Pour obtenir le plus grand élément, on parcourt de méme la branche la plus a droite.

Prédécesseur et successeur

Définition. On considere un ensemble £ muni d’un ordre total <, et un arbre binaire
de recherche A étiqueté par £. Soit un élément y € £.

Le prédécesseur de y dans I'arbre A est la plus grande (pour <) des étiquettes * de A
strictement inférieure a y. Le successeur de y dans I'arbre A est la plus petite (pour <)
des étiquettes de A strictement supérieure a y.

a. Les termes prédécesseurs et successeurs peuvent également désigner le nceud portant I'étiquette
correspondante (il n'y a alors unicité que si les étiquettes sont toutes distinctes).
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Pour I'arbre proposé en exemple, le prédécesseur de 31 est 29, le successeur de 31 est 37.

Pour trouver le prédécesseur d'un élément y dans un arbre binaire de recherche A, on
utilisera une démarche récursive :

» si A estl'arbre vide, un tel prédécesseur n’existe pas;

e si A est de la forme (Fg,x, Fd) avec y =< x, on recherche le prédécesseur dans le
sous-arbre gauche Fg;

e sinon, A est de la forme (Fg,x, Fd) avec x < y, et deux cas peuvent se présenter :
soit on trouve un prédécesseur dans le sous-arbre droit (qui sera plus grand que
I'étiquette située a la racine, et le prédécesseur recherché), soit il n'y a pas de prédé-
cesseur dans 'arbre droit, et c’est 'étiquette de la racine qui convient.

Pour traduire cet algorithme en OCaml, on utilisera I’exception Not_found pour indiquer
qu’il n’y a aucun prédécesseur dans un arbre binaire de recherche fourni en parametre,
ce qui nous permettra, avecun try ... with, d'implémenter le test du dernier cas. Cela
donne donc (la fonction retournant le successeur s’écrirait de facon similaire) :

# let rec prec y = function
| Nil
| Noeud(fg, x, _) when y <= x
| Noeud(_, x, fd)

-> raise Not_found
-> prec y fg
-> try prec y fd
with Not_found -> x;;
'a arbre -> 'a = <fun>

val prec 'a >

Cette fois encore, la fonction a une complexité en O(h(A)).
Parcours infixe d’'un ABR

Le parcours en profondeur infixe d'un arbre binaire de recherche présente un intérét
particulier. En effet, un tel parcours traite les descendants gauches d'un nceud avant celui-
ci, et ses descendants droits apres. Or, les descendants gauches du nceud portent tous des
étiquettes plus petites pour < que I'étiquette du nceud considéré, et les descendants droits
des étiquettes plus grandes. Les nceuds sont donc traités dans un ordre croissant pour <.

Cela nous donne un moyen simple de vérifier qu'un arbre binaire respecte les conditions
d’un arbre binaire de recherche : il faut et suffit que les étiquettes, dans un parcours en
profondeur infixe, soient rangées par ordre croissant.

On peut par exemple écrire une fonction qui visite les nceuds dans un parcours en pro-
fondeur infixe, et vérifie que chaque étiquette est plus grande que la précédente considérée.
On peut conserver la derniere étiquette dans une référence.

La premiére étiquette visitée est un cas un peu particulier, car il est inutile de la comparer
a quoi que ce soit. Pour la traiter comme les autres, toutefois, on initialisera la référence



avec la premiere étiquette, a savoir celle retournée par la fonction plusPetit 3.

# let verifie arbre =
let dernier = ref (plusPetit arbre) in
let rec dfs = function
| Nil -> true
| Noeud (fg, x, fd) -> (dfs fg) &&
(if !dernier <= x then (dernier
(dfs fd)
in dfs arbre;;

:= X; true) else false) &&

val verifie 'a arbre -> bool = <fun>

Partition

Une partition d'un arbre binaire de recherche par rapport a un élément y consiste en
deux arbres binaires de recherche 3® contenant les nceuds de I'arbre original, I'un n’ayant
que des éléments x vérifiant x < y, 'autre des éléments vérifiant y < x.

On peut obtenir une partition de facon récursive en écrivant :

# let rec partition y = function
| Nil -> Nil, Nil
| Noeud (fg, x, fd) when x <=y
-> let al, a2 = partition y fd in Noeud (fg, x, al), a2
| Noeud (fg, x, fd)
-> let al, a2 = partition y fg in al, Noeud (a2, x, fd);;
'a arbre * 'a arbre = <fun>

'a -> 'a arbre ->

val partition

La fonction précédente, appliquée a ’arbre utilisé en exemple pour une valeur y = 18,
donne les deux arbres binaires de recherche suivants :

35. Sil'arbre n’est pas un arbre binaire de recherche, I'élément retourné par la fonction n’est pas nécessairement
le plus petit, mais cela reste I'étiquette la plus a gauche, la premiere visitée par le parcours en profondeur.
36. Méme si toutes les étiquettes sont distinctes, il n'y a pas unicité pour la structure des deux arbres.
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La structure des arbres binaires de recherche permet d’obtenir cette partition, une fois
encore, avec une complexité temporelle O(h(A)). Notons par ailleurs que la hauteur des
deux arbres obtenus est inférieure ou égale a la hauteur de I'arbre original.

Démonstration. Cette propriété est vraie pour un arbre vide.

Supposons cette propriété vraie pour tout arbre de hauteur inférieure ou égale a h;
pour un arbre de hauteur h+1, on a h(Fg) < h et h(Fg) < h, donc les arbres a1 et
a2 issus de la partition de Fg ou F; auront également une hauteur majorée par h, et
I'arbre Noeud(fg, x, al) (respectivementl’arbre Noeud(a2, f, fd))auraune hauteur
majorée par h + 1, donc la propriété est vraie pour un arbre de hauteur s + 1. O

Insertion (adjonction) d’'un élément dans un ABR

Il existe deux stratégies pour insérer un élément dans un arbre binaire de recherche : au
niveau de la racine, et au niveau des feuilles.

Profitons de I'occasion pour rappeler que I'on travaille avec des arbres immutables, donc
une fonction insérant un élément dans un arbre ne modifie pas cet arbre, mais crée un
nouvel arbre contenant 1'élément inséré 37.

Insertion au niveau des feuilles Pour insérer un élément y dans un arbre binaire de
recherche au niveau des feuilles, on proceéde de fagcon récursive :
 insérer un élément y dans un arbre vide consiste simplement a retourner une feuille
(soit Noeud(Nil, y, Nil));
e insérer un élément y dans un arbre (Fg , X, Fd) lorsque y < x revient a insérer I'élément
y dans le sous-arbre gauche 3 : on crée donc un nouvel arbre, dont la racine porte
toujours I'étiquette x, avec le méme sous-arbre droit F, et avec pour sous-arbre
gauche le résultat de I'insertion de y dans Fg;
« sinon, lorsque x < y, il en est de méme, mais avec une insertion de y dans le sous-
arbre droit.

En OCaml, cela donne :

# let rec insere y = function
| Nil -> Noeud(Nil, y, Nil)
| Noeud(fg, x, fd) when y <= x -> Noeud(insere y fg, x, fd)
| Noeud(fg, x, fd) -> Noeud(fg, x, insere y fd);;

val insere 'a -> 'a arbre -> 'a arbre = <fun>

La complexité de cette insertion est O(h(A)). Dans le pire des cas, 'ajout d'une feuille
supplémentaire augmente de 1 la hauteur de I'arbre.

37. Attention, la plupart du temps, les deux arbres ne sont pas indépendants, et peuvent avoir des branches en
commun. Mais tant que I'on reste dans le cadre d’objets immutables, cela n’a pas d'importance.
38. Dans le cas o1 y = x, on pourrait tout aussi bien 'insérer dans le sous-arbre droit.



Linsertion d'un nceud avec une étiquette 18 dans I'arbre d’exemple donnerait :

Insertion alaracine Linsertion d'un élément y au niveau de la racine est un peu plus
délicate. En effet, cela a des conséquences plus importantes sur le forme de I'arbre. En
effet, si I’élément inséré y et I'étiquette de la racine x vérifient par exemple y < x, une
partie des nceuds de la branche gauche de I'arbre vont devoir migrer dans la branche droite.
Cependant, nous avons déja écrit une fonction capable de partitionner un arbre binaire de
recherche en deux arbres binaires de recherche, selon que les étiquettes soient inférieures
ou supérieures a un élément y. On peut donc s’en servir pour écrire notre insertion :

# let insere y arbre =
let fg, fd = partition y arbre in Noeud(fg, y, fd);;

val insere 'a -> 'a arbre -> 'a arbre = <fun>

Linsertion d'un nceud portant I'étiquette 18 au niveau de la racine de notre exemple
d’arbre binaire de recherche conduirait au résultat suivant :

La complexité de cette insertion est celle de partition, O(h(A)). Dans le pire des cas,
I'insertion augmente également de 1 la hauteur de I'arbre.
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Suppression d’'un élément dans un ABR

La suppression d'un nceud portant une étiquette donnée dans un arbre binaire de
recherche (ou le nceud de profondeur minimale vérifiant cette propriété si plusieurs
nceuds pourraient convenir) est une opération un peu plus délicate car, comme dans le
cas d’'une insertion au niveau de la racine, elle peut nécessiter de nombreux changements
dans la structure de I'arbre.

Pour préparer cette tdche de suppression, nous allons tout d’abord écrire quelques fonc-
tions auxiliaires qui nous seront utiles. Tout d’abord, une fonction permettant d’extraire la
plus petite étiquette, et de retourner cette étiquette, et un arbre binaire de recherche ot le
neeud portant cette étiquette a été retiré :

# let rec retireMin = function
| Nil -> raise Empty
| Noeud(Nil, x, fd) -> x, fd
| Noeud(fg, x, fd) -> let minimum, arbre = retireMin fg
in minimum, Noeud(arbre, x, fd);;

val retireMin 'a arbre -> 'a % 'a arbre = <fun>

Cette fonction permet d’écrire une fonction fusionnant deux arbres binaires de recherche
tels que tout éléments x et x issus respectivement du premier et du second arbre vérifient
x < x/, en créant un arbre avec pour racine le plus petit élément du second arbre, pour fils
gauche le premier arbre, et pour fils droit le second arbre privé de son plus petit élément 39 :

# let rec fusion al = function

| Nil -> al

| a2 -> let minimum, arbre = retireMin a2
in Noeud(al, minimum, arbre);;
val fusion 'a arbre -> 'a arbre -> 'a arbre = <fun>

On peut enfin écrire notre fonction supprimant un élément y d'un arbre binaire de
recherche :

¢ il estimpossible de le supprimer d’un arbre vide;

o si l'étiquette de la racine est I'élément a supprimer, alors il suffit de retourner la
fusion des deux fils;

« sil'étiquette x de la racine vérifie y < x, alors on cherche a supprimer y dans le
sous-arbre gauche;

« si, au contraire x < y, on s'intéresse au sous-arbre droit.

39. On aurait évidemment pu tout aussi bien prendre pour racine le plus grand élément du premier arbre, et
pour fils le reliquat du premier arbre et I'intégralité du second.



Cela donne, en OCaml :

# let rec supprime y = function
| Nil
| Noeud(fg, x, fd) when y
| Noeud(fg, x, fd) when y <
| Noeud(fg, x, fd)

-> raise Not_found

x -> fusion fg fd

x => Noeud(supprime y fg, x, fd)
-> Noeud(fg, x, supprime y fd);;

val supprime : 'a -> 'a arbre -> 'a arbre = <fun>

Un peu de complexité

Parmi toutes les opérations que 1'on effectue sur un arbre de recherche, lesquelles étant
implémentées par des algorithmes récursifs, on peut distinguer deux situations :

o les algorithmes dont la récursion se fait uniquement sur I'un des deux fils (gauche ou
droit), tels que la recherche d’'un élément, et dont la complexité temporelle sera la
plupart du temps % en O(h(A));

o les algorithmes dont la récursion porte (ou peut porter) sur les deux fils, tels qu'un
parcours de I'arbre, et dont la complexité temporelle atteindra souvent ! O(|A]).

Rappelons, pour un arbre binaire, I'encadrement |log,(|Al)] < h(A) < |A|-1.Pour
des raisons d’efficacité pour les algorithmes dont la complexité est en O(h(A)), il est
préférable que la hauteur h(A) d'un arbre soit aussi proche que possible de la limite
inférieure, |log, (|Al)].

Ainsi, pour un méme ensemble de six éléments, on préférera pour des raisons d’efficacité
travailler avec I'arbre binaire de recherche de gauche plutét que celui de droite (que I'on

qualifie parfois d’« arbre-peigne » :

- 5

@Q@ /@@
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a

40. Tant que les opérations sur chaque nceud sont en O(1).
41. Toujours pour des opérations en O(1) sur les nceuds.

67

Pour s’assurer que I'on ne travaille qu’avec des arbres binaires de recherche dont la
forme est « favorable », on peut ajouter des contraites sur les arbres que 'on manipule.

Définition. On dira travailler avec un ensemble .Ap d’arbres binaires équilibrés si, pour
tout arbre binaire A € Ag, sa hauteur vérifie la relation h(A) = O (log(IAI)).

Lorsque I'on travaille sur un ensemble Ap d’arbres binaires équilibrés, les nombreuses
fonctions que nous avons présentées, de complexité temporelle O(h(A)), ont en fait un
cott logarithmique O(log(lAl)), ce qui les rend tres efficaces. il existe de nombreuses
familles d’arbres binaires de recherches équilibrés (AVL, arbres rouges-noirs, etc.), et il
est possible d’appliquer toutes les opérations précédentes sur de tels arbres. Leur étude
dépasse le cadre de ce cours.

Utilisation pour implémenter un dictionnaire

Pour implémenter un dictionnaire a I'aide d'un arbre binaire de recherche, on place
au niveau des nceuds des étiquettes contenant des couples (clé, valeur). Dans ce but, on
définit un type :

# type ('a,'b) enregistrement = { cle: 'a; vlr: 'b };; ]

On suppose disposer ici d'une relation d’ordre total < sur I'’ensemble des clés car, dans
I'arbre binaire de recherche, les éléments seront ordonnées en fonction de leur clé.

Les opérations courantes sur un dictionnaire sont :
¢ larecherche d'une clé donnée dans le dictionnaire, et le renvoi de la valeur associée
(on lévera une exception Not_found sila clé n’est pas présente);
¢ la modification d’une valeur associée a une clé;
 l'ajout d'un nouveau couple (clé, valeur);
« la suppression d'une clé et de la valeur qui lui est associée.

Toutes ces opérations peuvent aisément étre réalisées a partir des fonctions que 'on a
déja écrites sur les arbres binaires de recherche, au prix de quelques changements diis au
typage des étiquettes.

La recherche peut étre écrite ainsi :

# let rec recherche k = function
| Nil -> raise Not_found
| Noeud(_, x, _) when k=x.cle -> x.vlr
| Noeud(fg, x, _) when k<x.cle -> recherche k fg
| Noeud(_, _, fd) -> recherche k fd;;
val recherche : 'a -> ('a, 'b) enregistrement arbre -> 'b = <fun>




Lajout ou la modification (si la clé existe, on modifie la valeur, et si elle n’existe pas, on

crée un nouveau nceud dans I'arbre étiqueté par le couple (clé, valeur)) s'écrira? :

# let rec modifie k v = function
| Nil

| Noeud(fg, x, fd) when k=x.cle -> Noeud(fg, { cle=k; vlr=v }, fd)
| Noeud(fg, x, fd) when k<x.cle -> Noeud(modifie k v fg, x, fd)
I

Noeud(fg, x, fd) -> Noeud(fg, x, modifie k v fd);;

-> Noeud(Nil, { cle=k; vlr=v 3}, Nil

val modifie : 'a -> 'b -> ('a,

-> ('a,

'b) enregistrement arbre
'b) enregistrement arbre = <fun>

La suppression d'une clé reste 'opération la plus délicate, mais les changements sont
tres limités par rapport aux fonctions précédemment étudiées :

# let rec supprime y arbre =
let rec retireMin = function
| Nil -> raise Empty
| Noeud(Nil, x, fd) -> x, fd
| Noeud(fg, x, fd) -> let minimum, arbre = retireMin fg
in minimum, Noeud(arbre, x, fd)
and fusion al = function
| Nil -> a1
| a2 -> let minimum, arbre = retireMin a2
in Noeud(al, minimum, arbre)

in match arbre with

| Nil -> raise Not_found
| Noeud(fg, x, fd) when y=x.cle -> fusion fg fd
| Noeud(fg, x, fd) when y<x.cle -> Noeud(supprime y fg, x, fd)
| Noeud(fg, x, fd) -> Noeud(fg, x, supprime y fd);;
val supprime : 'a -> ('a, 'b) enregistrement arbre
-> ('a, 'b) enregistrement arbre = <fun>

Bien évidemment, ces opérations sont en O(h(A)) et non en O(1) comme c’est le cas
pour une implémentation a I'aide d’'une table de hachage. Toutefois, I'implémentation
nécessite généralement moins de mémoire (il n'est pas nécessaire d’avoir une table avec
de nombreuses cases vides) et plus simple (pas besoin non plus d’augmenter la taille de la
table de hachage lorsque les collisions deviennent nombreuses).

Par ailleurs, si 'on parvient a garder un arbre raisonnablement équilibré, la hauteur

42. On a choisi un ajout au niveau des feuilles, on pourrait envisager un ajout au niveau de la racine.

68

de l'arbre sera de I'ordre de log(n) pour un dictionnaire contenant n éléments, et les
opérations courantes seront donc en O(log(n)). La différence entre O(1) et O(log(n)) n'est
pas suffisamment marquée pour qu’elle emporte un choix d'implémentation. Rappelons
en effet que pour 7 = 106 par exemple, log, (10%) = 20. Les opérations sur un dictionnaire a
un million de clés ne nécessiteront donc généralement, tant que I'arbre reste équilibré,
pas plus de deux douzaines de comparaisons, ce qui reste trés efficace.

On y gagne également la possibilité d’'implémenter d’autres opérations, telles que la
recherche efficace d’'un successeur/prédécesseur dans I’ensemble des clés.

Les arbres binaires de recherche sont donc une excellente facon d'implémenter un
dictionnaire, a condition toutefois que I'on y inclue un mécanisme garantissant que I’arbre
binaire de recherche reste équilibré (arbres AVL, arbres rouge-noir, etc.)

5.7 Tables de hachage
Principe

Une autre solution tres efficace pour implémenter un dictionnaire consiste a utiliser une
table de hachage, qui permettra, sous certaines conditions, d’obtenir une complexité en
temps en O(1) pour les opérations de recherche, d’ajout, de modification et de suppression
d’une clé.

Le principe est relativement simple : 1a structure qui nous permettait d’accéder directe-
ment aux données en temps constant est celle d'un tableau. On crée donc un tableau de
m cases *3, mais il nous faut un moyen d’associer une quelconque clé a un entier entre 0 et
m— 1, correspondant a I'une des cases. Cela se fait en deux temps :

« on utilise une fonction de hachage qui transforme un objet de n'importe quel type en
un entier (la fonction Hashtbl.hash du module hashtbl, de signature 'a -> int,
peut par exemple étre utilisée a cet effet) ;

« onrestreint le résultat dans l'intervale [0 .. m — 1] par exemple en utilisant le reste
d’une division entiére.

Par exemple, sil’on souhaite ranger le couple (Durand, ) dans un tableau conte-
nant 8 cases, on commence par déterminer dans quelle case il convient de le ranger, en
utilisant une fonction de hachage :

# Hashtbl.hash "Durand”;;
- :int =

# Hashtbl.hash "Durand” mod 8;;
- . int =

43. On appelle généralement ces cases « buckets », ou « seaux » en francais.



Puis le couple (Durand, ) est alors glissé dans la case correspondant au résultat
fourni par la fonction de hachage ramené, par un modulo, au nombre de cases du tableau,
et de méme pour les autres couples (clé, valeur) :

"Durand” & 4

"Dupont” < 6 ("Martin", )
("Durand”, )
"Martin” <3
("Dupont”, )

Des lors, tout est plus rapide : pour savoir si une clé est présente dans le dictionnaire, et
pour récupérer sa valeur, on utilise la fonction de hachage pour déterminer dans quelle
case la clé devrait se trouver, et on n’a alors qu'une seule et unique case a examiner. Il en
est de méme pour les autres opérations.

Il est important de conserver dans les cases non seulement les valeurs, mais également
les clés. En effet, le nombre de clés possibles exceéde tres largement le nombre m de cases
dans le tableau. Par exemple, dans un tableau avec 8 cases, "Dubois” conduirait également
ala case 3, et une recherche avec la clé "Dubois” ne doit pas retourner la valeur associée
ala clé "Martin” simplement parce que les deux clés correspondent a la méme case!
Une fois la case identifiée, il faut donc vérifier la clé. Bien évidemment, si le dictionnaire
doit contenir a la fois les clés "Martin” et "Dubois”, on voit venir un probléme, nous
reviendrons sur ce point un peu plus loin.

Idéalement, la fonction de hachage devrait pouvoir :
» fournir un résultat rapidement (pour que I’on puisse accéder rapidement aux élé-
ments du dictionnaire) ;
e donner une distribution aussi uniforme que possible sur 'ensemble [0..N — 1] des
valeurs retournées.

La seconde condition vise a limiter les collisions, c’est-a-dire les clés qui se retrouvent
dans une méme case du tableau, telles que "Martin” et "Dubois”. En effet, méme avec
un nombre de cases m supérieur au nombre n de clés, on risque de se retrouver avec
plusieurs clés dans la méme case. On peut montrer que, quelle que soit la fonction de
hachage choisie, la probabilité d’avoir une collision est d’au moins

m!
a m"*(m—n)!
ce qui donne, pour un tableau de 1000 cases, une probabilité de plus de 71% de chances
d’avoir au moins une collision avec seulement 50 clés **.

44. Situation connue sous le nom de « paradoxe des anniversaires », puisque cette méme formule indique que,
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Ces collisions devront ensuite étre prises en compte. Une solution 4>

chaque case peut contenir une liste de couples (clé, valeur).

consiste a dire que

Tant que le nombre de clés dans la table d’association est, au plus, de I'ordre du nombre
de cases, et sous réserve que la fonction de hachage ait des propriétés satisfaisantes en
terme de répartition, on aura au plus quelques couples dans chacune des cases, et 'acces
aux clés et aux valeurs pourra rester en un temps constant. Tout se passe comme si le
dictionnaire contenait un grand nombre de dictionnaires distincts, un pour chacune des
valeurs de l'intervalle [0.. m —1].

Une implémentation possible

Un type définissant un dictionnaire implémenté avec une table de hachage serait donc,
par exemple :

# type ('a, 'b) t = { table

('a * 'b) list array };; ]

On construit un nouveau dictionnaire en créant un tableau a n cases (n étant passé en
argument), contenant des listes vides destinées a recueillir des couples (clé, valeur) :

# let create n = { table = Array.make n [] };;
val create : int -> ('a, 'b) t = <fun>

La recherche %6 de la valeur associée a une clé se passe comme précédemment (en parti-
culier, il s’agit de la méme fonction auxilliaire auxFind), mais dans une liste, normalement
courte, prise dans la case du tableau désignée par le résultat hsh du hachage dela clé :

# let find dict cle =
let rec auxFind = function
| [1] -> raise Not_found
| (k, v)::q when k=cle -> v
| —s8@ -> auxFind q
in let hsh = Hashtbl.hash cle mod (Array.length dict.table)

in auxFind dict.table. (hsh);;

val find

('a, 'b) t => 'a -> 'b = <fun>

a supposer que les naissances soient réparties uniformément sur I’année, il y a presque 95% de chances d’avoir
deux personnes nées le méme jour de I'année dans une classe de 45 étudiants.

45. La plus courante, méme si ce n’est pas la plus efficace en terme de mémoire. Il en existe de nombreuses
autres, par exemple la solution consistant, lorsque la case désignée est déja occupée par une autre clé, a utiliser
itérativement une autre fonction de hachage jusqu’a trouver une case libre. On peut montrer que sous certaines
conditions, sur la fonction de hachage et la taille du tableau par rapport au nombre de clés, cette approche
présente des avantages.

46. La fonction mem, déterminant simplement la présence d’'une clé dans la table, s'écrirait de la méme maniere.



Méme chose pour la fonction add, la liste de couples (clé, valeur) potentiellement allon-
gée étant replacée dans la case idoine :

# let add dict cle valeur =
let rec auxAdd = function
| [] -> [ (cle, valeur) 1]
| (k, v)::q when k=cle -> (cle, valeur)::q
| t::q -> t::(auxAdd q)
in let hsh = Hashtbl.hash cle mod (Array.length dict.table)
in dict.table. (hsh) <- (auxAdd dict.table. (hsh));;
val add :

(‘a, 'b) t => 'a -> 'b -> unit = <fun>

Et enfin, la fonction remove :

# let remove dict cle

let rec auxRemove = function
| 1] -> []
| (k, _)::q when k=cle -> q
| t::q -> t::(auxRemove q)

in let hsh = Hashtbl.hash cle mod (Array.length dict.table)
in dict.table. (hsh) <- (auxRemove dict.table. (hsh));;

val remove : ('a, 'b) t -> 'a -> unit = <fun>

Le lecteur ne manquera pas de remarquer que nous avons utilisé la fonction
Hashtbl.hash plutdt que de la reprogrammer. En effet, cette fonction est particuliere-
ment difficile a écrire, tant d’'un point de vue théorique (pour qu’elle respecte les critéres
précédemment énoncés) que pratique (il n’existe pas de maniere simple d’écrire une
fonction traitant un argument de type quelconque).

Il reste une chose a envisager : lorsque le nombre de couples devient trop important
dans certaines cases, il nous faut agrandir le tableau. Pour ce faire, il doit étre possible de
remplacer le tableau, aussi nous faut-il modifier notre type dictionnaire par exemple par

# type ('a, 'b) t = { mutable table :

('a * 'b) list array };; ]

Ensuite, lorsque le tableau devient trop petit (trop de collisions, c’est-a-dire des listes
qui deviennent longues dans certaines cases), on crée un tableau plus grand, et on hashe
anouveau toutes les clés pour replacer les couples dans les bonnes cases. Plutét que de
doubler la taille m de la table de hachage, on peut étre tenté de choisir comme nouvelle
taille 2m + 1. En effet, si la nouvelle taille était un multiple de la précédente, vu la facon
dont on calcule le numéro de la case, on séparerait le contenu de chaque case isolément
(un élément dans la case 3 d’'une table de taille 8 ne pourrait se retrouver que dans les
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cases 3 et 11 d’'une table de taille 16), plutdt que de procéder a une nouvelle répartition
globale des couples dans la table (un élément dans la case 3 d'une table de taille 8 peut se
retrouver dans n'importe quelle case d'une table de taille 17). On peut ainsi parfois obtenir
un meilleur résultat *’.

On peut par exemple utiliser la fonction suivante :

let extend dict =
let m = Array.length dict.table in
let p = 2*n+1 in
let n_table = Array.make p [] in
let addkv = function (k, v)
-> let hsh = Hashtbl.hash k mod p
in n_table. (hsh) <- (k, v)::n_table. (hsh)
in for i=0 to n-1 do (* On la remplit avec tous %)
List.iter addkv dict.table.(i) (* les couples (clé,valeur) x)
done; (* dans l'ancienne table *)
dict.table <- n_table;; (x Elle remplace la table précédente x)

(* Ancienne taille m *)
(* Nouvelle taille p = 2m+1 *)
(* Nouveau table de hachage *)

val extend : ('a, 'b) t -> unit = <fun>

Le cotit de cette inflation est O(m + n) ou m est la taille de la table et n le nombre de
clés (cotit de la création du tableau, puis cotit de son remplissage). Cependant, on en vient
a augmenter la taille du tableau en général lorsque les listes dans les cases s’allongent,
ce qui arrivent seulement lorsque n n’est plus petit devant m, aussi la fonction est O(n)
en pratique. Cela cofite cher, mais I'opération ne sera plus effectuée avant un nombre
d’ajouts de 'ordre de n puisque la taille de la table est doublée, donc en moyenne, le cotit
de 'augmentation de la table de hachage est O(1) lors d'un ajout d'un couple (clé, valeur),
ce qui en fait une opération raisonnable.

Il reste a détecter le besoin d’agrandir la table, ce qui peut se faire sur le nombre de
couples dans la table (facile a comptabiliser) ou bien a partir de statistiques (que I'on peut
mettre a jour sans surcout notable lors des ajouts et recherches). La fonction Hashtbl. stat
permet justement d’obtenir des statistiques sur le remplissage de la table de hachage d'un
dictionnalre.

Pour conclure, signalons que les clés devraient étre des objets immutables *3 : sil’'on mute

une clé, son hachage va changer, et on cherchera possiblement la clé dans la mauvaise

case du tableau! Par exemple, avec notre implémentation du dictionnaire 49 :

47. 1l peut aussi étre moins bon, parfois... Cet aspect est a contrebalancer avec l'utilisation d'un m qui soit
toujours une puissance de deux pour faciliter le calcul du reste de la division entiere par m.

48. C’est une des raisons pour lesquelles les chaines sont immutables en Python, qui utilise considérablement
dans son fonctionnement des dictionnaires.

49. Mais il en serait de méme avec I'implémentation du module Hashtbl.



# let dico = create 8;;

val dico : ('_a, '_b) t = {table = [|[J1; [J1; [1; [1; C1; C1; [1; C1113

# let ch = "Hello";;
val ch : string = "Hello”

++

add dico ch 42;; (* On ajoute le couple ("Hello"”, 42) =*)
- :unit =

# Hashtbl.hash ch mod 8;; (* Il a été rangé dans la case 5 *)

- :1int =5

# find dico ch;; (x On retrouve le couple associé a ch *)
- :int = 42

# ch.[0] <- 'h';; (* Mutons a présent la chaine ch %)

- . unit = O

# find dico ch;; (x On ne retrouve plus la clé %)

Exception: Not_found.

# dico;; (* Pourtant, elle demeure dans dico *)
- : (string, int) t =
{table = [|[]1; [1; [1; [1; [1; [("hello”, 42)1; [1; [1113

# Hashtbl.hash ch mod 8;; (x Mais find la cherche & présent %)
- :.int =0 (* dans la case (hash ch) = 0 *)

Bref, une mutation de la clé nécessiterait de vérifier si le couple (clé, valeur) correspon-
dant ne doit pas étre déplacé dans la table de hachage!

Exercices

Ex. 4.1 - Piles d’assiettes

On considere un ensemble d’assiettes bleues et rouges, numérotées empilées dans un
ordre quelconque. On souhaite réordonner les assiettes, de sorte que les bleues se situent
en-dessous des rouges, mais sans changer la position relatives des assiettes bleues entre
elles, ou des assiettes rouges entre elles.

Les assiettes sont des objets de type

# type assiette = Bleue of int | Rouge of int;; ]

Proposer une fonction de signature assiette Stack.t -> unit prenant en argument
une pile d’assiette et les réordonnant selon les critéres proposés.

Ex. 4.2 - Doubles files

11 est parfois utile d’avoir des files a double sens : il s’agit de files particuliéres dans
lesquelles on peut ajouter des éléments a la fois a I'extrémité gauche et a I'extrémité droite,
et de méme les retirer de chaque coté.

Pour représenter une telle double file, on peut utiliser des listes doublement chainées,
avec pour chaque élément dans la liste une indication de celui qui se trouve a gauche et a
droite dans la file. En voici une représentation :

Valeur Valeur Valeur

Nll‘\—| Gauche | Droite | Q% Gauche - >Nil

Droite | - Gauche | Droite |

Le type d’'une telle liste doublement chainée serait par exemple :

# type 'a cell = { valeur : 'a ;
mutable gauche : 'a dclist ;
mutable droite : 'a dclist }

and 'a dclist = Nil | Cell of 'a cell;;

Et celui de la double file :

# type 'a dequeue = { mutable extrGauche :
mutable extrDroite :

'a dclist;
'a dclist; }

Une double file vide, comme une file vide, voit ses deux extrémités pointer vers Nil.

Proposer des fonctions addLef't, addRight, takeLeft et takeRight qui ajoute et retirent
des éléments dans la double file respectivement a gauche et a droite.



Ex. 4.3 - Nombres de Hamming

On rappelle que les nombres de Hamming sont les entiers strictement positifs dont la
décomposition en facteurs premiers ne font intervenir que des 2, des 3 et des 5. Les vingt
premiers nombres de Hamming sont donc

1,2,3,4,5,6,8,9,10,12,15, 16,18, 20, 24, 25,27,30, 32, 36,...

On souhaite écrire une fonction affichant les n premiers nombres de Hamming. Une
méthode testant les entiers un a un avec la fonction écrite dans un exercice précédent
serait inefficace (le 10000¢ entier de Hamming est 288325195312500000!)

On se propose donc d’utiliser la méthode suivante :
« on crée trois files f>, f3 et f5, et on insére 1 dans chacune des files;
e puis, n fois de suite :
— on détermine les entiers n,, ng et ns en téte de chacune des files;
— on détermine et affiche n = min(ny, ns3, ns);
— onretire n des files f>, f3 et f5 s’il 'y trouve en téte;
— oninsere 2n dans f>, 3n dans f3 et 5n dans fs.

1. Implémenter la fonction précédemment décrite.

2. Justifier qu’elle affiche bien les 7 plus petits nombres de Hamming par ordre croissant.

3. Une limite de la fonction précédente est que certains entiers peuvent se retrouver
dans plusieurs files. Améliorer la fonction pour que cela n’arrive pas.

Ex. 4.4 -PGCD
On suppose que I'on dispose d'une fonction pgcd de signature int -> int -> int

retournant le PGCD de deux entiers positifs passés en arguments.

On dispose d’'une pile d’entiers non vide, et on souhaite calculer le PGCD de tous les
entiers dans la pile.

On se propose d'utiliser I'algorithme suivant :
¢ tant que la pile contient au moins deux éléments 50 on en extrait deux entiers, on
calcule leur PGCD, et on empile le résultat;
« lorsque la pile ne contient plus qu'un élément, on le retourne.

1. Justifier que I'algorithme termine et retourne le résultat attendu.

2. Implémenter une fonction de signature int Stack.t -> int implémentant cet
algorithme (lequel a pour effet de vider la pile passée en argument en plus de retourner le
PGCD des entiers qu’elle contient).

3. Cet algorithme fonctionne-t-il également avec une file?

50. On rappelle que I'on ne connait PAS la taille de la pile, on peut seulement savoir si elle est vide ou non.
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Etude de la récursivité

“ Récursivité, terminaison, correction

1.1 Introduction

Une fonction récursive, en informatique ! est une fonction qui, pour déterminer le
résultat associé a certains parametres, fait appel a elle-méme. Nous avons eu I’occasion
d’en croiser a plusieurs reprises déja. Rappelons qu'il est nécessaire, en Caml, d’utiliser
le mot-clé rec pour signaler au compilateur que la fonction va apparaitre dans sa propre
définition.

Par exemple, nous avons vu que la fonction factorielle, définie en mathématiques sur N
avaleur dans IN par
0—1
Factorielle :
n—nl=nx (n-1)!

peut naturellement étre écrite en Caml par la fonction récursive

let rec fact = function
| ->
| n—>n x fact (n-1);;

Dans ce chapitre, nous allons nous attacher, principalement, a montrer la correction et
la terminaison de fonctions récursives.

Montrer la correction d'une fonction consiste a prouver que, si la fonction retourne
un résultat, ce résultat est bien le résultat recherché. Par exemple que la fonction fact
précédente retourne bien la factorielle de son argument.

Montrer la terminaison d'une fonction récursive pour un ensemble de parametres
consiste a prouver que la fonction retournera bien un résultat en un temps fini pour
n’'importe lequel de ces parametres. Par exemple, on cherchera a montrer que la fonction
Fact précédente retourne bien un résultat quel que soit 'entier positif qu’on lui fournit en
parametre.

1. En mathématiques, le terme de « fonction récursive » a un autre sens, lié a sa calculabilité.
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En effet, toute fonction ne retourne pas un résultat en un temps fini. Prenons par exemple
la fonction Foo retournant toujours 0, définie par

0—20

n—2x7(3])

foo :

que 'on traduit par

let rec foo = function
| ->

| n => 2 % foo ((n+1)/2);;

Cette fonction ne s'arréte jamais?, car foo(1) = 2 x foo(1), aussi est-il impossible de

calculer foo(1) (et par conséquent, il en est de méme pour tout entier positif).

Cette fonction peut néanmoins étre « correcte » dans I’acception que 'on en donne dans
ce cours (chaque fois qu'elle retourne un résultat, ce résultat est bien 0).

1.2 Lien entre terminaison et démonstration par récurrence

La preuve de la terminaison d'une fonction récursive est fortement liée aux démonstra-
tion par récurrence en mathématiques, méme si dans ce dernier cas on a un raisonnement
davantage « constructif ».

Par exemple, pour démontrer par récurrence qu'un ensemble de propriétés notées P(n),
pour tout n € IN, sont vraies, on montre généralement que la propriété est vraie pour n =0
(initialisation), et que, pour tout n = 0, si elle est vraie pour 7, alors elle est vraie également
pour n+ 1 (récursion).

Ce n’est pas la seule possibilité. On pourrait montrer par exemple :

o qu’elle est vraie pour n =0 et n =1, et que, pour tout n = 0, si elle est vraie pour n et
n+1, alors elle est vraie pour n + 2;

* qu’elle est vraie pour n = 0, et que, pour tout n = 0, si elle est vraie pour tout k < n,
alors elle est vraie pour n+1;

e qu’elle est vraie pour n =0 et n = 1, et que, pour tout n = 0, si elle est vraie pour n,
alors elle est vraie pour n+2;

o qu’elle est vraie pour n =5, et que, pour tout n = 5, si elle est vraie pour 7, alors elle
est vraie pour n + 1, et également que, pour 1 < n <5, si elle est vraie pour n, elle est
vraie pour n—1...

On remarque qu'il y a toujours deux éléments indispensables : une initialisation, et une
récurrence. Le point important est que I'on puisse atteindre n'importe quel n en partant
de l'initilisation et en utilisant les récurrences.

2. Ou plutot, ne s'arrétera que lorsque 'ordinateur se trouvera a court de mémoire.



Par exemple, pour les deux derniers cas proposés, cela peut se comprendre aisément
avec un schéma :

0/1\‘2/3\‘4/5—\6/;\8

X
0 1 2 3 4 5 6 7 8

\ S g w*_ \ g \ g \ S g
Sinon, il existe des valeurs de n pour lesquelles la propriété n’a pas été démontrée.

Il en est de méme pour les fonctions récursives. Elles ont nécessairement deux compo-
santes, une terminaison (des parametres pour lesquels la fonction n’a pas a faire appel a
elle-méme) et une récursion.

Alors qu'une démonstration mathématique par récurrence suppose que I’on montre
que toutes les propriétés peuvent étre déduites a partir de I'initialisation en utilisant la
récurrence, on cherchera a prouver que les appels récursifs finissent toujours par tomber
dans le cas terminal (ou un des cas terminaux), quel que soit le parametre initial fourni a
la fonction.

1.3 Cas de la factorielle

Revenons sur le cas de la fonction factorielle. 1l est assez simple de comprendre que
fact nretourne un résultat en effectuant n + 1 appels a la fonction fact. Le calcul de
fact nexigelecalculde fact (n-1), etainside suite, jusqu’a parvenir au calcul de fact
pour lequel on a un résultat sans qu'’il soit nécessaire de faire un appel récursif.

Pour justifier ceci aisément, on peut simplement dire que les arguments des différents
appels successifs sont des entiers positifs, constituant une suite strictement décroissante.
Il ne peuty avoir de suite infinie strictement décroissante dans IN, donc on peut étre assuré
que la fonction terminera toujours.

Ce méme argument ne fonctionne pas pour la fonction foo car on n’a pas toujours
|'§'| < n, donc les arguments des appels successifs ne forment pas nécessairement une
suite strictement décroissante dans IN (et on a vu qu’effectivement, ce n’était pas le cas
pour n=1).

Outre la terminaison de la fonction fact, on peut s’'interroger sur sa correction. On peut,
pour cela, raisonner de fagon similaire aux invariants de boucles. Pour un parametre n = 1,
la fonction associe fact nan x fact (n-1), ce qui est précisément la définition de la
factorielle. Si la fonction retourne un résultat (ce qu’elle fait puisqu’elle termine), il sera
correct, sous réserve que la multiplication ne déborde pas (ce qui arrive relativement vite
en Caml, des n = 21, car Caml utilise des entiers signés sur 63 bits).
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1.4 Un autre exemple, le PGCD

Prenons un autre exemple, le calcul du PGCD de deux entiers positifs, que 1'on définirait
en Caml par la fonction

let rec pgcd a b = match a with
| -> b
| _ -> pged (b mod a) a;;

Regardons la succession des appels qui sont effectués :

pgcd -> pgcd -> pgcd -> pgcd -> pgcd => ]

Comment justifier que la fonction termine toujours pour a et b positifs ? On peut remar-
quer que, lorsque b n’est pas nul, on a un appel récursif dont le premier parameétre est
b mod a.Or,pourb=0eta>0,onal0b mod a<al

Autrement dit, lors des appels successifs, le premier parameétre représente une suite
strictement décroissante dans IN, donc finira toujours par atteindre 0 (et donc le cas de
terminaison), ce qui permettra de terminer la fonction.

Pour prouver la correction de la fonction, il suffit de justifier que pgcd a b est bien égal,
pour tout a et b positifs, a pgcd (b mod a) a, ce qui estle cas.

Aller un peu plus loin

2.1 Un autre exemple

Prenons un exemple qui a beaucoup fait cogiter de nombreux penseurs, et ce des I'an-
tiquité, un des paradoxes de Héron. Achille était réputé pour étre I'un des plus grands
athletes de I'antiquité. Héron, dans une expérience de pensée, I'oppose a une tortue dans
une épreuve de course a pied.

La tortue n’étant pas bien rapide, Achille a la bonté de lui laisser cent métres d’avance.
La question est de savoir si Achille rattrapera la tortue (et au bout de combien de temps),
ou si cette derniere restera indéfiniment en téte.

Bien évidemment, aprés un certain temps, Achille aura parcouru une distance de 100 m.
En supposant qu’il court a la vitesse de v, = 10 m/s, il lui faudra 10 s. Cependant, pendant
ces dix secondes, la tortue aura elle aussi avancé, et se trouvera un peu plus loin, devangant
toujours Achille. En supposant que la tortue (trés rapide) avance a une vitesse v; = 0,1 m/s,
honorable mais cent fois moindre (v;/v, = 0.01), elle aura encore un metre d’avance. Un
metre qu'Achille comblera en un maigre dixieme de seconde, mais la tortue avangant
toujours, elle est toujours en téte. Et ainsi de suite.



En combien d’étapes Achille rattrapera-t-elle la tortue? Il en faut évidemment une
infinité, bien que 'on ne s’attend pas a une victoire de la tortue pour autant, ce qui en
faisait un paradoxe intéressant a étudier (qui se résoud en remarquant qu'une somme
infinie de temps de parcours peut trés bien donner un résultat fini, ce qui n’étonnera guére
le lecteur).

Revenons a nos problémes de récursivité. On peut écrire une fonction qui calcule le
temps nécessaire a Achille pour dépasser la tortue, lorsque I’on passe en parametre I’avance
d dela tortue:

let rec temps = function
| d when d <= 0. -> 0.
| d ->d /. .+

temps (0. *x. d);;

Pour le probléme qui nous intéresse, on I'appellera avec temps

Cette fonction récursive termine-t-elle quels que soient les arguments qui lui sont
fournis? Nous allons voir que la réponse est loin d’étre simple.

Prenons le probleme d'un point de vue mathématique : 'avance d de la tortue, tant
qu’elle est positive, est multipliée par v;/v, = 0.01 a chaque appel. On a donc ici une suite
de réels positifs, décroissante. Seulement, d'un point de vue mathématique, on n’atteindra
jamais zéro 3, comme c’était le cas pour nos deux exemples précédents, méme si la limite se
trouve bien étre zéro. Il y a donc une différence fondamentale entre des suites strictement
décroissantes sur IN et celles strictement décroissantes sur IR*.

2.2 Formaliser le probleme

Pour formaliser un peu les choses, considérons une fonction récursive f : E— F, prenant
un « argument » x parmi un ensemble E d’arguments possibles %, et retournant un résultat
dans F.

Parmi les éléments x € E, il existe un sous-ensemble A d’arguments pour lesquels la
fonction retourne un résultat immédiatement. Pour les arguments de E \ A, la fonction
opére nombre fini d’appels récursifs °.

Pour que le probléeme soit intéressant, A et E\ A ne sont pas vides (si E \ A est vide, la
fonction, non récursive, termine toujours, si A est vide, elle ne peut pas terminer).

3. Peut-étre aurez-vous dans 'idée que le probleme n’est pas si simple avec des flottants, et vous avez
parfaitement raison, nous y reviendrons un peu plus tard.

4. On prendra ici « argument » dans un sens trés général, x pouvant étre un simple entier, une liste, un
ensemble d'une demi-douzaine d’éléments de types variés, ou quelque entrée que ce soit que I'on puisse
imaginer a une fonction; ainsi f peut désigner n'importe quelle fonction.

5. Sile nombre d’appels récursifs est infini pour certaines valeurs du parametre x, la question de la terminaison
est d’ores et déja réglée!
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Prenons un élément xy de E\ A. Le calcul de f(xp) nécessite le calcul d'une ou plusieurs
expressions f(x), ;). Certains des x;,; seront peut-étre des éléments de A, mais d’autres
nécessiteront possiblement a leur tour le calcul de f(x2,;), et ainsi de suite. Par exemple,
les appels récursifs peuvent se succéder comme dans le schéma ci-dessous :

X2,4 X0
X1,2
X1,1
X2,2
X3,1 X2,1
\_/
E

Prouver qu'une fonction récursive termine toujours consiste a montrer qu’il n'y a pas,
dans cet ensemble d’appels récursifs, une séquence infinie d’appels n’aboutissant jamais
dans A (une véritable séquence infinie, ou bien un cycle, ce qui revient au méme), et ce
quel que soit le point de départ xp dans E. Bref, on se pose la question de savoir si « tous
les chemins meénent a A »!

Une des solutions pour parvenir a prouver la terminaison consiste 8 montrer qu’a chaque
étape, on se « rapproche » de A, et que la « longueur » du chemin menant a A, pour chacun
des éléments x diminue a chaque appel.

Cependant, le fait qu'on s’approche a chaque étape n’est pas suffisant : Achille ne rat-
trapera pas la tortue en un nombre fini d’étapes, méme s’il s’en approche a chacune des
étapes.

2.3 Principe d’induction

Définition. Considérons un ensemble £, muni d’une relation d’ordre, notée <. Si A est
une partie non-vide de £, et a € A, on dit que
o aest un élément minimal de Alorsque, Vx € A, x
o aest le plus petit élément de Alorsque, Vxe A, a

a=>x=a;
X.

AN

Dans une partie, il peut y avoir plusieurs éléments minimaux (lorsque 1'ordre n’est
pas total), mais le plus petit élément, s'’il existe, est nécessairement unique. De fagon
évidente, s'il existe un plus petit élément, il est nécessairement aussi un élément minimal
(la réciproque n’étant vraie que pour un ordre total).



Définition. (£, <) est qualifié d’ensemble bien fondélorsque toute partie non-vide de
E possede au moins un élément minimal. (£, <) est qualidié d’ensemble bien ordonné
lorsque toute partie non-vide de £ posséde un plus petit élément. Bien entendu, un
ensemble bien ordonné est nécessairement bien fondé.

Lensemble N muni de I’ordre usuel est bien ordonné et bien fondé. En revanche, R*
n’est ni bien ordonné, ni bien fondé : en effet, des sous-ensembles comme R**, ou ]0, 1],
n’ont ni élément minimal, ni plus petit élément. C’est cette différence qui est la clé.

Théoreme 2 (Principe d’'induction). Soit (£, <) un ensemble bien fondé, M l'ensemble
de ses éléments minimaux. Si un prédicat P sur £ vérifie

e pour tout x € M, P(x) est vrai;

e pourtoutxe E\M, Vy<x,P(y)=>P),
alors P (x) est vrai pour tout x € £.

Démonstration. On peut démontrer le principe d’induction en raisonnant par I'absurde,
en supposant qu'il existe un ensemble X d’éléments de £ pour lesquels P (x) est faux. Cet
ensemble admet un élément minimal xy, qui est nécessairement un élément de £\ M.

Seulement, tout y € £ vérifiant y < xg, P(y) est vérifié (puisque xq est un élément minimal
de X), ce qui implique que P(x¢) est vérifié, soit une contradiction avec 'hypothese
initiale, prouvant le principe. O

Le principe d’'induction est une généralisation du principe de récurrence. Il va nous
permettre de vérifier que notre fonction récursive f : E — F termine pour tout x € E.

Théoréme 3. Soit f une fonction récursive d’'un ensemble E vers un ensembleF, et ¢ une
fonction deE vers un ensemble bien fondé (£, <) telle que, pour tout x € E,
* soit la fonction f retourne un résultat directement;
* soit la fonction calcule le résultat en utilisant un nombre fini d'appels récursifs dont
les arguments y; vérifient tous G(y;) < G(x).
La fonction f termine pour tous les éléments deE.

Démonstration. Il suffit d’utiliser le principe d’induction, en considérant pour toute € £
le prédictat P(e) « Pour tout argument x € E vérifiant ¢(x) = e, la fonction récursive f
termine ». Les propriétés de ¢ permettent de vérifier la seconde condition du principe
d’induction. Pour la premiére condition, il suffit de voir que les éléments x € E pour
lesquels ¢(x) est un élément minimal de £ n’effectuent jamais aucun appel récursif %.

Lapplication du principe d’induction garantit donc bien que la fonction f termine bien
pour tout x € E. O

a. Car ils devraient utiliser des arguments y pour lesquels ¢ (y) < ¢(x), ce qui est en contradiction avec le
fait que ¢p(x) est un élément minimal de £.
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2.4 Exemples

Il n’est pas absolument nécessaire de maitriser le formalisme précédent pour démontrer
la terminaison d’une fonction récursive.

On peut en effet justifier la terminaison d’'une fonction en deux points :
o exhiber une suite strictement décroissante® construite a partir des parametres;
* justifier que cette suite ne peut étre infinie (par exemple en remarquant que les
termes de la suite sont des éléments d'un ensemble bien fondé pour I'ordre consi-
déré”).

Comme on I'a vu, le cas le plus simple est celui ol1 on peut travailler avec des entiers
naturels et la relation d’ordre usuelle. Idéalement, les arguments sont des entiers naturels
et forment eux-méme une suite strictement décroissante 8.

Par exemple, dans le cas de la fonction factorielle, N muni de I'ordre usuel est un
ensemble bien fondé, et lors de I'unique appel récursif, on passe d'un parametre n a
un parametre n-1 strictement inférieur. La fonction fact termine donc pour tout entier
naturel.

Pour la fonction calculant le PGCD,

let rec pgcd a b = match a with
| -> b
| _ -> pged (b mod a) aj;;

une solution consiste a considérer la fonction ¢ : NZ — N qui au couple (a, b) associe a.

Comme on I’a montré tantét, ¢(a mod b, a) < ¢(a,b), donc comme (N, <) est bien
fondé, cela suffit a prouver la terminaison de la fonction pgcd pour tout couple d’entiers
positifs.

Prenons de méme la fonction comb calculant le coefficient binomial ( Z ) définie par

let rec comb k n =
if k < || k > n then 0 else
if k = || k = n then 1 else
comb (k-1) (n-1) + comb k (n-1);;

et intéressons-nous a sa terminaison pour k et n entier naturels.

Cette fois-ci, pour calculer comb k n, on a deux appels récursifs, mais le second para-
metre de ces deux appels est toujours strictement plus petit que n. En prenant la fonction

6. Pour un ordre quelconque, pas nécessairement I’ordre usuel.

7. Il est aisé demontrer que la non-existence de suite strictement décroissante dans un ensemble ordonné est
équivalente au caractéere bien fondé de cet ensemble.

8. On prend alors pour fonction ¢ la fonction identité



¢ : N? — N qui au couple (a, b) associe b, on peut justifier que la fonction précédente
termine pour tout couple d’entiers positifs (lorsque le parameétre n est nul, la fonction
termine bien quelle que soit la valeur du parametre k).

La correction de la fonction précédente est également facile a justifier, puisque la récur-

sion est basée sur la relation
n\ (n-1 + n—1
k) k-1 k

Signalons cependant que, si la fonction précédente termine pour tout couple d’entiers
positifs, et donne un résultat correct, elle n’en est pas moins tres maladroite.

En effet, le nombre d’appels devient rapidement prohibitif : le premier appel de la
fonction Comb provoque potentiellement deux appels, qui en provoquent a leur tour jusque
quatre, et ainsi de suite. Le temps de calcul devient rapidement déraisonnable, (quoique
nous verrons prochainement une fagon d’y remédier en partie).

Ce n’est pas parce que I'on a réussi a justifier qu'une fonction termine et retourne le
résultat correct qu’elle sera utilisable en pratique. Encore faut-il qu’elle retourne le résultat
en un temps raisonnable, ce qui est un tout autre probléme.

Dans!'exemple précédent, on peut aisément montrer par une récurrence que la fonction
n
k
assez modestes de k et n.

est appelée, au total, 2 ( ) — 1 fois, ce qui est vite gigantesque méme pour des valeurs

On préférera nettement cette version de la fonction comb (elle termine d’aprés un raison-
nement similaire au précédent), qui conduit au plus a k + 1 appels de la fonction :

let rec comb k n =
if k < || k > n then 0 else
if k = || k = n then 1 else
Comb (k-1) (n-1) * n / k;;

2.5 Autres ordres utiles

Plutdt que de se ramener a des éléments de IN, il est parfois plus simple de travailler
directement avec un ensemble £ = IN? avec p > 1. Pour ce faire, on dispose de plusieurs
ordres potentiellement utiles.

Ordre lexicographique IN?, lorsqu’il est muni de 1’ordre lexicographique =<, (que I'on
définit par (a, b) = (a@’,b") © a< a’ ou a= a’etb < b’) est un ensemble bien ordonné (et
donc également bien fondé).

7

Par exemple, le graphe ci-dessous montre le couple (a,b) ou a =4 et b =5 (le premier
élément du couple est placé en ordonnée), et I'ensemble des couples (o, b') qui sont
inférieurs a (a, b) pour I'ordre lexicographique < :

1l est intéressant de remarquer ici qu'il existe une infinité d’éléments (@', b’) € N? stricte-
ment plus petits qu'un (a, b) donné. Et pourtant, il n’existe pas de suite infinie (a;, b;) ;e
dans IN? strictement décroissante pour <!

Cela peut se comprendre en remarquant qu'a chaque itération, soit a;;; < a;, soit
ajy+1 = a; et bjy) < b; diminue. Le premier cas ne peut pas arriver plus de ay fois. Par
conséquent, s'il existait une suite infinie, le second cas devrait se succéder une infinité de
fois pour une valeur donnée de a;, ce qui n’est pas possible car on exhiberait une suite de
b; infinie strictement décroissante dans IN'!

Lordre lexicographique peut aisément étre étendu de IN? 2 IN” pour p € N* quelconque.

Ordre produit De méme, 'ensemble IN?, muni de I'ordre produit < (que 'on défini par
(a,b) =« (d',b") © a< d etb< D), n’est pas bien ordonné (I'ordre n’est pas total) mais est
néanmoins bien fondé. Les éléments inférieurs a (a, b) sont représentés ci-dessous :

A

(a,b)

Ny,
7

Il n’existe dont pas de suite infinie strictement décroissante dans IN? pour =, °.

Notons que, 'ordre produit n’étant pas total (on n’a ni (2,5) <« (5,2), ni (5,2) =« (2,5)
par exemple), il existe des parties de IN? sans plus petit élément, comme celle ci-dessous.

9. Comme cette fois, il existe un nombre fini — exactement (a + 1) x (b + 1) — d’éléments de N2 plus petits que
(a, b) pour =y, cela n'est guére surprenant.



En revanche, toute partie de IN?2 a bien des éléments minimaux (que 'on a mis en évidence
en couleur ci-dessous) :

Lordre produit peut également étre étendu a N” pour p quelconque.

Exemples d’utilisation Dans le cas de pgcd, on peut donc simplement choisir I'identité

pour la fonction ¢, et remarquer que (b mod a, a) < (a, b) pour I'ordre lexicographique.

Ce qui permet directement de conclure sur la terminaison de la fonction pgcd.

Lordre produit, en revanche, ne convient pas, car la premiere étape de la fonction pgcd
peut échanger les arguments si initialement a > b.

Pour la fonction comb, (k—1,n—-1) < (k,n) et (k,n—1) < (k,n) a la fois pour 'ordre
lexicographique <y et pour 'ordre produit <, donc les deux ordres conviennent.

2.6 Arguments complexes (listes, arbres, chaines...)

Lorsque les arguments sont un peu plus complexes (listes, arbres), on peut utiliser ¢ pour
les ramener a des entiers positifs en prenant une de leurs caractéristiques bien choisies
(longueur de la liste, hauteur de 'arbre...).

Par exemple, dans cette fonction calculant la somme des termes d’'une liste d’entiers,

let rec somme = function

[ -

| t::qg > t + somme q;;

la longueur de la liste passée en argument est un entier positif qui décroit strictement lors
de chaque appel récursif, donc la fonction termine pour toute liste.

De méme, dans la fonction calculant la hauteur d’'un arbre,

let rec hauteur = function
| Feuille ->

| Noeud (filsg, filsd) -> 1 + max (hauteur filsg) (hauteur filsd);;

78

ou bien dans celle calculant sa taille,

let rec taille = function
| Feuille ->

| Noeud (filsg, filsd) -> 1 + taille filsg + taille filsd;;

les hauteurs des deux sous-arbres utilisés comme arguments des appels récursifs sont
strictement inférieures a celle de I'arbre argument de la fonction, donc ces fonctions
hauteur et taille terminent pour tout arbre.

Pour une chaine de caracteres, on peut utiliser sa longueur 10 comme dans cette fonction

qui termine puisque la longueur de la chaine passée en argument décroit de 2 a chaque
appel récursif :

let rec estPalindrome chaine =
let n = String.length chaine in
n < || chaine.[0] = chaine.[n-1]
&& estPalindrome (String.sub chaine

(n=2));;

Précisons que la fonction précédente effectue des copies cotiteuses de la chaine lors des
appels a String. sub, et inutiles : une meilleure solution consisterait a utiliser des indices
délimitant la partie de la chaine qu’il reste a vérifier. Ces indices étant entiers, et le nombre
de caracteres restant a vérifier strictement décroissant, la terminaison d’une telle fonction
n’est pas difficile a prouver.

2.7 Probleme de la terminaison

Malheureusement, il n’est pas toujours aussi simple de montrer qu'une fonction récur-
sive termine. Par exemple, la fonction Q de Hofstadter :

let rec g = function
| ->
| ->
n->qg (-qg (1)) +aq=-qg(2));;

ou bien cette fonction, basée sur la suite de Syracuse :

let rec syracuse = function

| -> true
| n when (n mod 2) = @ -> syracuse (n/2)
| n -> syracuse (3*n+1);;

10. Précisons qu’il existe des relations d’ordre bien fondés sur I'ensemble des chaines de caracteres, dont
certaines seront étudiées dans le programme de seconde année.



sont deux exemples de fonctions dont on a conjecturé qu’elles terminaient toujours (on
n'a pas trouvé de n pour lesquels ce ne serait pas le cas) mais ces conjectures n’'ont pas
encore pu étre démontrées a ’heure actuelle.

Par exemple, dans le cas de la fonction de Hofstadter, on abien n—1<n, n—2 < n,
n—qn—-1) <netn-q(n-2)<npuisque la fonction ne peut visiblement retourner que
des éléments de N*, mais il reste a prouver que n—g(n—1) =1 et n—q(n—2) = 1 pour
justifier que la fonction n’effectue des appels récursifs qu’avec des éléments de IN*.

En fait, il a été montré par A. Turing (avant méme que les ordinateurs modernes existent)
que la question de la terminaison d’'une fonction (récursive ou non) était un probleme
indécidable, c’est-a-dire qu'on ne peut écrire de fonction « termine » qui prenne une
fonction en argument et retourne true si cette fonction termine pour tous les arguments,
et false dans le cas contraire. Il est aisé de s’en convaincre en considérant la fonction
suivante :

let rec foo () = match termine foo with
| true -> foo ()
| false -> true;;

En effet, si foo termine, alors foo () fait un appel récursifa foo (), donc elle ne termine
pas. Et si elle ne termine pas, alors elle retourne true, donc elle termine. La seule facon de
lever ce paradoxe est que termine ne peut pas fonctionner correctement avec foo comme
argument.

2.8 Réels vs flottants

Revenons a notre course entre Achille et la tortue. Si I'on travaillait sur R, le fait que
(R*, <) ne soit ni bien ordonné, ni bien fondé, nous empéche de conclure a la terminaison
de I'algorithme. Et, de fait, dans R*, il ne terminerait pas.

Pourtant, la fonction retourne bien un résultat aprés un nombre fini d’appels (164 tres
exactement) :

# temps .0;;

- : float =

Laraison est que 'on travaille avec des flottants et non des réels. La quasi-totalité des
grandeurs manipulées en informatique utilisent un nombre prédéterminé de bits (souvent
64 bits pour des flottants), et il y en a donc un nombre fini de valeurs possibles. Lensemble
des entiers relatifs sur 32 bits ou I'ensemble des flottants 64 bits positifs sont bien fondés
lorsqu'’ils sont munis de la relation d’ordre habituel (puisque tout sous-ensemble fini muni
d’un ordre total aura nécessairement un élément minimal), méme si Z et R* ne le sont
pas.
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Excepté lorsque I'on travaille avec des données dont la taille peut varier (des listes, par
exemple) ', seule la question de la relation d’ordre importe réellement.

Ce pourrait étre une excellente nouvelle, mais toute médaille ayant son revers, il faut se
souvenir que les calculs sur les flottants ne se comporent pas tout a fait comme ceux sur
les réels. Dans le cas qui nous intéresse, pour un x flottant positif, on a bien 0.01 x x < x.

Seulement, x > 0 n'implique pas 0.01 x x > 0, car 0.01 x x peut étre nul. C’est ce qui
permet a notre fonction récursive de se terminer apres 164 appels. Le plus petit flottant est
del'ordre de 107324, or 100 x (0.01)'6* est plus petit que cela, donc assimilé a zéro '2.

Alinverse, on n'a pas 0.6 x x < x, car il est possible que 0.6 x x = x si x est suffisamment
petit (0.6 x x étant arrondi a x). De sorte que si la tortue, dopée au stéroides, a une vitesse
de 0,6 fois celle d’Achille, la fonction

let rec temps = function
| 0. -> 0.
| d ->d /. .t

(temps (0.6 *. d));;

elle, ne termine jamais 13 14!

Ces problémes d’arrondis peuvent également poser des problemes lorsqu’il s’agit de
prouver la correction de la fonction.

1l est bien plus facile de travailler avec des entiers, les preuves concernant les fonctions
faisant intervenir des flottants sont souvent tres délicates, et encore souvent un sujet de
recherche.

Récursion terminale

3.1 Le mécanisme d’appel de fonction

Cette derniére partie de ce chapitre vise a examiner un peu plus en détail comment un
ordinateur gere les appels de fonctions. Dans 'optique des concours, il n’est nul besoin
d’étre un expert sur le sujet, et on cherche avant tout ici a éclairer pourquoi certaines
écritures de fonctions récursives fonctionnent mieux que d’autres (et sont donc plus
fréquemment utilisées).

11. C’est aussi le cas des entiers relatifs en Python, dont la représentation peut utiliser un nombre quelconque
de bits.

12. Pour les regles usuelles d’arrondi, lesquelles peuvent étre changées mais nous n’entrerons pas dans les
détails.

13. Ici encore, pour les régles usuelles d’arrondis sur les flottants.

14. La fonction ne termine pas, mais elle finira cependant par provoquer une erreur, plus précisément un
débordement de pile, car les appels récursifs consomment ici de la mémoire. Nous allons y revenir dans la section
suivante.



Dans un programme, un appel de fonction « suspend » un temps I’exécution d'une sé-
quence d’instructions, le temps d’exécuter les instructions constituant la fonction appelée.

Dans un programme compilé, par exemple, la séquence d’instructions de la fonction se
trouve a un endroit différent dans la mémoire de la séquence d’instructions ou survient
I'appel a ladite fonction. Lors d’'un appel de fonction, le processeur doit noter ou il se
trouvait juste avant I'appel a la fonction avant de s’intéresser au instructions constituant la
fonction, histoire de pouvoir y revenir ultérieurement.

Tout se passe comme si vous lisez un livre, qu'un paragraphe fait référence a une note
en fin d’ouvrage, et que vous laissez un marque-page le temps d’aller lire la note avant de
reprendre votre lecture a 'emplacement du marque-page.

Seulement, dans un programme, une fonction peut appeler une seconde fonction, qui
peut faire appel a une troisieme fonction, et ainsi de suite. Les fonctions peuvent méme
s’appeler elles-mémes, ce qui se trouve d’ailleurs étre le sujet de ce chapitre. Il faut donc
mémoriser plusieurs « adresses de retour ». Comme on reviendra aux différentes tiches
dans I'ordre inverse ou1 on les a laissées, il est naturel d'utiliser une pile pour cet usage.

De fait, tous les ordinateurs disposent d'une pile d'appel dans laquelle on mémorise les
adresses de retour a chaque appel de fonction, de fagcon a pouvoir reprendre I'exécution
normale du programme lorsque I'on termine la fonction.

Ce n'est pas la seule chose que I'on place dans cette pile. Les arguments de la fonction y
sont généralement également placés, de sorte que la fonction qui est appelée puisse les
retrouver aisément. Et dans le cas d'une fonction récursive, que les différents appels ne
mélangent pas leurs arguments respectifs! Les définitions locales '° y sont généralement
également placées, afin que chaque fonction puisse accéder a ses propres définitions.

Prenons I'’exemple du programme suivant, qui calcule 2n! :

let rec fact = function

| ->
| n->
fact (n-1) (x position A *)
*n;;
let foo n =
fact n (* position B %)
&3 A8
foo 2;; (*x position C %)

Linstruction foo 2 fait appel a foo avec 2 en parametre. Laquelle fait appel a fact avec
2 en parametre. Qui a son tour fait appel a fact avec 1 en parametre. Et enfin, un dernier

15. Ou les variables locales dans d’autres langages
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appel a fact avec 0 en parametre.

Au niveau de la pile, les choses se passent de la facon suivante :

[ o ]
Appel foo Appel fact Appel fact Appel fact

Comme on le voit, a chaque appel de fonction, Caml empile le parametre de la fonction,
puis juste avant de « sauter » a la fonction appelée, I'adresse '® a laquelle il devra revenir
lorsqu’il en aura terminé avec la fonction.

Chaque fonction n’a besoin d’accéder qu’a la partie de la pile qui lui correspond (en
blanc dans I'exemple du dessus). On parle parfois de « trame de pile » (stack frame en
anglais). Sous 'adresse de retour se trouvent le ou les parametres qui lui ont été passés en
arguments 7.

Le dernier appel a fact ne cause pas de nouvel appel, et la fonction retourne simplement
le résultat 1. Le programme Caml va donc alors dépiler 'adresse de retour (de méme que
I'argument, qui ne sera plus utile et sera jeté), et retourne a la fonction appelante (qui ici
est fact également). La fonction appelante récupere le résultat (ici 1) et le multiplie par
son argument (1 encore), et retourne comme résultat le produit. On dépile alors a nouveau
une trame de pile. Et ainsi de suite.

Le résultat retourné par la fonction pourrait étre placé dans la pile '®, mais actuellement,
en général, il est plutot laissé dans un registre du processeur 19 une mémoire interne au
processeur destinée aux calculs, et particulierement rapide, ce qui permettra d’utiliser
directement le résultat dans la suite du programme sans perdre de temps.

16. Désignée ici par « Pos. A », « Pos. B » et « Pos. C », mais correspondant pour le processeur en réalité a
I'emplacement, dans la mémoire, de I'instruction suivant celle qui effectue 'appel.

17. Précisons que l'ordre des éléments dans la trame de pile est une convention, la seule chose qui importe est
que la fonction appelante et la fonction appelée s’entendent. Il est néanmoins fréquent que les parametres se
trouvent « en-dessous » de I’adresse de retour dans la pile, car 'adresse de retour est empilée au moment du saut
d’une fonction a I'autre, autrement dit au tout dernier moment.

18. C’estici aussi un choix laissé au compilateur, qui dépend des possibilités du processeur utilisé.

19. Ou bien, ¢'il est trop volumineux pour y tenir, la fonction laisse dans le registre une adresse mémoire
indiquant ol1 trouver le résultat.



Au niveau de la pile d’appel et du registre utilisé pour les résultats, la suite du programme
se déroule donc de la sorte :

Pos. A

Pos. A Pos. A

Pos. B Pos. B Pos. B

Pos. C Pos. C Pos. C

Retour fact Retour fact Retour fact Retour foo

@& @O @O o

3.2 Récursion vs boucles

Chaque fois que I'on effectue un appel de fonction, il y a donc un cofit au niveau du
processeur : il faut empiler les parametres, puis 'adresse de retour, avant de « sauter »
en un autre point du programme. Puis, un peu plus tard, on dépilera les données et on
reviendra a la fonction appelante.

Parfois, il est nécessaire d’effectuer des opérations supplémentaires. Par exemple, beau-
coup de fonctions utilisent les registres du processeur. On peut avoir besoin de mémoriser
le contenu de ces registres avant de faire appel a une fonction, afin de pouvoir les restaurer
lorsque I'appel sera terminé, dans le cas ou la fonction appelée aurait modifié le contenu
des registres. On parle alors de sauvegarde (et de restauration) du contexte.

Les appels récursifs ont donc un cofit, modéré (quelques dizaines de cycles, soit quelques
nanosecondes sur un ordinateur moderne) mais non nul. Si une écriture récursive d'une
fonction est parfois plus lisible ou plus simple, elle peut étre un peu plus lente qu'une
version écrite au moyen d'une boucle.

On passe cependant souvent plus de temps a écrire et modifier les programmes qu’a
les utiliser, donc gagner quelques nanosecondes n’a cependant de sens que si la fonc-
tion est réellement appelée tres, trés souvent, surtout si c’est au prix d’'une complication
importante de la fonction.

Lautre difficulté que 'on peut rencontrer lorsque 1'on effectue de nombreux appels
de fonction est lié a la mémoire : la pile d’appels décrite ci-dessus occupe de la place en
mémoire (dans une zone qui lui est réservée). Lorsque I'on effectue trop d’appels récursifs,
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on peut se retrouver a court de mémoire, ce qui interrompt le programme! C’est par
exemple le cas sur cette fonction qui tente d’effectuer une infinité d’appels récursifs :

# let rec foo () = 1 + foo ();;
val foo : unit -> int = <fun>

# foo O;;
Stack overflow during evaluation (looping recursion?).

3.3 Récursion terminale

Il existe un mécanisme permettant d’économiser quelques opérations et un peu de place
en mémoire : la récursion terminale. Regardons ce que donne le calcul de fact

Adr.Y

Adr. Y Adr. Y

Adr.Y Adr. Y Adr. Y

Adr. X Adr. X Adr. X Adr. X

II

Appel fact Appel fact Appel fact Appel fact

Adr. Y

Adr. Y Adr. Y

Adr. Y Adr. Y Adr. Y

Adr. X Adr. X Adr. X Adr. Y

II

Retour fact Retour fact Retour fact Retour fact

@ @O & G



On peut écrire 1égerement différemment la fonction fact :

# let fact_RT n =
let rec aux res =
| -> res
| n -> aux (res*n) (n-1)
in aux 1 n;;

function

val fact_RT : int -> int = <fun>

Voyons ce qui se passe avec la fonction auxiliaire aux :

Adr. Y

Adr. Y Adr. Y

Adr.Y Adr. Y Adr. Y

Adr. X Adr. X Adr. X

BIEE -
S LB R - 2
S EIE R R -

v
Appel aux

v
Appel aux

v

Appel aux Appel aux

Pour 'instant, les avantages sont loin d’étre évidents, on a plutdt augmenté I'occupation
de la mémoire. Cependant, il se passe quelque chose d’intéressant lorsque I’'on commence
a s’'intéresser aux retours des fonctions.

En effet, la fonction aux place son résultat, 6, dans un registre, et retourne. La
fonction aux retourne directement le résultat que vient de lui retourner aux .Ce
résultat est déja dans le registre, elle n’a donc qu’a dépiler sa trame de pile et retourner a la
fonction aux quil'a appelée. aux se trouve dans la méme situation.

Comme I'appel récursif se trouve étre la toute derniere opération qu’effectue la fonction
Aux, on peut alors effectuer une optimisation qui va avoir de I'importance. Plutot que de
remonter les appels un par un, on va s’arranger pour effectuer tous les retours d'un seul
coup.
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Pour ce faire, plutét que d’empiler une nouvelle trame de pile lors d'un appel qui est la
toute derniere instruction d'une fonction, on va modifier la trame actuellement au sommet
de la pile, de facon a y substituer les nouveaux parametres, mais en conservant ’adresse
de retour.

La pile évoluera donc de la facon suivante :

i

Appel aux Appel aux Appel aux Appel aux

On remarquera que pour tous les appels, dans 'exemple ci-dessus, les nouveaux argu-
ments sont substitués aux anciens, mais 1’adresse de retour n’est pas modifiée.

Lorsque I'on arrivera a la fin des appels récursifs, le résultat est placé dans le registre, et
on saute directement a Adr. X, I’appelant (notre fonction fact_RT ici), en un seul retour.
Plus le nombre d’appels récursifs sera important, plus le gain sera notable. Par ailleurs,
puisque la pile ne se remplit pas, on ne risque pas d’avoir des soucis de mémoire!

Précisons cependant, encore une fois, que la lisibilité d'une fonction prime généralement
sur des critéres d’efficacité. Il n'est pas attendu que vous écriviez des fonctions utilisant le
principe de récursion terminale 2%, surtout lorsque cela complique notablement I'écriture
de la fonction. Mais cela vous permettra peut-étre de comprendre pour quelle raison
certaines fonctions que vous rencontrerez sembleront écrites de facon un peu moins
naturelles.

3.4 Quelques exemples

Pour calculer (récursivement) la somme des termes d’une liste, la solution la plus natu-
relle consiste a écrire :

# let rec somme = function
| [] ->
| t::qg > t + somme q;;
val somme : int list -> int = <fun>

Sil’on souhaite en faire une fonction récursive terminale, on peut, comme dans le cas
de la fonction aux de fact_RT, construire le résultat étape par étape, et passer les calculs

20. Et encore moins en Python o1 ce mécanisme d’optimisation de I'utilisation de la pile n’est pas utilisé, par
choix.



intermédiaires en tant qu’argument supplémentaire a la fonction (le dernier appel ne
faisant que retourner le parametre correspondant au résultat, en général).

1l est alors généralement nécessaire de définir une fonction auxiliaire, travaillant avec un
argument supplémentaire. Dans le cas de la fonction Somme, cela pourrait donner :

let somme liste =
let rec aux s = function
| 1 ->s
| t::q -> aux (s+t) ¢
in aux 0 liste;;
val somme int list -> int = <fun>

Une telle fonction peut étre 1égérement plus rapide, mais permet aussi (et surtout) de
traiter des listes plus longues sans que la pile ne « déborde », ce qui est tres utile dans un
langage fonctionnel qui fait la part belle aux fonctions récursives. Toutefois, le résultat
n’étant pas aussi lisible, il convient d’utiliser cette possibilité avec parcimonie, lorsque
c’est réellement utile.

Précisons qu’il n’est pas toujours nécessaire d’introduire une fonction auxiliaire, on
aurait pu également écrire notre fonction Somme de la sorte :

# let rec somme = function

| [1 ->

| [ elem ] -> elem

| t1::t2::q -> somme ((t1+t2)::q);;
val somme : int list -> int = <fun>

Limportant est que 'appel récursif soit la derniere opération qu’effectue la fonction.

Dans ce dernier cas, on utilise davantage le conse, aussi il n'est pas certain que les
performances soient améliorées, c’est surtout la possibilité de traiter de longues listes qui
peut faire pencher la balance en faveur d'une telle solution.

Profitons enfin de I'occasion pour éclaircir un point évoqué tantot : comme on peut le
constater ci-dessous, la fonction List.fold_left utilise une récursion terminale :

let rec fold_left f b = function
| 1 ->b
| t::q -> fold_left f (f b t) q;;

En effet, 'appel récursif a fold_left est bien la toute derniere opération effectuée par
la fonction, ce qui rend possible 'optimisation.
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Cen'est enrevanche pasle casdeList.fold_right, dans laquelle le résultat de 'appel
récursif sert ensuite d’argument a la fonction f :

let rec fold_right f 1st b = match lst with
| 1 ->b
| t::q -> f t (fold_right f g b);;

Aussi la fonction fold_left est-elle un peu plus rapide, mais surtout s’accomode de
listes plus longues que sa consceur.
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Paradigmes de programmation

Dans ce dernier chapitre, nous étudierons quelques stratégies pouvant permettre 1'élabo-
ration d’algorithmes plus efficaces en terme de complexité : division pour régner, program-
mation dynamique, etc. Nous en profiterons pour établir quelques résultats permettant
de déterminer plus rapidement et plus simplement la complexité d'un algorithme. Nous
aurons, par la méme occasion, I'opportunité d’étudier quelques algorithmes intéressants
pour résoudre des probléemes courants (tris, recherches, etc.)

n Les tris
1.1 Objectif

Une des taches que 'on rencontre fréquemment en informatique consiste a trier des
données. Compte tenu de son importance, il a été apporté a ce probleme un nombre
conséquent de solutions, aux avantages et inconvénients variés. Il va nous permettre par
ailleurs d’illustrer quelques concepts importants de programmation, mais également de
revenir sur les calculs de complexité.

Dans la suite, nous chercherons donc a écrire une fonction de tri, prenant en argument
une liste d’éléments (des flottants par exemple), et retournant une liste contenant les
mémes éléments, triés par ordre croissant.

1.2 Tripar sélection

Une facon naturelle de trier un ensemble d’éléments consiste a trouver, dans cet en-
semble, le plus petit de ses éléments, puis le second plus petit, le troisieme, et ainsi de
suite jusqu’a épuisement des éléments de I'ensemble. On parle de tri par sélection.

Lécriture en Caml d’une telle méthode est assez simple '. Dans un premier temps, on
commence par écrire une fonction minReste prenant en argument une liste, et retournant
un couple constitué du plus petit élément de la liste, et de la liste des éléments restants 2.

1. On ne cherchera pas, dans ce cours, a obtenir des fonctions exhibant une récursion terminale, sauf si
elle vient naturellement; ce sont les algorithmes proprement dits qui nous intéressent ici, et non le détail leur
implémentation.

2. Sil’élément le plus grand apparait n fois dans la liste, il doit apparaitre n — 1 fois dans la liste retournée.
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Comme souvent en Caml lorsque I'on manipule des listes, une solution récursive est
assez naturelle. Apres avoir séparé la liste en une téte et un reste, le plus petit élément est
soit la téte, soit le plus petit élément du reste. La liste privée du plus petit élément contient
la queue privée de son plus petit élément, a laquelle on rajoute I’élément parmi les deux
précédents qui n'a pas été retenu comme plus petit élément de la liste :

# let rec minReste = function
| [1 -> failwith "Empty"”
| [ elem ] -> elem, []
| t::q -> let minimum, reste = minReste q in
(min t minimum), (max t minimum)::reste;;

val minReste 'a list -> 'a x 'a list = <fun>

La terminaison de cet algorithme est garantie par le fait que la longueur de la liste décroit
strictment a chaque appel, sa correction est immédiate par récurrence.

Trier les données consiste alors simplement a chercher successivement les plus petits
éléments et a les assembler, ce qui s’écrit trés simplement de facon récursive :

# let rec tri = function
| [] -> [1
| liste -> let minimum, reste = minReste liste in
minimum:: (tri reste);;
'a list = <fun>

val tri 'a list >

Intéressons-nous a présent au temps nécessaire a 'exécution des fonctions minReste
et tri. Bien que nos fonctions soient polymorphes, on s’intéressera ici uniquement au
cas du tri de liste d’entiers (ou de flottants) de sorte que le temps de comparaison de deux
éléments a et b reste borné3

Dans la suite, nous noterons D,, 'ensemble des listes comprenant n éléments, et Tyr(d)
le temps d’exécution de la fonction minReste pour une liste d.

Un appel a la fonctionminReste sur un élément de D,, consiste en un appel récursif a
minReste avec pour parametre un élément de D,,_; et une succession d’opérations (ex-
traction de la téte, calcul du minimum et du maximum, conse...) dont le temps d’exécution
ne dépend pas de n, et que 'on peut encadrer par deux temps #; et f,.

Pour la question de la complexité, cet encadrement n’a pas besoin d’étre précis, « entre
une femtoseconde et un milliard d’années » est suffisant! Limportant est que cet encadre-
ment soit valable quel que soit 'argument de la fonction minReste.

3. En effet, lorsque 'on compare des chaines de caracteres ou des listes, par exemple, le temps nécessaire
peut dépendre de la taille des chaines ou des listes comparées.



On peut donc écrire, pour tout entier n = 2 et en notant Tyr(d) le temps d’exécution
de la fonction minReste surlaliste d € D, :

vdeD,, i+ min (Tyr(d)) < Tyr(d) <
d'eD

n-1

t+ max (Tygr(d")
d'eD

n-1

Par une récurrence immeédiate, cela conduit, pour tout n =1, a:

vdeD,, (n—1) x t; + min (Tyr(d")) < Tmr(d) < (-1 x & + max (Tyr(d)
d'eD; d'eD,

Puisque I'on peut encadrer le temps Tyr(d') pour un quelconque élément de D; par
deux constantes, il existe donc des constantes réelles strictement positives «, 3, Y et  telles
que, pourtoutn=1:

YdeD,, an+p < Tur(d) < yn+6

Ce qui signifie que la fonction minReste a un coft linéaire, une complexité @(n).

Penchons-nous a présent sur la fonction tri. Pour un argument pris dans D,, avec n = 1,
elle comprend un appel a la fonction minReste avec le méme argument, un appel récursif
alafonction tri avec pour argument un élément de D,,_, et un ensemble d’opérations
dont le temps peut étre encadré par des temps ] et t;. Aussi peut-on écrire, pour tout
entier n = 1 et en notant Ty;(d) le temps d’exécution de la fonction tri pour un argument
deD,:

Yd e Dy, r{+an+ﬁ+dmpin (Tui(d") < Tuild) <
'e

n-1

L ) Tui(d'
o +yn+ +d}ngax (Twi(d)

n-1

Cette fois encore, une récurrence immédiate permet, pour tout n = 1, d’établir que :

nn+1)

VdeDy, o+ Tri([) < Teri(d) < m x (25 +8) + TY+Ttri([])

nx(t{+[3)+@

On a donc un cotit quadratique pour notre fonction de tri, une complexité @ (n?).

Dans la pratique, on tentera rarement d’encadrer le temps d’exécution d'une fonction, et
on préférera dénombrer le nombre d’occurrences de I'une des opérations qui conditionne
la complexité de la fonction. Par exemple, dans un tri, on pourra s'intéresser au nombre de
comparaisons. En effet, le temps d’exécution sera, nécessairement, au moins proportionnel
au nombre de comparaisons effectuées. Mais, puisque inversement, pour chaque com-
paraison on effectue un nombre borné d’autres opérations toutes élémentaires, le temps

4. Dans la réalité, le temps d’exécution d’'une fonction sur un argument donné peut varier, méme sil’argument
ne change pas, en fonction de nombreux critéres, donc on pourrait dire « un quelconque temps d’exécution de
la fonction » pour 'argument d. En pratique, on ne se souciera pas, dans la pratique, de tels détails, car on ne
recherche qu'un équivalent et ces fluctuations de temps d’exécution ne changeront pas la complexité.
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d’exécution est aussi majoré par un temps proportionnel au nombre de comparaisons. Le
nombre de comparaisons et le temps d’exécution sont des suites équivalentes.

Si I'on note u, le nombre de comparaisons effectuées par minReste pour une liste
comprenant n éléments, et u), le nombre de comparaisons effectuées par tri pour une
liste de n éléments, on peut écrire 5

up=u; =0 et Vnz2, u,=2+uy

ce qui conduit, pour n =2, a
Uup,=2x(n-1)

et, pour la fonction tri

! ! ! !
Uy =0 et Vn=2, u,=u, ;+tup=u, +2x(n-1)

ce qui donne, pour n =1,

n n—1
u'”:ZZX(k—l)zZZk:nx(n—l):nz—n
k=2 k=1

Un appel a tri effectue donc de I'ordre de n? comparaisons, ce qui permet de retrouver
que cette fonction a un coftit quadratique ©(n?).

1.3 Tripar insertion

Une autre méthode de tri possible consiste a partir d'une liste vide, et a « insérer » tour a
tour chacun des éléments a trier dans cette liste, en les placant de sorte que la liste que
'on construit reste a chaque instant triée. On parle de #ri par insertion.

On commence donc par écrire une fonction permettant d’insérer un élément a la bonne
place dans une liste d’éléments triés par ordre croissant, en utilisant cette fois encore une
approche récursive :

# let rec insere elem = function
| (t::q) when elem > t -> t::insere elem q
| 1st -> elem::1st;;

'a list = <fun>

val insere 'a -=> 'a list —>

5. Le « 2 » dans la relation de récurrence vient de la présence d’'un min et d’'un max, on pourrait le réduire a 1
en utilisant par exemple un test, mais la complexité sera la méme dans les deux situations. Notons que I'on n'a
pas compté iciles comparaisons que Caml devra effectuer afin de filtrer I'argument. En nombre moindre, dans
I'exécution de la fonction, que les comparaisons entre éléments de la liste, elles ne changeraient de toute facon
pas la complexité.



La encore, la taille de la liste passée en second argument décroit a chaque appel, donc la
fonction va toujours terminer. Pour la correction, I’élément elem se retrouve juste avant le
premier élément de la liste qui soit plus grand que lui, aussi est-il placé au bon endroit.

Linsertion d'un « 2 » dans une liste de sept éléments triés par ordre croissant place bien
I'élément a la position idoine :

insere

[ ’ ’ ’ ) ’ ’ ’

- @ dint list = [-5; -2; 0; 1; 2; 3; 4; 7; 9]

A présent le tri par insertion proprement dit s’écrit trés simplement :

# let rec tri = function
| [1 ->1[]
| t::q -> insere t (tri q);;

val tri 'a list -> 'a list = <fun>

Cela correspond bien a ce que 'on décrivait tantot, car 'appel

llg g J

correspond, si 'on déroule les différents appels récursifs, a

tri [ 25 3; 9; -5, 45 15 -2, 7;

insere 2 (insere
(insere

(insere 9 ( insere (-5) (insere
(insere (-2) (insere 7 (insere @ [I))))))

Pour déterminer la complexité en temps de ce tri par insertion, nous allons a nouveau
nous pencher sur le nombre de comparaisons effectuées par ces deux fonctions. Cette
fois, le nombre de comparaisons pour une liste contenant n éléments n’est pas toujours le
meéme. On s'intéresse ici a la complexité dans le pire des cas, celui pour lequel le nombre
de comparaisons est maximal.

Sil'on note u, le nombre de comparaisons effectuées par la fonction insere dans le
pire des cas, pour une insertion d'un élément dans une liste & n éléments, il apparait tres
vite que u, = n (lorsque l'insertion se fait en bout de liste, apres avoir constaté que tous
les éléments de la liste sont plus grands que I'élément a insérer). La complexité en temps,
dans le pire des cas®, de insere est donc O(n).

Le nombre u), de comparaisons nécessaires, dans le pire des cas, pour appliquer tri a
une liste de longueur 7 vérifie ’

I _ o
uy=0 et Vn=zl, u,=u, ;+up

6. Dans le cas favorable, en revanche, u;, = 1, donc on a une fonction en temps constant.
7. On peut vérifier que le pire des cas pour tri est une liste triée par ordre décroissant, qui provoque bien a
chaque appel de insere la pire insertion possible, en toute fin de liste.
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On a dongc, pour tout n =1,

n-l n(nl) 1, 1

=2 k= =gm 3"

Cette fois encore, dans le pire des cas, le nombre de comparaisons est quadratique, donc
le tri par insertion a une complexité en temps dans le pire des cas en O(n?).

En revanche, dans le cas le plus favorable, puisque pour tout n, u, =1,onauj, =n-1,
ce qui donne un cofit en temps linéaire. Ce genre de situation se produit pour des listes
triées par ordre croissant (ou presque triées), pour lesquelles ce tri peut étre tres efficace.

1.4 Aller plus loin

Les cofts des deux fonctions de tri précédentes deviennent rapidement prohibitifs
lorsque le nombre d’éléments a trier est important. Pour seulement 10000 éléments, les tris
précédents peuvent nécessiter plusieurs dizaines de secondes sur une machine courante,
et cent fois plus (donc prés d'une heure) pour 100000 éléments®

Dans le cas du tri par insertion, le cofit en ®(n?) du tri vient, en partie, du fait que la
fonction qui insere un élément dans une liste triée a un cott en O(n).

Dans le cours de tronc commun, il a été montré que I’on pouvait trouver cette position
plus efficacement, par une recherche dichotomique dans la liste triée, sous réserve de
pouvoir accéder aux éléments de la liste en O(1) 9. En effet, cette recherche dichotomique
peut trouver la position ol1 devra étre inséré I’élément en un temps O(In(7)) (en n’effectuant
que [log2 (n)] comparaisons pour ce faire).

On pourrait envisager d'utiliser cette idée pour transformer notre tri par insertion en un
tri en O(n1n(n)). En pratique, cela ne fonctionne pas. En effet, pour déterminer la place
en log(n), il faut pouvoir accéder aux éléments en O(1), ce qui nécessite de conserver les
éléments dans une structure de type tableau (array en Caml). Mais dans ce cas, I'insertion
de I’élément a la bonne place est une opération en O(#n). La recherche dichotomique ne
peut donc pas nous aider directement ici.

En revanche, 'idée derriere la recherche dichotomique est intéressante : lorsque I'on
compare I’élément a insérer avec celui au milieu de la liste triée, le résultat permet d’élimi-
ner la moitié des positions possibles. C’est un des trés nombreux exemples d’application
d’'un paradigme en informatique, « diviser pour régner ».

8. Une partie de cette « lenteur » est a attribuer au compilateur relativement ancien de Caml Light, mais
celui-ci n’est responsable que d'un coefficient multiplicatif, une liste dix fois plus longue nécessitera quoi qu'’il
arrive un temps cent fois plus grand, ce qui pose probleme.

9. Ce qui n'est pas le cas des listes en Caml



Diviser pour régner

2.1 Présentation

Le paradigme de programmation « diviser pour régner » consiste a ramener la résolution
d’un probleme dépendant d'un entier 7 en un nombre borné de problemes identiques
dépendant d'un entier n' = an avec ' a < 1.

Fréquemment, on a a = 1/2. Par exemple, dans le cas de la recherche dichotomique,
déja vue dans le cours de tronc commun et sur laquelle nous allons revenir, rechercher la
position adéquate dans une liste a n éléments se traduit en une recherche de la position
adéquate dans une liste a [n/2] éléments.

2.2 Trifusion

Tentons d’appliquer ce paradigme « diviser pour régner » au probleme du tri des éléments
d’une liste.

11 est possible de trier une liste a n éléments en procédant de la sorte :

« silaliste est vide ou contient un unique élément, elle est déja triée, il n'y a donc rien
a faire;

 sinon, on scinde la liste a trier en deux listes contenant respectivement [r/2] et [ n/2]
éléments;

e puis on trie chacune des deux listes (ce qui revient a résoudre le méme probléme, sur
des listes de taille deux fois plus petite);

¢ enfin, on fusionne les deux listes triées en une seule liste triée.

L 2;3; 9 =5; 4; 1; -2, 7; 0]
/scission\
; =5 4] L1; -257;01
ltri ltri
;3504591 L-2;0; 1;7]1
\fusion/
L -5; -2, 0; 1; 25 3; 4, 7; 91

Commencons par écrire des fonctions pour chacune de ces étapes.

Tout d’abord, considérons le probléeme de la scission de la liste. Comme on ne dispose
pas, en général, de la longueur de la liste, la fagon la plus simple de procéder est de prendre

10. On remarquera que n' = n—1 (ou n’ = n— k) ne convient pas, car on aurait n’ = n lorsque n — oo, en
contradiction avec a < 1.
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les éléments de la liste fournie en parametre un par un, et de les répartir alternativement
dans les deux listes qui seront retournées. Cela peut s’écrire grace a un filtrage :

# let rec scinde = function
| t1::t2::q -> let q1, g2 = scinde q in t1::q1, t2::92
| 1st -> 1st, [1;;

val scinde :

'a list -> 'a list * 'a list = <fun>

Dans le cas d'une liste avec un nombre impair d’éléments, la premiere des deux listes
retournée est plus longue, comme sur I'exemple ci-dessous :

# scinde [ 2; 3; 9; -5; 4; 15 =25 7;

- : int list % int list = ([2; 9; 4; -2; 0],

La fusion de deux listes, notre troisieme étape, s’écrit aussi avec un filtrage. Si les listes
(triées) passées en argument sont non vides, I'’élément le plus petit parmi les éléments en
téte de chacune des deux listes prend la premiére place dans la liste résultat, le reste étant
constitué de la fusion des autres éléments de chacune des deux listes :

# let rec fusionne 11 12 = match (11, 12) with
| (t1::q91), (t2::92) when t1 <= t2 -> t1::(fusionne q1 12)

| 11, (t2::92) -> t2::(fusionne 11 g2)
| 171, [] -> 11;;
val fusionne 'a list -> 'a list -> 'a list = <fun>

Le résultat est bien une liste d’éléments rangés par ordre croissant :

# fusionne [ -2; 0; 2; 4;

- : int list = [-5; -2; 0; 1; 2; 3; 4; 7; 9]

Il ne reste plus ensuite qu’a écrire le tri tel que nous ’avons décrit précédemment, en
exhibant encore une récursion :

# let rec tri 1lst = match scinde 1st with

| 1st, [1 -> 1st

| 11, 12 -> fusionne (tri 11) (tri 12);;
'a list = <fun>

val tri 'a list >




Toutes ces fonctions terminent car les appels se font systématiquement sur des listes
strictement plus courtes, et sont par ailleurs correctes.

Intéressons-nous a présent aux cofits en terme de temps de calcul de ces différentes
fonctions.

Pour une liste a n éléments, découpée en deux listes de longueurs [n/2] et [n/2] élé-

ments, la fonction fusionne effectue, dans le pire des cas, n — 1 comparaisons 1

Sil’on note u; le nombre de comparaisons effectuées, dans le pire des cas, par la fonction
trilorsqu’elle trie une liste de longueur #n, on peut écrire

{uo =Uu; =0
Yn=2, uy=1uppz +um+m-1)

On remarquera que la fonction scinde n’apparait pas dans ce décompte, mais puis-
qu’elle effectue un nombre d’opérations du méme ordre de grandeur que la fonction
fusionne, cela ne changera pas la complexité du tri.

Pour essayer de comprendre le comportement de u,, supposons que n s’écrit de la
forme 2F (par exemple 2* = 16) et observons comment les choses se passent. Dans le
schéma suivant, chaque « groupe » représente un appel pour une liste ayant le méme
nombre d’éléments que le nombre de cases dans le groupe (chaque ligne représentant une
récursion), et chaque case blanche correspond a une comparaison :

On peut voir sur le schéma que pour 7 = 2¥, on a 2 cases sur chaque ligne, et k+1 lignes,
donc 2% x (k+ 1) cases au total. On peut également montrer que 1 +2+4 +... + 2€ de ces
cases ne sont pas blanches, autrement dit 2k+1_ 1,

Sur une liste a 2 éléments, le tri fusion effectue donc, dans le pire des cas, 2k (k-1)+1
comparaisons. Puisque k =log, (n), cela revient a n x log, (n) — n+1.

11. et |n/2] comparaisons dans le meilleur des cas.
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On s’attend donc a une complexité, pour notre fonction de tri fusion, dans le pire des
cas '?, en ©(nlog(n)).

2.3 Comportement asymptotique de suites récurrentes

Pour s’éviter ces calculs dans d’autres situations similaires, nous allons présenter
quelques résultats généraux qui permettront de conclure plus rapidement.

Suites récurrentes d’ordre 1

Théoréme 4. Soita € R™, (b,)neN une suite réelle positive, et () neN Une suite vérifiant
Up=a-up_1+by,

On montre que
e si(by) =0nY) eta=1,alors (u,) =0n"*"Y);
e si(by) =o0(nY)eta>1,alors(uy) =0(a";
o si(by) ~Aa™ avec A > 0, alors (u,) =0O(na™);
o si(by) ~Ab" avecA>0etb< a, alors (u,) =0(a");
o si(by) ~Ab" avec A >0 et b > a, alors (u,) = 0(b").

Démonstration. La premiere affirmation se démontre aisément.
Pour les autres, posons v, = % La relation de récurrence sur v, s'écrit donc, Vn € N,

by,
Vp="UVUnp-1+ —
a

Onadonc v, =ug+ ) —Z soitup=a"|ug+ Y —Z )
k=14 &a
e Dans le cas o1 (b,,) = o(n"), on peut écrire

by
Ve>0, dngeIN telque Vk=ny — <e—
a

Pl v N 2
Or la série de terme £ conver e, d’ou le second résultat.
ak

Il en est de méme si (b,) ~Ab" avecA>0etb< a.

¢ Si (by) ~Aa™ avec A >0, alors u, = a” (ug + n\) donc (u,) = O(na™).

¢ Si(b,) ~Ab™ avec A >0 et b > a, alors u, = a" (uo + ﬁ (%)n) donc (u,) =0(b"). O

12. 1l en serait de méme dans le cas favorable, le fait que 'on effectue [72/2] comparaisons au lieu de (n—1) ne
change pas le comportement assymptotique de la suite.



La plupart de ces résultats sont logiques et prévisibles : si le terme (b,) est négligeable
devant la suite u), = au),_,, c’estle comportement de cette suite qui gouverne celui de la
suite (uy), soit ©(a™); si, a l'inverse, la suite u), = “”;171 croit moins vite que by, alors c’est
b, qui va déterminer le comportement assymptotique de la suite. Seul le cas ot les deux
termes sont de grandeur comparable conduit a un comportement assymptotique un peu
plus complexe.

Suites récurrentes de type « diviser pour régner »

Les suites récurrentes de type « diviser pour régner » font généralement apparaitre une
suite (14,,) en gouvernée par une relation de la forme '3

Up = a1 Ulpj2) + a2 U2 + by

Avant de s’'intéresser au comportement assymptotique de telles suites, établissons
d’abord quelques résultats utiles.

Remarquons tout d’abord que
Lemme 1. Sia et ay deux réels positifs vérifiant a; + ap = 1, et si (bp) neN et (D)) neN

sont deux suites de méme ordre de grandeur, alors les suites (U,) neN €t (u’n) neN telles que
Uy = uy et pour tout n € N*,

! !

!/ /
Up= Q1 Upj2) + A2 Ulp/2) + b €6 Uy =a1- U, o) + a2 Upy o + Dy,

sont du méme ordre de grandeur également.

Cette propriété nous permet de substituer a b,, dans les démonstrations, une suite de
méme ordre de grandeur. On peut également montrer que

Lemme 2. Sia; et ay sont deux réels positifs vérifiant ay + ap = 1, et si (by) e est une
suite croissante positive, alors la suites (uy,) neN définie par

Up = a1 - Ulp/2) + a2 Ufns2] + by

est également croissante.

Démonstration. On peut en effet montrer par récurrence que Vn €N, Uy = Uy :
sy = ay-ug+az-ul+by=(ay+ax))u; +be = (ay+az)u; = ul, donc c’est vrai pour n =1;
« si'on suppose vraie la propriété pour tout k < n,ona

Uptl = Q1 U|(ne1)/2) + A2 Uf(ne1)/2] + Dps1 = a1 - Uppyo) + G- Urpy2) + by = Uy

car (b,) est croissante, de méme que U|(n+1)/2] = Uln/2] €t Ufn+1)/2] = Urns2) d'apres

13. En général, a; et ap sont des entiers positifs (un des deux au moins étant non nul).
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I'hypothése de récurrence.
La propriété est donc vraie pour tout n = 1, la suite (u;) est donc croissante. O

Ces résultats préalables étant mis en place, on peut se pencher a présent sur les questions
de complexité.

Théoréme 5. Soient a; et ap deux réels positifs vérifiant a) + ap = 1, (by,) neN Une suite
positive et croissante, et (U,) neN UNe Suite vérifiant

Up = a1 - Ulp/2) + a2 Ufn/2) + by

On montre les résultats suivants, ot o = log, (a; + az) :
e si(by) =0O(n%Y), alors (u,) = O(n*log(n));
o si(by) = 1) avecf < «, alors (u,) = O(n%);
o si(by) =0mP) avec > «, alors (u,) = ownb).

Démonstration. Pour démontrer ces résultats, il suffit de considérer la suite (Vi) gen
définie, pour tout k € N, par vg = uyx.

Cette suite vérifie, pour tout k € N*, vg = (a1 + a2) - Vg1 + D) avec b} = byi.

Supposons par exemple que (by,) = © (n%). On a alors (b)) = © (25%) = © (a1 + a2)¥), ce
qui conduita (vg) = O (k(a; + az)k) grace aux relations établies pour les suites récurrentes
d’ordre 1.

Ensuite, puisque (uy) est croissante, V|jog,(n)] < Un < Vllog,(n)|+1, C€ quUi permet de

conclure que (1) = © (log, (1) x (a1 + a2)'°&M) = @ (nln n%). O

2.4 Recherche dichotomique

Supposons que 'on dispose d'un tableau ('a array) tab d’éléments ordonnés de facon
croissante ainsi qu'un élément elem, et que I'on souhaite déterminer I'indice i vérifiant
e i =0sitous les éléments du tableau sont supérieurs a elem;
e i=n(ou n estlalongueur du tableau) si tous les éléments de la liste sont strictement
inférieurs a elem;
e un i vérifiant tab. (i-1) <elem < tab. (i) sinon.

Autrement dit, une position i juste avant laquelle insérer '* elem dans le tableau pour
conserver une liste triée 1.

La solution immédiate consisterait a envisager toutes les possibilités une par une, en
parcourant le tableau. Evidemment, cet algorithme a une complexité linéaire (© (7)) dans
le pire des cas, puisque I'on examinera alors les 7 + 1 emplacements possibles un a un.

14. Ce qui, dans un tableau, nécessitera de décaler tous les éléments aux positions j = i au préalable.
15. Compte tenu des comparaisons, si plusieurs positions sont possibles, c’est la position la plus a gauche qui
sera retournée ici.



Lalgorithme de recherche dichotomique travaille plus efficacement. Apres avoir envisagé
les deux premiers cas (i = 0 et i = n), il tente de trouver les indices des deux éléments de
tab qui encadrent elem en réduisant de moitié les possibilités pour la valeur de i a chaque
itération '6.

Lalgorithme peut donc s’écrire ainsi :

# let dicho elem tab =
let n = Array.length tab in
if n == || elem <= tab.(?) then
else if elem > tab.(n-1) then n
else let rec aux a b =
if b = a+1 then b
else let m = (atb)/2 in
if elem <= tab.(m) then aux a m else aux m b
in aux 0 (n-1);;
val dicho 'a => 'a array -> int = <fun>

Dans cette fonction, I'invariant lors de chaque appel récursif a la fonction aux peut
s’écrire « le i recherché se trouve dans l'intervalle ]a, b] ».

Si le résultat n’est pas i = 0 ou i = n, on a initialement n — 1 possibilités (de a+1 =1
a b = n—1 inclus). Aprés une comparaison, on en est réduit a [(n—1)/2] possibilités.
Et ainsi de suite. Le nombre u,, de comparaisons effectuée dans la partie principale de
I'algorithme 7 vérifie donc
Up = U2 +1

ce qui conduit (avecicia; =0, a2 =1, =0, b, =1 donc (b,) = ®(n°) a une complexité
pour la recherche dichotomique en © (n°log(n)) = © (log(n)).

Lalgorithme termine bien, car |b — a| est bien une suite strictement décroissante. En
effet, on a toujours a < m < b car b est toujours strictement supérieur a+ 1! Dans le cas
b = a+1, on aurait m = |[(a+ b)/2| = a, mais on n'effectue alors plus d’appel récursif.
Si I'algorithme de la recherche dichotomique parait simple, un grain de sable se glisse
treés facilement dans son implémentation, et il convient d’étre tres prudent quant a sa
terminaison!

Nous avons utilisé ici des tableaux ('a array), car il était nécessaire de pouvoir accéder
directement (en un temps O(1)) al’élément d’'index i.

Cen’est pas le cas avec des listes, et le temps nécessaire pour accéder aux éléments qui ne
sont pas en téte de liste conduirait, sil'on essayait d’appliquer I’algorithme dichotomique
a des listes, en une complexité ©(n), dénuée d’'intérét car elle n’est pas meilleure qu'une
recherche linéaire dans la liste!

16. On se reportera au cours de tronc commun pour les détails.
17. Sans tenir compte des deux comparaisons initiales qui ne changeront pas le résultat.
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2.5 Algorithme d’exponentiation rapide
On s’intéresse a présent au calcul de la n® puissance d’'un élément « x » (qui peut étre un
réel, une matrice, etc.).

La solution naive pour calculer x” consiste a écrire

= xxx = = (L (XX X)X X) X)) X X) X X) X X)

Soit, en Caml, pour une utilisation sur des x entiers :

# let rec power x = function
| ->
| n => x * power x (n-1);;

val power : int -> int -> int = <fun>

Le calcul nécessite alors n — 1 multiplications, donc une complexité en O (n) sile cotit
de la multiplication est constant. Si n est grand, cela peut représenter un temps de calcul
important, surtout si la multiplication est complexe (si x est une matrice par exemple).

8 consiste a utiliser le paradigme « diviser pour régner », en

Une solution plus efficace !
remarquant que, pour n =2,
o x"=x2 x "2l sj p est pair;

o x"=xl2x xIn2] « x si p est impair.

L'écriture en Caml de cet algorithme est immédiate :

# let rec power x = function

| 0 —>

| -> X

| n -> let y = power x (n/2) in
if nmod 2 = 0 theny * vy
else y xy x x;;

val power : int -> int -> int = <fun>

Le second argument dans I'appel récursif est bien un entier positif strictement inférieur
a n, ce qui garantit la terminaison de I'algorithme. Sa correction découle immédiatement
des deux égalités précédentes.

Le nombre de multiplications nécessaires pour un argument z est u, ol ug = u; =1 et

Up =Up2)+1+(n mod?2)

18. Cette méthode n’est pas non plus celle qui effectue toujours le moins de multiplications, la méthode des
arbres de Knuth donnant fréquemment une solution un peu meilleure. On ne connait pas de méthode donnant
systématiquement et efficacement la solution optimale, en terme de nombre de multiplications, a ce probleme.



Pour déterminer le comportement de cette suite, on peut changer légerement le second
membre (puisqu'il suffit de ne pas changer la complexité de la suite (b)), et s'intéresser a
u,, vérifiant

! !
Up = Uy +1

D’apres les résultats précédents (avecicia; =1, a» =0,a =1, b, =1 donc (by,) = oY),
la complexité de I'algorithme sera donc ©(log(n)).

Il convient aussi d’étre prudent. On aurait pu considérer x = x!"/2 x x["/21 et en déduire
un autre algorithme :

# let rec power x = function
| ->
| -> X
| n -> power x (n/2) * power x ((n+1)/2);;

val power : int -> int -> int = <fun>

On montre aisément que cette seconde possibilité termine et est correcte. Mais le nombre
de multiplications est gouverné par une suite (i) ,eN Vérifiant la récurrence

Un = Ulpj2) + Urnj2 +1
Or, cette récurrence conduit ! 2 une complexité en ©(n) (linéaire, donc), qui n’apporte

donc aucun gain par rapport a la méthode « naive », contrairement a ce que I’on pourrait
croire au premier coup d’ceil !

2.6 Plus proches voisins dans un nuage de points du plan

On s’intéresse a présent a un ensemble de 7 points M; du plan, de coordonnées (x;, y;).
On souhaite connaitre la distance minimale entre deux points de ce nuage (et éventuelle-
ment un couple de points M; et M; réalisant cette distance).

Une solution naive consisterait a calculer toutes les distances M;M; avec i > j, soit
n(n—1)/2 calculs de distance, ce qui conduit a une complexité en ©(n?). Toutefois, avec le
paradigme « diviser pour régner », il est possible de faire mieux, et d’obtenir une complexité
quasi-linéaire.

Dans un premier temps, on crée tout d’abord deux listes P et P’ dans lesquels les
différents points du nuage sont rangés respectivement par abscisse croissante 2%, et par or-
donnée croissante. Ces deux opérations peuvent étre réalisées en © (nlog(n)), par exemple
en utilisant le tri fusion présenté tantot.

19. Puisque a; =1,ap =1,donca=1,etp=0<a

20. Pour I'implémentation proprement dite, il peut étre utile que la liste 7P contiennent les points rangés par
ordre lexicographique de leurs coordonnées, ce qui implique qu’ils soient rangés par abscisses croissantes, et
cela ne change pas la complexité de I'opération.
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Puis on utilise le paradigme « diviser pour régner » :

« Sile nuage contient trois points ou moins, on calcule explicitement toutes les dis-
tances, et on en extrait le minimum;;

+ Sinon, on sépare le nuage de points en deux ensembles & et £q de respectivement
[n/2] et [n/2] points, séparés par une droite verticale 21 d’abscisse x. Puisque les
points ont été ordonnés par abscisse croissante dans P (i), cette opération est en
O(n) (elle serait méme en O(1) si'on utilisait des tableaux a la place des listes).

» Trois possibilités existent alors : les plus proches voisins sont tous deux dans &,
ils sont tous deux dans &g, ou bien I'un est dans & et 'autre dans £;. On va donc
envisager les trois possibilités.

— On détermine récursivement 84 la plus courte distance entre deux points de & et
d4 celle entre deux points de £y, et on pose 8 = min(dg, 84).

— Sila troisiéme possibilité donne une paire de points strictement plus proches que
9, leurs abscisses strictement comprise entre x; — & et x4 + 8. On dresse une liste
P" des points de cette bande, ordonnés par abscisses croissantes. Puisque ’on
dispose de P’, 1a construction de P” peut étre faite en temps linéaire.
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Enfin, on prends les points de P dans 'ordre. Lobjectif est simplement de savoir
si un couple de points de P” ont une distance inférieure a 8. Si c’est le cas, ils sont
nécessairement de part et d’autre de la droite x = x,.

Un point M de P” ne peut avoir une distance inférieure a § qu’avec un point P de
P vérifiant par ailleurs yv — 8 < yp < yum + 8. Puisque I'on prend les points par
abscisses croissantes, I’éventuel cas yp < yy aura déja été traité, cela se réduit a
s'intéresser aux points P de P vérifiant yy < yp < ym + 6.
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. :
1

1

|

.

!

M

21. Siplusieurs points ont pour abscisse x,, on les sépare en fonction de leur ordonnée, de facon a avoir deux
moitiés équilibrées, d’'oi1l'intérét de trier les points dans P par ordre lexicographique.



Les points vérifiant ces deux inégalités figurent nécessairement parmi les cing
points suivant M dans la liste P”, car les points d'un méme coté de la droite sont
écartés d’au moins d. Quelle que soit la disposition des points dans le plan, on
traitera donc moins de 57 couples dans cette derniére étape.

. 4 M

— 1l ne reste qu’a clore 'algorithme en comparant la distance 8 a la plus petite
distance obtenue dans cette derniére étape de I'algorithme.

Pour déterminer la complexité de cet algorithme, on peut noter u, le nombre de calculs
de distance effectués pour un ensemble de n points. Pour n = 4, on peut écrire

Up = Ujp2) + Urp/2] + by

ol (by,) représente le nombre de couples de points examinés dans la bande autour de
la droite x = x4, d’olt (b;;) = ©(n). On a donc a; = a2 = 1, donc a = 1, ce qui conduit a
(uy) = ©(nlog(n)).

Puisque les précalculs de P et P’, effectués une fois pour toute, sont également en
® (nlog(n)) et que la construction de P”, linéaire, a une complexité similaire a celle de
(bn), ces opérations ne changent pas la complexité générale de I'algorithme.

On peut donc ainsi obtenir la plus courte distance entre deux points (et éventuellement
les deux points qui réalisent cette distance) avec une complexité en temps © (nlog(n)).

A titre d’illustration, nous allons construire une implémentation possible de cet algo-
rithme en Caml. Pour ce faire, il nous faut construire plusieurs fonctions.

Tout d’abord, il nous faudra ordonner les points du plan par ordre lexicographique (pour
‘P), et par ordonnée croissante (pour P’) en O(log(n)). Pour ce faire, nous allons réutiliser
un tri fusion.

Pour éviter d’écrire deux tris distincts, nous allons réécrire notre fonction de tri de sorte
qu’elle accepte en argument supplémentaire une fonction foo permettant de préciser
que deux éléments x et y doivent étre ordonnés selon les valeurs de foo x et foo y.On
pourra ainsi les trier par abscisses croissantes en utilisant la fonction snd, et par ordre
lexicographique en utilisant 'identité. La fonction scinde ne change pas:

# let rec scinde = function
| t1::t2::q -> let g1, g2 = scinde q in t1::q1, t2::92
| 1st -> 1st, [1;;

'a list x 'a list = <fun>

val scinde : 'a list ->
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En revanche, fusionne et tri prennent foo en parametre :

# let rec fusionne foo 11 12 = match (11, 12) with
| (t1::q91), (t2::92) when foo t1 <= foo t2
-> t1::(fusionne foo q1 (t2::92))

| 171, (t2::92) -> t2::(fusionne foo 11 g2)

[ 11, ] -> 11;;
val fusionne : ('a -> 'b) -> 'a list -> 'a list -> 'a list = <fun>
# let rec tri foo 1lst = match scinde lst with

| Ist, [1 -> 1st

| 11, 12 -> fusionne foo (tri foo 11) (tri foo 12);;

tri <fun>

(‘a -> 'b) -> 'a list -> 'a list =

Il nous faut une fonction prenant une liste de n points ordonnés lexicographiquement
et retournant deux listes de longueurs respectives [n/2] et [n/2], avec un ordre lexicogra-
phique inverse:

# let partition lst =
let rec partitionAux pool 1lst1l = function
| -> 1st1, (List.rev pool)
| n -> partitionAux (List.tl pool) ((List.hd pool)::1st1) (n-1)
in partitionAux 1lst [] ((List.length 1lst + 1) / 2);;

val partition : 'a list -> 'a list * 'a list = <fun>

Une fonction construisant la liste P” a partir de P’ et des parameétres de la bande ? :

let rec filtre pmin pmax x delta = function

| [ —->11
| t::q when (t >= pmin && t <= pmax && (fst t) > (x-.delta)

&8 (snd t) < (x+.delta))

-> t::(filtre pmin pmax x delta q)
| _::q —> (filtre pmin pmax x delta q);;
val filtre : float * float -> float * float -> float -> float ->

(float * float) list -> (float * float) list = <fun>

22. On fournit également le plus « petit » point et le plus « grand » point (pour I'ordre lexicographique) de
Eg U &y pour que les points de la bande soient bien uniquement des points de £g U &g, car si les points sont
par exemple tous alignés le long d'une droite parallele a I’axe des ordonnées, on courrait le risque d’obtenir
systématiquement la totalité des points du nuage dans la bande!



Une fonction calculant la distance entre deux points (couples) : Et enfin, 'algorithme proprement dit qui utilise les fonctions précédemment définies :

# let dist ptl pt2 = # let minDist lst =
sqrt ((fst pt1 -. fst pt2)**x2. +. (snd ptl -. snd pt2)**2.);; let p = tri (function x -> x) lst
and pprime = tri snd lst in
val dist : float * float -> float * float -> float = <fun> let rec aux = function
(* Terminaisons %)

Une fonction prenant un parametre § et une liste P de points a l'intérieur d'une bande | [] -> failwith "Pas assez de points”
de largeur 25 (les points étant ordonnés dans la liste passée en argument par abscisse | _::[] -> failwith "Pas assez de points”
croissante), et retournant le minimum entre § et la plus petite des distances entre deux | p1::p2::[] -> dist p1 p2
points de labande* : | pl::p2::p3::[] -> min (min (dist p1 p2) (dist p1 p3))

) (dist p2 p3)

let minBande delta = function

| [1 -> delta (* = delta s?.la liste est vidg *) (* Récursions *)

| _::L] -> delta (= celliza) 11‘y @ 9“ seu} EELIG &) | 1st -> let 11, 12 = partition 1st in  (x Appels récursifs =)

) ipilasg =2 Lcis POOI = 7S @ (x 901nts a examiner *) let dg = aux (List.rev 11) (x sur les moitiés *)
and 1.=.ref 0 (x index dahs la.bande *) and dd = aux (List.rev 12) in (x du nuage *)
and mini = ref delta (* plus petite distance %)

let x = fst (List.hd 11) (* x du pt milieu x)

and delta = min dd dg

and pmin = List.hd 1st (*x premier point *)

and pmax = List.hd 12 in (* dernier point *)
let bande = filtre pmin pmax x delta pprime in

and tab = Array.make 5 p1 in (x -> 5 derniers points %)
while !pool <> [] do
let np = List.hd !pool in
for j = !i downto (max 0 (!i-4)) do

mini := min !mini (dist np tab.(j mod 5)) e dhile Bl
§one; . in aux p;;
i = i+l
' . - . 4 -

tab. (11 m9d 5) <= np; (x On garde 1? SR *) val minDist : (float * float) list -> float = <fun>

pool := List.tl !pool; (* pour la suite... *)
done; Terminons avec un test :
Imini;;

# minDist [ 1.,3.; 4.,7.; 6.,2.; 9.,1.; 8.,3.; 3.,2.;
val minBande : float -> (float x float) list -> float = <fun> 1.,8.; 3.,9.; 4.,4.; 5.,8.; 2.,5.; 7.,6. 1;;

- : float = 1.4142135623730951

23. En profitant bien évidemment du fait qu’on ne doit au plus considérer que 5 voisins pour chaque point;
plutdt que de calculer les distances avec les 5 points suivants, on préfere ici déterminer les distances avec les 5 *
points précédents dans la liste P”, le tableau tab contenant, a tout instant, les cinq précédents points examinés.
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Logique propositionnelle

B} Propositions logiques

1.1 Introduction

Comme en mathématiques, la logique trés naturellement a un role majeur en informa-
tique. Il n’est en effet pas rare d’étre amené a devoir prouver, par exemple, la correction ou
la terminaison d’'un programme, ce qui nécessitera un cadre logique rigoureux.

Lobjectif de ce cours est de poser quelques bases de raisonnements logiques, permettant
notamment la formalisation de propositions logiques formulées en langage naturel. Avant
de nous lancer, efforcons nous d’illustrer le type de logique que I'on s’efforcera d’étudier
dans ce cours, afin d’éviter d’éventuels malentendus. Nous ne nous intéresserons ici qu'a
lalogique appelée logique propositionnelle.

On qualifiera de variable propositionnelle' un énoncé qui est, sans ambiguité, soit vrai,
soit faux. On les représente typiquement par des lettres majuscules (cursives dans ce
cours). Par exemple, les énoncés suivants qui, au moment présent, sont soit vrai, soit faux,
sont de possibles variables propositionnelles :

of — il pleut;
% - jen'aipas de parapluie;
% - je suis mouillé.

Il est possible de combiner ces variables propositionnelles avec des connecteurs logiques
pour construire des formuiles propositionnelles. Par exemple, « of et B », il pleut et je n'ai
pas de parapluie, est une formule propositionnelle. De méme que « < ou € », il pleut ou je
suis mouillé. Ces formules propositionnelles sont également soit vraies, soit fausses. Par
exemple, s'il ne pleut pas, que je n’ai pas de parapluie et que je suis mouillé, la premiére
formule propositionnelle est fausse et la seconde est vraie. On peut également nier une
variable propositionnelle : « non < » correspond ainsi a I'énoncé logique il ne pleut pas.

Les formules ainsi obtenues peuvent a leur tour étre combinées grace aux connecteurs
logiques pour former d’autres formules propositionnelles plus complexes.

1. Le terme « variables » dans un cadre informatique, peut préter a confusion : il n'y a rien de « variable » a
proprement patrler, cela fait simplement ici référence aux énoncés, vrais ou faux, servant de base a la construction
des formules.
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Attention, on ne s'intéresse pas, dans le cadre de lalogique propositionnelle, aux relations
possibles (de cause a effet par exemple) entre les différents énoncés logiques. Je peux tres
bien étre mouillé tout en ayant mon parapluie, ou étre mouillé méme s’il ne pleut pas.

Des affirmations logiques telles que « quel que soit le temps, si j'ai un parapluie, je ne suis
pas mouillé » appartiennent au domaine de la logique des prédicats, qui sort du cadre de ce
cours. En particulier, nous ne ferons pas intervenir dans ce cours les quantifieurs que I'on
trouve dans les démonstrations mathématiques, tels que « quel que soit» ou « il existe »,
qui appartiennent a cette logique des prédicats.

On verra cependant apparaitre dans ce cours la notion logique d’implication et
d’équivalence, dans une utilisation toutefois subtilement différente de ce qu’elle est usuel-
lement en mathématiques. Par exemple, 'énoncé « «f et 8 — € » peut trés bien étre faux :
par exemple s’il pleut, que j’ai mon parapluie et que je suis mouillé. Si je veux pouvoir
exprimer que, quel que soit le temps, si j’ai mon parapluie, je ne suis pas mouillé, c’est du
domaine de la logique des prédicats.

Cela ne veut pas dire que 'on ne puisse pas obtenir des résultats logiques a partir de
la seule logique propositionnelle : si les trois énoncés « «f et B — € », « o/ » et « non € »
sont tous trois vrais, alors nous verrons qu'’il est possible d’en déduire que I'’énoncé « % »
est faux (j’ai mon parapluie). En effet, si « 9 » était vrai, au moins I'un des trois énoncés
précédent serait également faux.

1.2 Définition

Définition. Formellement, on construit une formule propositionnelle® par induction
structurelle a partir
o de deux constantes T et | (faisant respectivement référence a quelque chose de
«toujours vrai » et « toujours faux ») ;
e d'unensemble V = {«/, 4, ...} fini ou dénombrable de variables propositionnelles;
» des constructeurs binaires (qualifiés de connecteurs logiques) de conjonction, noté
A, de disjonction, noté v, d’ implication, noté —, et d’'équivalence, noté <, ainsi
que d'un constructeur unaire de négation, noté .

a. On parle également de proposition logique, de formule logique ou d’ expression logique, les termes et
notations peuvent varier d'un ouvrage a I’autre.

Nous le verrons, les connecteurs logiques de conjonction et de disjonctions sont liés
aux notions de « et logique » et de « ou? logique ». Il est donc d’usage de lire A et v
respectivement « et » et « ou ». De méme, la négation sera généralement lue « non ». Nous
reviendrons sur la signification donnée aux opérateur d’'implication et d’équivalence un
peu plus loin.

2. Il s'agitici d'un ou inclusif, « «/ ou 98 » étant vrai également lorsque <« et 98 sont tous deux vrais. Le « ou»
en langage courant pouvant étre tantot inclusif, tantét exclusif.



1.3 Représentation arborescente

11 est naturel de représenter une proposition logique par un arbre binaire, ou les
constantes T et L et variables propositionnelles se retrouvent dans les feuilles, et les
connecteurs logiques binaires et unaires font office de nceuds internes. Par exemple :

Précisons que, méme si ce n’est pas le cas sur cet exemple, une méme variable proposi-
tionnelle peut apparaitre a plusieurs endroits dans I’arbre, ou bien ne pas apparaitre du
tout. Il en est évidemment de méme pour T et |3,

Il en découle naturellement une implémentation en langage OCaml d'un type permet-
tant de représenter des propositions logiques :

# type 'a proposition =

| Vrai (* pour représenter T %)

| Faux (* pour représenter L x)

| Var of 'a (* pour une variable propositionnelle *)
| Conj of 'a proposition x 'a proposition (x A %)

| Disj of 'a proposition * 'a proposition (* v *)

| Impl of 'a proposition x 'a proposition (¥ — *)

| Equiv of 'a proposition * 'a proposition (* < %)

| Neg of 'a proposition;; (x 7 %)

Le type 'a correspond au type utilisé pour identifier les différentes variables. Puisque
nous représentons les variables propositionnelles par des lettres, on utilisera généralement
dans la suite des caracteres. Notre arbre d’exemple se déclare donc en OCaml de la sorte :

Disj (Conj (Neg (Var 'A'), Disj (Var 'B', Vrai)),
Disj (Faux, Neg (Var 'C')));;

Définition. La hauteur etla faille d'une proposition logique correspondent respective-
ment a la hauteur et la taille de 'arbre qui lui est associé.

3. Nous verrons un peu plus tard que T et | sont méme inutiles, excepté dans les cas particuliers ot 'arbre
est réduit a une feuille T ou a une feuille L.
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La formule propositionnelle nous servant d’exemple a donc une hauteur égale a 3 et une
taille égale a 11.

On peut donc déterminer la hauteur d'une formule propositionnelle en OCaml comme
on a pu le faire précédemment dans le cas d'un arbre binaire (et il en serait de méme pour
sa taille) :

# let rec hauteur = function

| Vrai | Faux | Var _
->

| Disj (a, b) | Conj (a, b) | Impl (a, b) | Equiv (a, b)
-> 1 + max (hauteur a) (hauteur b)

| Neg a

-> 1 + hauteur a;;

val hauteur : 'a proposition -> int = <fun>

1.4 Expressions parenthésées

Représenter une formule propositionnelle par un arbre n’est pas toujours commode. On
préfere souvent, comme il est d'usage en mathématiques, utiliser une écriture infixe de
I'arbre, en employant systématiquement des parenthéses pour éviter les ambiguités.

Par exemple, la formule propositionnelle précédente s’écrira :

(@D AB) VTNV (L) V(= (E))

Il est possible de définir les formules propositionnelles directement sous cette forme par
induction structurelle * :

Définition. Soit V un ensemble fini ou dénombrable de variables v;

e « T » est une formule propositionnelle;

e « L » estune formule propositionnelle;

e pour toute variable propositionnelle v; € V, « v; » est une formule proposition-
nelle;

« si f est une formule propositionnelle, alors « =1( f) » est une formule proposition-
nelle;

« si f et g sont deux formules propositionnelles, alors « (f) A (g) » « (f) v (g) »,
«(f)— (g) » et «(f) = (g) » sont également des formules propositionnelles.

4. Les définitions sont équivalentes, cette écriture n’étant qu'une retranscription systématique et rigoureuse
du parcours infixe de 'arbre.



Afin d’éviter 'abondance de parenthéses dans les formules propositionnelles, on
convient généralement d'une priorité pour les constructeurs : - est prioritaire sur A,
lui-méme prioritaire sur v, a son tour prioritaire sur — et — 5. En outre, les formules
propositionnelles s'interprétent usuellement de la gauche vers la droite ®. On peut alors ne
pas écrire les parentheses inutiles, ce que nous ferons dans la suite de ce cours. Lécriture
de la formule propositionnelle précédente peut donc se simplifier en

A NABVT)V(LVE)

1.5 Ecriture de Lukasiewicz

Afin d’éviter la profusion de parenthéses dans certaines formules, le logicien polonais
J. Lukasiewicz a proposé d’écrire les formules propositionnelles au moyen du parcours
préfixe de I'arbre. De cette facon, il n’est pas besoin d’utiliser des parentheses, I'arité des
connecteurs logiques étant connue. Ainsi, pour I’exemple précédent, on écrirait :

VALYV BTV ILE

On remarquera que I'ordre des symboles correspond précisément a I'ordre dans lequel
ils apparaissent dans la définition de la proposition en OCaml (ce qui est naturel dans la
mesure ol les contructeurs en OCaml précedent leurs arguments), méme si la syntaxe
OCaml requiert l'utilisation de parentheses.

Bien qu’elle présente des avantages en terme de notation et d’utilisation, cette notation
n’est plus gueére utilisée en logique. Elle a un pendant, dite notation polonaise inverse, ot
I'on utilise le parcours postfixe de 'arbre.

Sémantique des propositions logiques

2.1 Distributions de vérité

Une distribution de vérité consiste a préciser, pour un ensemble de variables proposi-
tionnelles, lesquelles sont vraies et lesquelles sont fausses. Formellement :

Définition. Soit un ensemble fini V de n variables propositionnelles v;.

On qualifie de distribution de vérité p sur cet ensemble ) une application de V dans 5",
ou B = {V,F} désigne I'’ensemble des booléens.

5. Les priorités entre — et — sont mal définies, on préférera systématiquement utiliser des parenthéses dans
ce cas pour éviter les ambiguités.

6. Ainsi, &/ VB Vv € correspond a («/ v %) Vv €, tandis que & V (B V ¥) est une formule différente. Nous
verrons toutefois qu’elles sont équivalentes.
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Notons que la définition peut aisément étre étendue au cas d'un ensemble V dénom-
brable. Le point important est que p permette d’associer a toute variable propositionnelle
v un booléen (V ou F), et il n'est pas rare que 'on adopte une définition plus générale de p
qui ne se préoccupe pas précisément de la question de I’ensemble de définition.

S’il est relativement fréquent de noter, en francais, les deux éléments de I'ensemble
B des « booléens » (ou valeurs booléennes) V et F, cette fois encore, cette notation peut
varier d’'un ouvrage a l'autre . Le booléen V est associé a la notion de « vrai », tandis que le
booléen F est associé a la notion de « faux ».

Lemme 3. Ilya?2" distributions de vérité sur un ensembleV de cardinal n.

2.2 Evaluation

Définition. Soit p une distribution de vérité sur un ensemble de variables V.

Lévaluation associée a la distribution de vérité p est I'application, notée £, ou [u] de
I'ensemble des formules propositionnelles sur ) vers 'ensemble des booléens B = {V, F}
définie par induction structurelle par :

e EuM=V

e EuL)=F

o pour tout v; €V, (1) = pu(vy);

o Eu(nf)=Vsi&u(f) =F, et &y(f) =F sinon;

Eu(fng)=Vsi&u(f)=£Eu(g) =V, etEu(f A g) =Fsinon;
Eu(fvg)=Fsi&u(f)=Eu(g) =F et&Eu(f Vv g)=Vsinon;
o Eu(f—g)=Fsi&u(f)=Vet&u(g)=F etEy(f — g) = Vsinon;
E(f—8)=Vsi&u(f)=Eu(g) et Eu(f — g) = F sinon.

Par exemple, pour la distribution de vérité p = {«f — V,%8 — F,¥€ — V}, 'évaluation de
notre proposition logique —.e/ A (Vv T) Vv (L v 7%¥) donne F.

Le comportement des constructeurs de conjonction, disjonction et négation justifient
ici qu'on les appelle « et », « ou » et « non ». En effet, pour que &/ A 28 soit évalué a 'V (vrai),
il faut que < et & le soient tous deux. Les opérateurs d’implication et d’équivalence ont
un comportement qui est cohérent avec le sens qu’on leur donne usuellement en mathé-
matiques, mais il faut prendre garde qu’ils ne représentent, dans le cadre de la logique
propositionnelle, que des connecteurs logiques et non des articulations du raisonnement.

On peut obtenir tres simplement une fonction OCaml évaluant une formule proposi-
tionnelle, la distribution de vérité étant fournie sous la forme d’une fonction de ' a dans
I'ensemble des booléens 5 = {V,F}. On utilisera naturellement pour B le type bool du

7. Pour des raisons a la fois pratiques et liées a I'informatique, V est fréquemment noté 1 et F, 0.



langage OCaml (et donc les constantes true et false), ce qui permettra d’utiliser les
opérateurs booléens not, 8& et | | :

rec eval mu = function

| Vrai -> true

| Faux -> false

| var i => mu i

| Neg a -> not (eval mu a)
| Conj (a, b) -> (eval mu a) & (eval mu b)

| Disj (a, b) -> (eval mu a) || (eval mu b)

| Impl (a, b) -> not (eval mu a) || (eval mu b)
| Equiv (a, b) -> (eval mu a) = (eval mu b);;

val eval

('a -> bool) -> 'a proposition -> bool = <fun>

2.3 Tables de vérité

Définition. La rable de vérité d'une formule propositionnelle f est le tableau contenant
son évaluation pour toutes les distributions de vérité pu possibles.

La table de vérité associée a notre proposition logique ~/ A (BV T) v (LV 7€) est:

W) BB p6) EunA ABVTIV(LVE)
F F F \'
F F A\ \'
F \' F \'
F \' A\ \'
A\ F F A\
A\ F A\ F
A\ \' F \'
A\ \' A\ F

Pour construire une fonction OCaml prenant une liste d’identifiants de variables propo-
sitionnelles et une formule propositionnelle, et affichant la table de vérité correspondante,
on peut utiliser un dictionnaire 89 mémorisant les K(v;), afin de permettre I’évaluation de
la proposition pour les différentes distributions de vérité a considérer.

8. Siles variables étaient indexées par des entiers, c’est-a-dire sile type 'a correspond au type int, il serait
plus simple d’utiliser un vecteur pour ce faire. Nous avons préservé ici la possibilité d’indexer les variables avec
un type 'a quelconque, la seule contrainte étant qu'il soit hachable.

9. Les instructions Hashtbl.remove dico vi ne sont pas indispensables, mais 'implémentation des diction-
naires en Caml mémorisant I'historique des associations, cela évite de gaspiller de la mémoire inutilement.
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Cela donnerait par exemple 1 :

# let table vars expr =
let dico = Hashtbl.create in
let mu = function vi -> Hashtbl.find dico vi in
let rec aux pre = function
| [ -> print_string pre;
print_char (if (eval mu expr) then 'V' else 'F');
print_newline ()
| vi::q -> Hashtbl.add dico vi false;
aux (pre*’F ") q;
Hashtbl.remove dico vi;
Hashtbl.add dico vi true;
aux (pre*”"V ") q;
Hashtbl.remove dico vi;
vars; ;

nn

in aux

val table :

'a list -> 'a proposition -> unit = <fun>

Les tables de vérité fournissent naturellement une maniére alternative de décrire le
comportement d'un connecteur logique dans le cadre de I'évaluation. .

Par exemple, les opérateurs de négation -, de conjonction A et de disjonction v sont

associés aux tables de vérités suivantes 1! :

Ad B ANB d B AVRB
od o F F F F F F
F V F V F F V %
V F V F F V F %

V V \% V V \%

Ceux d’'implication et d’équivalence correspondent aux tables suivantes :

A B A—-RB A B A—-B
F F A% F F \Y
F V A% F V F
V F F V F F
V V \Y V V A"

10. Les concaténations de chaines en série ne sont pas idéales en terme de complexité, mais pour une fonction
effectuant un affichage avec un nombre limité de variables propositionnelles, cela n’est pas bien génant.
11. On notera que les intitulés de colonnes ont été simplifiés pour en faciliter la lecture.



2.4 Equivalence logique

Définition. Deux formules propositionnelles f et g sont dites (logiquement) équiva-
lentes si et seulement si leurs tables de vérités coincident, c’est-a-dire sileurs évaluations
sont les mémes pour toute distribution de vérité p.

L'équivalence logique de deux propositions logiques f et g est notée f = g.

De facon évidente, 7 of et «f sont deux formules propositionnelles équivalentes. Mais
attention, elles ne sont pas pour autant égales! En effet, les arbres correspondant a ces
propositions sont différents.

De méme, les propositions logiques («/ A B) A € et of A (B A€) sont équivalentes,
comme le prouvent les tables de vérité ci-dessous, mais ne sont pas égales.

A B € ANB (ANB)ANE A B € BNE ANBNE)
F F F F F F F F F F
F F V F F F F V F F
F V F F F F V F F F
F VvV V F F F VvV V \Y% F
V F F F F V F F F F
vV F V F F vV F V F F
V V F \% F V V F F F
vV VvV V \% \Y vV V V \% A%

Théoreme 6 (Principe de substitution). SoitV = {vy, vs,..., V,} un ensemble de variables
propositionnelles, et Fi(vy, V2,...,v,) et Fa(vy,v,...,v,), deux formules proposition-
nelles équivalentes faisant intervenir tout ou partie de ces variables.

Quelles que soient les formules propositionnelles fi, f>,..., fn, Ona
Fl(fl)f‘Z)”-rfn) EFZ(fler»---;fn)

Ce résultat découle tres naturellement des regles par induction structurelle régissant
I’évaluation de formules propositionnelles, mais I'écriture rigoureuse de la preuve est un
peu lourde, donc nous I'admettrons ici. Si les formules propositionnelles f; font intervenir
des variables propositionnelles différentes, 'équivalence se fait en considérant 'ensemble
des variables propositionnelles figurant dans au moins une des formules f;.

Théoreme 7 (Lois de De Morgan). Si f et g sont deux propositions logiques, alors
[} —lf/\—|gE—|(ng);
. —|fv—|gz—|(f/\g)‘
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Démonstration. Pour la premiere loi, il suffit de vérifier que pour deux variables logiques
o et B, ona o N8 =(f vIB) en comparant les tables de vérité :

g B AN B oA B (A VAB)
F F A\ F F A\
F \Y F F \Y F
A\ F F A\ F F
A\ Vv F A\ \' F

Puis d'utiliser le principe de substitution pour le généraliser a deux propositions logiques
quelconques f et g.

Il en est de méme pour la seconde loi. O

Lemme 4. Soit f une formule propositionnelle.

L'une des propositions suivantes est nécessairement vraie :
. f =T,
e f=1;
« il existe une formule propositionnelle g ne faisant intervenir ni T ni L telle que

f=g

Démonstration. Une facon triviale de parvenir a ce résultat est de remarquer les équi-
valences T = vV vet L=vA-w, desorte qu'il est de toute fagon toujours possible de
construire T et L a partir d'une variable quelconque. Cette solution rend toutefois la
proposition logique plus complexe, or avec a peine plus de travail, on peut éliminer les |
et T en simplifiantla proposition.
Grace au principe de substitution, on montre aisément que, pour toute formule proposi-
tionnelle f,
e fvT=Tetfvl=f(etdeméme TV f=TetlvVvf=f);
e fAaT=fetfAnl=1(etdeméme TAf=fetlnaf=1);
o foT=T,fol=af,T>f=fetl—>f=T;
e foT=fetfol=-f(etdeméme T — f=fetl—f=-f);
On procede ensuite par induction structurelle : pour toute proposition logique f,
e sif=Touf=.1,onenaterminé;
e si f=-f', ons'intéresse a [’ :
— sif'=T,alors f= 1;
— sif'=1,alors f=T;
— si f' = g’ ol g’ ne fait intervenir ni T ni L, il suffit de choisir g = -g’.
esif=finfo,f=fivo, f=fi—foouf=fi— f,ondétermine deux équivalents
a fi et f, satisfaisant aux conditions, et on applique les équivalences précédentes si
les équivalents de f} oude f> sont T ou L. O

Par exemple, notre proposition logique —./ A (B V T) v (L v 76) est équivalente a la



proposition logique —.&/ v =€ (soit encore —1(«/ A €) d’apres les lois de De Morgan), ce
que 'on retrouve d’ailleurs dans la table de vérité précédemment écrite.

Ce résultat relativise l'utilité de T et L dans les formules propositionnelles : on peut

toujours trouver une formule équivalente qui ne les fait pas intervenir 2.

2.5 Autres connecteurs binaires

I est possible de construire 2% = 16 connecteurs logiques binaires distincts, c’est-a-dire
qui donnent, pour deux arguments A et 5, des formules propositionnelles qui ne sont pas
équivalentes, dont six n’ont pas d’'intérét : deux ont des évaluations qui ne dépendent ni
de I’évaluation de &, ni de celle de 28 (ils sont équivalents a T et L), et quatre autres ne
dépendent que de celle d'un seul des deux arguments (ils sont équivalents a «f, =<7, 98 et
%B).

Nous avons d’ores et déja rencontré quatre de ces connecteurs logiques : conjonction,
disjonction, implication et équivalence. Quatre autres connecteurs logiques binaires sont
plus rarement utilisés en mathématiques et en logique, mais beaucoup plus souvent en
informatique et en électronique : les connecteurs logiques « ou exclusif» (noté &), « non-
el » (noté NAND), « non-ou » (noté Nor) et « inhibition » (noté INH). On peut les définir par

équivalence 13 :

o ASB = (AN 1B)V (A NB) (ou (A — B));
o o/ NANDAB = (of N B);

o o/ NORDB = (oA VAB);

o o/ INHAB = of A% (ou ~(f — AB)).

Ou bien via leurs tables de vérité :

A B AdB </ NAND 9B </ NOR B <f INH 9B
F F F A\ \' F
F \' A\ A\ F F
\' F A\ A\ F A\
\Y AV F F F F

On remarquera qu’il s’agit de la négation des quatres connecteurs déja étudiés. Parmi
ces huit connecteurs binaires, deux (le connecteur d'implication et celui d’inhibition) ne
sont pas commutatifs. Les deux connecteurs binaires restants correspondent simplement
ala permutation de leurs arguments.

12. Excepté éventuellement dans le cas d'une formule toujours vraie ou toujours fausse, encore que sil'on
dispose d'une variable propositionnelle o/ quelconque, on peut utiliser T = o/ V 7of et L =of Ao/ |

13. Dans le cas du connecteur d’inhibition, il arrive que le role des deux arguments soit inversé, I'écriture
utilisée ici n’est pas universelle.
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2.6 Systemes complets

Si disposer de nombreux connecteurs logiques permet d’exprimer plus simplement
une formule propositionnelle donnée, on peut se passer de la plupart d’entre eux, grace
notamment aux équivalences vues précédemment.

Définition. Un ensemble de connecteurs logiques forme un systéme complet si, pour
toute formule propositionnelle sur un ensemble de variables propositionnelles V), il est
possible d’écrire une formule équivalente avec ces seuls connecteurs.

Lemme 5. {A,"} et{V,} sont des systemes complets.

Démonstration. Pour vérifier que {A, 1} est un systeme complet, il suffit de constater,
grace aux lois de De Morgan, que «f V of est équivalent a —1(n.ef A .of).

Nous avons déja précisé que — et — pouvaient étre remplacées par des combinaisons de
=, A et V. Pour n'importe quelle formule propositionnelle f, on peut ainsi construire une
formule propositionnelle f’ équivalente a f a partir des seuls connecteurs A et .

Il en est de méme pour {A, 1} : & A 9B est en effet équivalent a —(—</ vV 7 9B). O
Lemme 6. {NAND} et {NOR} sont des systemes complets.

Démonstration. Pour montrer que NAND constitue, a lui seul, un systeme complet, il suffit
de voir que &/ est équivalent a o NAND &/, et que < A 98 est équivalent a (= NAND 98) NAND
(o NAND 9B).

Puisque {A, 7} est un systeme complet, {NaND} I'est également.

De méme, pour {NOR}, on remarque que &/ est équivalent a </ NOR«/ et &/ A AB a
(& NOR /) NOR (98 NOR 9B). O

NAND étant a lui seul un systéme complet, il s’agit de la porte logique la plus courante
en électronique, tout circuit logique pouvant étre construit a partir de cette seule porte, y
compris des cellules mémoire.

Outre cet intérét évident dans le domaine de 1’électronique, les systémes complets
permettent également de simplifier certaines démonstrations. Par exemple, nous avons
montré précédemment que, pour toute formule propositionnelle qui n’était équivalente ni
aT,nia L, on pouvait trouver une formule propositionnelle équivalente ne faisant inter-
venir ni T, ni L. On peut simplifier cette démonstration en commencant par éliminer tous
les connecteurs logique exceptés par exemple A et 1. Une fois ceci fait, il reste beaucoup
moins de cas a analyser dans la démonstration!

Usuellement, un systeme dit complet ne nécessite pas I'utilisation des constantes T et L.
Mais on peut généraliser les choses et construire des systemes complets basés sur un ou
plusieurs constructeur(s) et 'une ou 'autre des constantes | et T.



Par exemple, {—, L} est un systeme complet. En effet, ona ((«f - 1) > B)— L = o/ NorR
2B. {Nor} étant un systeme complet, il en est de méme pour {—, L}.

d B Ad—-1 (A—-1)-B (L—-1)—B)— L
F F \% F \Y
F V \% A" F
V F F \Y F
V V F \% F

Satisfiabilité et déduction logique

3.1 Tautologies et antilogies

Définition. On qualifie de fautologie une formule propositionnelle qui est évaluée a V
quelle que soit la distribution de vérité. On qualifie d’antilogie une formule proposition-
nelle qui est évaluée a F quelle que soit la distribution de vérité.

Par exemple, les formules A v ~.A, A— A ou bien (A A ~B) — (~(.A Vv B)) sont des tau-
tologies. Pour une propriété logique en général, cela peut se vérifier aisément en travaillant
avec les tables de vérité. Par exemple, pour la troisiéeme formule propositionnelle :

A B AA-B —AvB (AA-B)— (a(0AvDB)
F F F A\ A\
F V F \' \'
V F A\ F \'
vV V F \' \'

3.2 Satisfiabilité

Définition. Une formule propositionnelle f est dite satisfiables’il existe une distribution
de vérité p telle que son évaluation &, (f) soit égale a V.

Une telle distribution est appelée un modele de f.

Une antilogie est donc une formule propositionnelle qui n’est pas satisfiable, ou en
d’autres termes une formule propositionnelle qui n’admet aucun modele. Une tautologie
est toujours satisfiable, puisque n'importe quelle distribution de probabilité p convient.

Par exemple, la proposition logique (o — %) A (B — —.of) est satisfiable. En effet, la
distribution de vérité p telle que p(%8) =V et u(%) = F convient.
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3.3 Déduction logique

Définition. Soient deux formules propositionnelles f et g. On dit que g est une consé-
quence de f, et on note f F g, lorsqu’il n’existe aucune distribution de véritée telle
que g soit évaluée a faux et f a vrai. En d’autres termes, lorsque tout modele de f est
également un modele de g.

f est qualifié de prémisse et g de conclusion.

Attention, f — g et f E g ne signifient pas du tout la méme chose :
e f — g est une proposition logique, qui peut tout a fait étre fausse (on peut écrire
T — 1, c’est une proposition logique fausse);
» fE gaffirme qu'’il est impossible que f soit fausse tandis que g est vraie.

Ainsi, f F g signifie que f — g est une tautologie.

La différence est la méme entre le connecteur logique < et la notation = dénotant
I'équivalence entre deux formules propositionnelles, et de fait, f = g sigifie que f — g est
une tautologie.

Il est possible de se servir de cette notation pour décrire les propriétés d’'une formule
propositionnelle f. Par exemple, f est une tautologie si et seulementsi T F f. De méme, f
est une antilogie si et seulement si f = 1 14,

3.4 Conséquence d’'un ensemble de formules

On peut étendre cette notion de conséquence logique a un ensemble de formules propo-
sitionnellesT' = { f1, f>,...} :

Définition. Soient un ensemble de formules propositionnellesT' = {f1, f,...} etune
formule propositionnelle g. On dit que g est une conséquence deT', eton note T'F g,
lorsqu’il n’existe aucune distribution de véritée telle que g soit évaluée a faux et que
toutes formules f; soient évaluées a vrai. En d’autres termes, lorsque tout modele de
I'ensemble des f; est également un modeéle de g.

Silensemble I' est un ensemble fini de n formules '°, T g correspond simplement ¢ 2
ANf2A.AfrEE.

T étant I’élément neutre pour A, sil’on écrit « = f » (sans rien a gauche du symbole k,
soitI' = @), on sous-entend T E f. Autrement dit, « & f » signifie que f est une tautologie.

14. Attention au sens de ces expressions! On a toujours f £ T et L E f quelle que soit f.
15. Ce qui n’est pas forcément toujours le cas
16. On considere que F a ici la précédence la plus faible, de sorte que les parentheses sont inutiles.



3.5 Un exemple d’utilisation

Reprenons I'exemple de I'introduction, avec les variables propositionnelles A, B et C
énoncées de la sorte :
& — il pleut;
% — je n'ai pas de parapluie;
%6 - je suis mouillé.

Considérons les trois formules propositionnelles suivantes :

o NB—€ — s'il pleut et que je n'ai pas de parapluie, je suis mouillé;
& — il pleut;
—% - je ne suis pas mouillé.

Ces trois formules peuvent-elles étre toutes les trois vraies simultanément, ou en d’autres
termes admettent-elles un modéle commun?

Cela revient a se poser la question de la satisfiabilité de la conjonction des trois formules
propositionnelles, c’est-a-dire de (of A B — 6€) A (L) A (76).

Pour le savoir, une solution simple est de construire la table de vérité correspondante :

A B € (ANB—C)N(AL)N(E)
F F F F
F F V F
F V F F
F VvV V F
V F F \%
vV F V F
V V F F
vV VvV V F

On constate qu’il existe une distribution de vérité (plus précisément la distribution de
vérité p = {f — V,%8B — F,¥€ — F}) pour laquelle I'évaluation de la conjonction des trois
formules propositionnelle est évaluée a vrai. La conjonction des trois formules considérée
est donc effectivement satisfiable.

On peut constater par ailleurs que cette distribution de vérité est unique, et qu’elle
impose p(9%) = F, autrement dit « j’ai un parapluie ».

On peut donc écrire (/ ANB—C) N (L) N (0€) E %B.

Ou bien encore, de facon équivalente, {/ AN B — €, o/, "€} E ~%B.
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Y Quelques propriétés logiques

4.1 Propriétésde A

Théoréme 8. Soient fi, f>, f3 trois formules propositionnelles quelconques.

élément neutre : TAfLi = AAT = fi
élémentabsorbant: |1 Afi = finl = L
idempotence : infi = h
commutativité : finfo = onh
associativité : (ANR)ASs = AN(faAf)

Ces propriétés sont assez immédiates, et se démontrent aisément en utilisant les tables
de vérité et le principe de substitution. Précisons que les noms associés aux propriétés
précédentes du connecteur logique A sont liés au vocabulaire des opérateurs. En effet, A
(comme tout connecteur logique) peut étre vu comme une loi de composition interne sur
I’ensemble des booléens 5.

4.2 Propriétés de v

Théoreme 9. Soient fi, f>, f3 trois formules propositionnelles quelconques.

élément neutre : lvh = fivl = A
élémentabsorbant: TV fi = fivl = T
idempotence : fivh = f

commutativité : fivh = favh
associativité : (AVRIVS = AV(AVSf)

4.3 Propriétés mélant A et v

Théoreme 10. Soient f1, f», f5 trois formules propositionnelles quelconques.

AV(AAf) = A

subsomption :

An(fivEe) = A
distributivité : An(fevE) = (AnL)VI(AAS)
fiv(fenfs) = (AvR)IA(AVS)
loisdeDeMorgan: ~(fivf) = ~"fin-f
(infe) = ~fAivaL



4.4 Propriétés de —

Théoreme 11. Soient f1, f», f3 trois formules propositionnelles quelconques.

élément neutre : Tofi= ieT =f
négation : l—fi= il =fi
réflexivité : h-f =T

commutativité : fi—fo= o= hfi
associativité : (A=f)=f = i=(frf)

Le terme de réflexivité qualifie usuellement, en mathématique, des relations. Les connec-
teurs logiques binaires peuvent en effet étre vus comme des relations entre formules
propositionnelles, puisqu'une formules propositionnelles telle que f — g, par exemple,
sera vraie ou fausse.

La propriété de commutativité de — (considéré comme une loi de composition interne
sur 98) peut donc étre également vue comme une propriété de symétrie (en considérant —
comme une relation sur %).

On peut également ajouter une propriété, fréquemment utilisée dans les raisonnements,
qui mélange — et A :

Théoreéme 12. Soient fi, f», f3 trois formules propositionnelles quelconques.

(A=f)r(f=f) F A=h

transitivité :

Cela fait de < une relation d’équivalence sur 'ensemble des booléens B (d’ol1 le nom
donné au connecteur logique!)

4.5 Propriétés de —

Théoreme 13. Soient f1, f>, f3 trois formules propositionnelles quelconques.

réflexivité : hA—-fA=T
antisymétrie : (i=Ff)A(o—f) = h—F
transitivité : (i=f)A(—f) FE A—5

Ces propriétés conferent a —, lorsqu’on le considére comme une relation entre formules
propositionnelles, un caractére de relation d’ordre.

Rappelons que laloi de composition interne associée a — n’est pas commutative, comme
nous I'avons vu avec sa table de vérité. Elle n’est pas non plus associative ((L — L) — L est
par exemple évaluée a faux, tandis que L — (L — 1) est évaluée a vrai).
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La encore, les deux dernieres propriétés exposées précédemment sont des idées utilisées
fréquemment dans les raisonnements.

4.6 Propriétés de @

Théoreme 14. Soient f1, f>, f3 trois formules propositionnelles quelconques.

élément neutre: lefi = iel = fi
négation : Tefi = fieT = 1f
nilpotence : fiefi =L

commutativité : fiefe = o fi
associativité : (ief)efs = fie(frefs)

On remarquera par ailleurs que (fi & f2) ® o = fi, ce qui se révele assez fréquemment
utile en électronique et en informatique.

4.7 Outils pour les raisonnements

Nous avons vu précédemment quelques propriétés logiques utiles pour le raisonnement.
Il en existe de nombreuses autres. En voici quelques-unes :

Théoreme 15. Soient f1, f>, f3 trois formules propositionnelles quelconques.

tiers exclu : hvafi =T

modus ponens : An(A—1f) E f

modus tollens : (A—=Ff)Af ECfi
disjonction de cas : (A—=FLIACA—L) FE £
double implication : (A—=FR)In(fo—f) = (i—f)
contraposition : (A—=F) = (L—"Af)
raisonnement par Uabsurde : (~fi=1) = fi

ex-falso quodlibet : L EA

Ces propriétés peuvent évidemment étre combinées. Par exemple, de la double implica-
tion et de la contraposition, on peut en déduire que (fi — f2) A (- fi— /) = (fi< f2).

Précisons que la derniere propriété ne présente guére d’intérét pratique... Elle affirme
simplement qu'une contradiction permet de démontrer n'importe quoi. Ce qui fait que
I'on ne s'intéresse généralement qu’a des théories non-contradictoires, sinon n'importe
quelle affirmation est vraie (de méme que sa négation).



] Formes normales et formes canoniques

5.1 Formes conjonctives et disjonctives

Pour faciliter la manipulation de propositions logiques, il est utile de pouvoir se ramener
a une forme aussi simple et standard que possible. Les formes conjonctives et disjonctives
remplissent cet office.

Définition. On appelle /ittéral toute formule propositionnelle de la forme v ou ~v ot1 v
est une variable propositionnelle (<, 8, 6...)

On appelle conjonction des formules propositionnelles fi, ..., f;; la formule proposition-
nelle iAfon.. A fi.
On appelle disjonction des formules propositionnelles fi, ..., f;; la formule proposition-
nelle fiv fov...V fy.

On qualifie de forme conjonctive une conjonction de disjonction de littéraux.

On qualifie de forme disjonctive une disjonction de conjonction de littéraux.

Par exemple :
o « (A VE)N(BVE)ND»une forme conjonctive;
o «ANBV A NDV B NE »est une forme disjonctive 7.

11 s’agit en quelque sorte des équivalents des notions de « forme factorisée » et « forme
développée » des propositions mathématiques.

5.2 Formes normales

Théoreme 16. Pour toute formule propositionnelle, on peut trouver une formule proposi-
tionnelle équivalente ayant une forme conjonctive, ainsi qu'une formule propositionnelle
équivalente ayant une forme disjonctive.

Définition. On dit qu'une proposition logique est sous forme normale conjonctive (FNC)
lorsqu’elle est écrite sous une forme conjonctive, et sous forme normale disjonctive
(FND) lorsqu’elle est écrite sous une forme disjonctive.

Démonstration. Pour démontrer I'affirmation précédente, le plus simple est d’exhiber
une méthode permettant de construire des propositions logiques équivalentes sous
forme conjonctive et disjonctive.

Sil'on considere la table de vérité associée a une proposition logique, il est trivial que de

17. Onrappelle que A est prioritaire sur v.
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construire une disjonction de conjonction de littéraux équivalente a cette proposition
logique : il suffit en effet de traduire les différentes lignes de la table correspondant a des
résultats « vrais ».

Pour trouver une conjonction de disjonctions de littéraux équivalente a une proposition
f, on détermine une disjonction de conjonction de littéraux équivalente a = f (ce qui
revient a dresser la liste des lignes de la table de vérité correspondant a des résultats
« faux ») puis on utilise une loi de De Morgan pour transformer la forme disjonctive en

forme conjonctive. O

Par exemple, pour la proposition logique f = ((«f ® B) v B A 16) A &/, on construit la
table de vérité :

g B € (AL SB)VBNIC)NA
F F F F
F F V F
F V F F
F VvV V F
V F F Vv
V F V \Y
V V F \Y
vV V V F

Cette table de vérité contient trois lignes pour lesquelles f est évaluée a vrai. La formule
propositionnelle f est donc équivalente a la disjonction des trois conjonctions correspon-
dantes :

ANTBANE V ANBANE V ANBANE .

Les cinq autres lignes correspondent aux modeles pour la négation de notre formule pro-
positionnelle, = f = = (((f ® B) v B A E€) A ). 7 f est donc équivalente a la disjonction
des cinq conjonctions suivantes :

A NVBANVE V OANBANE V AN VDBANE VNV ANBNE vV ANBNE .

Par conséquent, notre formule propositionnelle f est équivalente a:

ﬁ(mmﬁga/mcg V A NBN-C N “ANBNEC vV ~ANBNE V m.@/\cg).

En utilisant les lois de De Morgan sur le terme de droite, on en déduit que f est équiva-
lente a la conjonction des cinq disjonctions suivantes :

(AVBVE) N (LVIBVE) N (LVABYIE) N (AVIBYVE) N (0L VBV E) .
Les formes conjonctive et disjonctive ainsi obtenues ne sont pas les seules possibles, la
formule f est par exemple équivalente aux deux formes suivantes, plus succintes :

f= AN B vV ANEC = A N (CBVE).



5.3 Formes canoniques

Définition. Soit un ensemble V = {«/,%,...} de n variables propositionnelles.

Un maxterme sur V est une disjonction de n littéraux ot chacune des n variables
propositionnelles apparait exactement une fois.

Un minterme sur V est une conjonction de rn littéraux ou chacune des n variables
propositionnelles apparait exactement une fois.

On qualifie de conjonctive canonique un conjonction de maxtermes, et de forme dis-
Jjonctive canoniqueun disjonction de mintermes.

Les dénominations « maxterme » et « minterme » méritent un mot d’explication. Comme
on I'a évoqué, il est fréquent d’associer a F la valeur 0, et a V la valeur 1. Dans ce cadre,
I’évaluation d'une disjonction de plusieurs termes revient a prendre le maximum de
I’évaluation de chacun des termes : en effet, le résultat vaudra « 0 » si et seulement si tous
les termes sont évalués a 0, et 1 dés qu’au moins un terme est évalué a 1. De la méme fagon,
I'évaluation d'une conjonction de plusieurs termes revient a conserver le minimum des
évaluations de chacun des termes.

Théoréme 17. Pour toute formule propositionnelle f sur un ensembleV = {</,93,...}
de n variables propositionelles, il existe une unique (a une permutation pres des termes)
forme conjonctive canonique équivalente a f, et une unique forme disjonctive canonique
équivalentea f.

Démonstration. La méthode pour construire les formes normales conjonctives et dis-
jonctives dans la preuve précédente construit en fait des formes normales conjonctives
et disjonctives canoniques, ce qui permet d’affirmer leur existence.

Pour justifier leur unicité, on peut remarquer que les mintermes et maxtermes appa-
raissant dans les formes normales canoniques correspondent exactement aux lignes
d’une table de vérité. Par conséquent, deux formes conjonctives canoniques distinctes
(autrement que par permutation des termes) conduisent a des tables de vérité différentes,
et ne peuvent donc pas étre sémantiquement équivalentes. O

5.4 Les problemes « k-SAT »

Les problemes « k-SAT » s’efforcent de répondre a la question suivante : une proposition
logique sous forme normale conjonctive est-elle satisfiable?

Dans ce cadre, une disjonction de littéraux est généralement appelée « clause». On patrle
de « k-clause » lorsque la clause fait intervenir k littéraux.
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Par exemple, («/ v D) et (B V € Vv &) sont des exemples de clauses (respectivement une
2-clause et une 3-clause).

Les formules propositionnelles qui nous intéressent ici sont donc des conjonctions de
clauses. Par exemple, on s’intéresse a la satisfiabilité de la proposition

(ANVDDNCAN BN EC)NBYDACECVEIN(EVE)N(BYEVE)

Cet proposition logique est bien satisfiable, avec, par exemple, la distribution de vérité
{oA —V,B—F,€—F,2—F,E—V}%L

Un probleme « k-SAT » s’'intéresse spécifiquement a la satisfiabilité de conjonction de
k-clauses. Le probleme « 1-SAT » est trivial (la conjonction est satisfiable si et seulement si
un littéral et sa négation n’apparaissent pas tous deux dans la conjonction).

Il a été montré qu'il était possible de déterminer si une conjonction de 2-clauses était
satisfiable (probléme « 2-SAT ») avec un algorithme dont la complexité est polynomiale.
De méme, il a été montré que 'on pouvait résoudre la question de la satisfiabilité d'une
conjonction de k-clauses avec k > 3 aussi efficacement que la question de la satisfiabilité
d’une conjonction de 3-clauses (probleme « 3-SAT »).

Lessentiel des recherches actuellement porte sur ce probléme « 3-SAT ». A 'heure ac-
tuelle, on ne connait pas d’algorithme permettant de déterminer si une telle conjonction
est satisfiable en temps polynomial, méme sil’on peut vérifier en temps polynomial si une
distribution de vérité donnée est un modéle pour la conjonction.

Des problémes de ce type sont qualifiés par les chercheurs en théorie de la complexité
de probléme « NP ». Le probléme « 3-SAT » a une particularité supplémentaire : il a été
montré que n'importe quel probleme NP peut étre résolu en résolvant un probléme de type
«3-SAT ». Les problémes « 3-SAT » sont en quelque sorte les problemes les plus difficiles
parmi les problemes « NP ».

Ainsi, trouver un algorithme permettant de déterminer si une conjonction de 3-clauses
est satisfiable en temps polynomial aurait pour conséquence que pour fout probléme
dont une solution peut étre vérifiée en temps polynomial, il existerait nécessairement
un algorithme permettant de décider en temps polynomial si une telle solution existe ou
non. C’est le fameux probleme dit « P = NP », un probléme considéré comme 'un des
plus importants en informatique, notamment en raison de ses nombreuses conséquences
pratiques (par exemple, les nombreux moyens d’authentification et de chiffrement actuels
reposent sur des problemes pour lesquels il est possible de vérifier en un temps raisonnable
si une solution est correcte, mais que trouver une solution correcte est en revanche bien
trop cotiteux en temps de calcul).
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