
Satisfiabilité

1 Introduction

1.1 Formules propositionnelles

On rappelle qu’une variable propositionnelle est une variable prenant ses valeurs dans
l’ensemble des booléens B = {V ,F }. Une formule propositionnelle s’obtient en combinant
des variables propositionnelles avec les opérateurs logiques binaires de conjonction (∧),
de disjonction (∨) et l’opérateur logique unaire de négation (¬).

On implémente les formules propositionnelles en OCaml avec le type suivant :

type formule =
| Var of int
| Non of formule
| Et of formule * formule
| Ou of formule * formule

Ainsi les formules propositionnelles sont représentées par des structures arborescentes
en machine, appelées arbres d’expression dans la suite. Par exemple, l’arbre ci-dessous est
associé à la formule (¬x0)∧ (x1 ∨x2).

∧

¬ ∨

x0 x1 x2

Cette même formule s’écrira en OCaml :

Et (Non (Var 0), Ou (Var 1, Var 2))

À noter que les variables d’une formule f sont indexées par des entiers, d’où la ligne
« Var of int » dans la définition du type formule. Par défaut ces entiers seront supposés
positifs ou nuls, contigus, et commençant par 0. Ainsi, les variables de f seront dénotées
par exemple x0, . . . , xr−1.

On considérera ¬ prioritaire sur ∧ et ∨, et ∧ prioritaire sur ∨, de façon à limiter l’usage
des parenthèses. Ainsi, (¬x0)∧ (x1 ∨x2) pourra s’écrire plus simplement ¬x0 ∧ (x1 ∨x2).

La taille de f est le nombre total de variables booléennes et de connecteurs logiques
qui la composent. C’est donc le nombre total n de nœuds composant l’arbre d’expression
associé (soit 6 dans l’exemple précédent), et on a naturellement r É n.

1.2 Problème SAT

Étant donnée une formule f à r variables x0, . . . , xr−1, le problème SAT consiste à détermi-
ner s’il existe une distribution de vérité µ telle que l’évaluation de f pour cette distribution
µ vérifie εµ

(
f
)= V. Dans l’affirmative, la formule f est dite satisfiable. Dans la négative, f

est dite insatisfiable. Par exemple, la formule ¬x0 ∧ (x1 ∨x2) de la figure 1 est satisfiable,
tandis que ¬x0 ∧ (x1 ∨x2)∧ (x0 ∨¬x1)∧ (x0 ∨¬x2) est insatisfiable.

1. Pour chaque formule ci-dessous, dire si elle est satisfiable ou non, sans justification :
a) x1 ∧ (x0 ∨¬x0)∧¬x1 ;
b) (x0 ∨¬x1)∧ (¬x0 ∨x2)∧ (x1 ∨¬x2) ;
c) x0 ∧¬(x0 ∧¬(x1 ∧¬(x1 ∧¬x2))) ;
d) (x0 ∨x1)∧ (¬x0 ∨x1)∧ (x0 ∨¬x1)∧ (¬x0 ∨¬x1).

Dans la suite, on s’intéresse à des formules écrites sous forme normale conjonctive
(FNC) :

m∧
i=1

ni∨
j=1

li , j

où chaque littéral li , j est soit une variable propositionnelle xk , soit sa négation ¬xk , les
littéraux étant regroupés en clauses disjonctives

∨ni
j=1 li , j . Par exemple, les formules a), b)

et d) de la question précédente sont des FNC.

Une FNC est appelée k−FNC lorsque chaque clause a au plus k littéraux, c’est-à-dire
que ni É k pour tout i ∈ �1 . . m�. Notez que la formule est également une k ′−FNC pour
tout k ′ > k. Les formules a), b) et d) de la question précédente sont des 2-FNC.

En machine nous représenterons les FNC sous la forme de listes de listes. Plus précisé-
ment, une FNC sera une liste de clauses et chaque clause sera une liste de littéraux :

type litteral =
| V of int (* variable *)
| NV of int (* négation de variable *)

type clause == litteral list
type fnc == clause list

Ainsi, la formule a) précédente sera représentée par

[[V 1]; [V 0; NV 0]; [NV 1]]

2. Proposer une fonction dim de signature fnc -> int prenant en argument une FNC f
et renvoyant le plus petit k tel que f soit une k−FNC. La complexité de la fonction doit
être linéaire en la taille de f .

1

3. Écrire une fonction var_max qui prend en entrée une FNC f et renvoie le plus grand
indice de variable utilisé dans la formule. La complexité de la fonction doit être linéaire en
la taille de f.

4. Écrire une fonction taille qui prend en entrée une FNC f et renvoie sa taille. La
complexité de la fonction doit être linéaire en la taille de f.

2 Résolution de 1−SAT

Commençons pas le cas le plus simple, à savoir k = 1. Ici chaque clause de la FNC est
formée d’un unique littéral li et donc impose un unique choix possible d’affectation pour
la variable xi : soit li = xi et dans ce cas xi doit valoir V, soit li =¬xi et dans ce cas xi doit
valoir F. La formule est alors satisfiable si et seulement s’il n’y a pas de contradiction dans
les choix d’affectation de variables imposés par ses différentes clauses.

Afin d’effectuer ce test efficacement, nous allons maintenir un tableau où chaque case
correspondra à une variable de la formule (de même indice que la case) et où les valeurs
seront des triléens : vrai, faux, ou indéterminé. Pour cela nous définissons le type trileen
suivant :

type trileen =
| Vrai
| Faux
| Indetermine

Grâce au tableau de triléens, à chaque littéral li rencontré on peut déterminer en temps
constant si la variable xi est déjà affectée ou non, et dans l’affirmative, si sa valeur d’affec-
tation est compatible avec celle imposée par li .

5. Écrire une fonction un_sat de signature fnc -> bool array option qui prend en
entrée une FNC f , supposée être une 1−FNC, et qui renvoie None si f est insatisfiable, et
Some tab où tab est un tableau de booléens représentant un modèle µ pour f si f est
satistiable (dans la case d’index i de tab, on trouvera µ(xi)). La complexité de la fonction
doit être linéaire en la taille de f .

Remarque : le type trileen permet d’analyser la formule, mais on souhaite bien un tableau
de booléens pour le modèle retourné.

3 Résolution de k−SAT pour k arbitraire

Nous allons maintenant décrire un algorithme pour la résolution de k−SAT dans le
cas général. Le principe de base de l’algorithme est de faire une recherche exhaustive
sur l’ensemble des distributions de vérité possibles. Pour chaque distribution de vérité
considérée on évalue la formule : si le résultat est V alors on a trouvé un modèle, si le
résultat est F alors on rejette la distribution de vérité courante, et on passe à la suivante.

L’algorithme est en fait un peu plus malin que cela : il évalue la formule également pour
des distributions de vérité partielles et décide, soit d’accepter la distribution de vérité
partielle courante si le résultat de l’évaluation est déjà V, soit de la rejeter précocement si
le résultat est déjà F, soit enfin de compléter la construction de la distribution de vérité si
le résultat de l’évaluation est encore indéterminé.

Pour coder les évaluations à partir d’une distribution de vérité partielle en machine,
nous allons utiliser des tableaux de triléens. Ce type nous fait travailler non plus dans
l’algèbre binaire de Boole, où les variables prennent leurs valeurs parmi les deux booléens
habituels, mais dans l’algèbre ternaire dite de Kleene, où les variables prennent leurs
valeurs parmi les trois triléens. Les nouvelles tables de vérité des connecteurs ∧ et ¬ sont
données ci-dessous :

a ∧b a =Vrai a =Indet. a =Faux
b =Vrai Vrai Indet. Faux

b =Indet. Indet. Indet. Faux
b =Faux Faux Faux Faux

a ¬a

Vrai Faux
Indet. Indet.
Faux Vrai

6. Donner la table en logique de Kleene pour ∨.

7. Écrire une fonction et de signature trileen -> trileen -> trileen qui code le
connecteur logique ∧. La complexité doit être constante.

On suppose dans la suite avoir codé deux fonctions similaires, ou et non, codant ∨ et ¬.

Supposons maintenant que les variables d’une FNC prennent leurs valeurs parmi les
triléens. Une récurrence immédiate montre alors qu’une clause disjonctive de la formule
vaut Vrai quand l’un au moins de ses littéraux vaut Vrai, Faux quand tous ses littéraux
valent Faux, et Indetermine dans tous les autres cas. Une autre récurrence immédiate
montre que la FNC elle-même vaut Vrai quand toutes ses clauses valent Vrai, Faux quand
au moins l’une de ses clauses vaut Faux, et Indetermine dans tous les autres cas.

8. En vous appuyant sur la remarque ci-dessus et sur les fonctions de la question
précédente, écrire une fonction eval de signature fnc -> trileen vect -> trileen
qui prend en entrée une FNC f ainsi qu’un tableau de triléens t, et qui renvoie un triléen
indiquant si le résultat de l’évaluation de f sur la distribution de vérité partielle fournie
dans t est Vrai, Faux ou Indetermine. On supposera que t a la bonne taille. La complexité
de la fonction doit être linéaire en la taille de la formule. On pourra commencer par
proposer une fonction eval_clause faisant la même chose sur une clause, puis utiliser

2

cette dernière pour le cas d’une FNC.

Nous pouvons maintenant décrire l’algorithme de recherche exhaustive avec termi-
naison précoce. Pour itérer sur l’ensemble des valuations nous utilisons une approche
s’inspirant du principe du retour sur trace, en parcourant en profondeur les branches d’un
arbre binaire sans le construire explicitement. Chaque niveau i de l’arbre correspond à
l’affectation de la variable xi , comme illustré dans la figure ci-dessous pour le cas de 3
variables.

x0

x1

x2

V F

V F V F

V F V F V F V F

Au départ la valeur Indetermine est affectée à toutes les variables. Le parcours com-
mence à la racine. À chaque nœud de l’arbre visité, avant toute affectation de la variable
correspondante, un appel à la fonction eval est fait pour tester si le résultat de l’évaluation
est :

• Vrai, auquel cas l’exploration s’arrête et la formule est satisfiable,
• Faux, auquel cas l’exploration de la branche courante de l’arbre s’interrompt préma-

turément pour reprendre au niveau du parent du nœud courant,
• Indetermine, auquel cas l’exploration de la branche courante de l’arbre se poursuit

normalement.

Comme indiqué précédemment, pour stocker la distribution de vérité partielle courante
on utilise un tableau de triléens dans lequel les variables non encore affectées prennent la
valeur Indetermine.

9. Écrire une fonction k_sat de signature fnc -> bool array option qui prend en
entrée une FNC f et qui renvoie None si f n’est pas satisfiable et Some tab où tab est un
tableau de booléens représentant un modèle sinon (attention, on attend bien un tableau
de booléens et non de triléens !). La fonction doit coder la méthode de recherche exhaustive
avec terminaison précoce décrite ci-dessus. Sa complexité doit être en O (n2n) dans le pire
des cas, où n est la taille de f. En outre, un soin particulier doit être apporté à la clarté du
code, dans lequel il est recommandé d’insérer des commentaires aux points clés.

4 Problème SAT

Dès le début du sujet nous avons laissé de côté le problème SAT au profit de sa variante
k−SAT. Comme toute instance du deuxième problème est également une instance du
premier, k−SAT est a priori une version restreinte de SAT. En fait il n’en est rien car, comme
nous allons le voir dans cette partie, toute instance de SAT peut être transformée en une
instance de k−SAT (pour k Ê 3) par un algorithme de complexité polynomiale. Ainsi, l’algo-
rithme codé à la question précédente, ou tout autre algorithme exponentiel optimisé pour
k−SAT, peut en fait résoudre n’importe quelle instance de SAT avec la même complexité.

Pour la transformation proprement dite, la première étape consiste à mettre en FNC la
formule booléenne considérée. En effet, toute formule booléenne peut être mise en FNC et
une approche évidente pour ce faire est d’utiliser les propriétés des connecteurs logiques.

10. Pour chacune des formules suivantes, utiliser l’involutivité de la négation, l’asso-
ciativité et la distributivité des connecteurs ∧ et ∨, ainsi que les lois de De Morgan pour
transformer la formule en FNC. Seul le résultat du calcul est demandé :

a) (x1 ∨¬x0)∧¬(x4 ∧¬(x3 ∧x2)) ;
b) (x0 ∧x1)∨ (x2 ∧x3)∨ (x4 ∧x5).

Le second exemple de la question précédente se généralise à des formules de taille arbi-
traire, ce qui montre que l’approche ci-dessus n’est pas efficace puisque la FNC obtenue
peut avoir une taille exponentielle en la taille n de la formule booléenne f de départ. Nous
allons donc adopter une autre stratégie, qui sera d’introduire de nouvelles variables et
de remplacer f par une autre formule f ′ qui est équisatisfiable, c’est-à-dire que f ′ est
satisfiable si et seulement si f l’est. La formule f ′ sera en FNC et sa taille sera polynomiale
en n. La procédure pour construire f ′ à partir de f fonctionne en deux temps :

1) On commence par appliquer les lois de De Morgan récursivement à l’arbre d’ex-
pression associé à f , de manière à faire descendre toutes les négations au niveau
des nœuds parents des variables. Soit f ∗ la nouvelle formule ainsi obtenue, qui par
construction est logiquement équivalente à f . Par exemple, si f est la formule a) de la
question précédente, alors f ∗ = (x1 ∨¬x0)∧ (¬x4 ∨ (x3 ∧x2)).

2) Ensuite on applique récursivement les règles de réécriture suivantes à l’arbre d’ex-
pression de f ∗ :
— si f ∗ =ϕ∗∧ψ∗, alors on pose f ′ =ϕ′∧ψ′, où ϕ′ et ψ′ sont les versions réécrites

de ϕ∗ et ψ∗ respectivement,
— si f ∗ = ϕ∗∨ψ∗, alors on introduit une nouvelle variable booléenne x dans la

formule et on pose f ′ = ∧p
i=1

(
ϕ′

i ∨x
)∧∧q

j=1

(
ψ′

j ∨¬x
)

où ϕ′ = ∧p
i=1ϕi et ψ′ =∧q

j=1ψ j sont les versions réécrites de ϕ∗ et ψ∗ respectivement.

Par exemple, en reprenant la formule f ∗ obtenue dans l’exemple de l’étape 1, on a
f ′ = (x1 ∨x5)∧ (¬x0 ∨¬x5)∧ (¬x4 ∨x6)∧ (x3 ∨¬x6)∧ (x2 ∨¬x6) en introduisant les
nouvelles variables x5 et x6.

11. Montrer que les formules f et f ′ sont équisatisfiables.

3

12. Écrire une fonction negs_en_bas de signature formule -> formule qui effectue
l’étape 1 ci-dessus, c’est-à-dire qu’elle prend en argument une formule f et renvoie une
autre formule f ∗ logiquement équivalente et dans laquelle tous les connecteurs ¬ ont
des variables pour fils dans l’arbre d’expression. La fonction negs_en_bas doit avoir une
complexité linéaire en la taille de f .

On se donne à présent une nouvelle fonction var_max, qui prend une formule en argu-
ment et qui renvoie le plus grand indice de variable utilisé dans la formule. La complexité
de la fonction est linéaire en la taille de la formule.

13. Écrire une fonction formule_vers_fnc de signature formule -> fnc qui prend en
argument la formule f ∗ obtenue à l’issue de l’étape 1 et qui renvoie la FNC f ′ construite
comme à l’étape 2. La complexité de la fonction formule_vers_fnc doit être polynomiale
en la taille de f ∗.

14. Justifier les complexités des fonctions negs_en_bas et formule_vers_fnc. On
pourra par exemple montrer que le nombre de clauses formées dans formule_vers_fnc
est égal au nombre de littéraux dans la formule f ∗.

Ainsi, il suffit de combiner les fonctions des squestions 12 et 13 pour convertir n’importe
quelle formule booléenne f en une FNC f ′ équisatisfiable en temps polynomial.

15. Si la démarche précédente détermine si la fonction est satisfiable, elle ne fournit
pas complètement un modèle. Expliquer comment il serait possible d’obtenir un modèle
à partir de la distribution triléenne construit par la démarche de retour sur trace de la
section précédente.

4

	Introduction
	Formules propositionnelles
	Problème SAT

	Résolution de 1-SAT
	Résolution de k-SAT pour k arbitraire
	Problème SAT

