
Satisfiabilité

1 Introduction

1.2 Problème SAT

1. Les formules b) et c) sont satisfiables, les formules a) et d) ne le sont pas.

On ne demandait pas de justification, mais pour b), la distribution de vérité qui à tout xi

associe V est un modèle (parmi d’autres), et pour c) celle qui à x0 et x1 associe V et à x2

associe F en est un (le seul). Pour a) et d), quelle que soit la valeur booléenne associée à x0,
la formule devient x1 ∧¬x1, qui n’est pas satisfiable.

2. Il s’agit de trouver la longueur de la plus longue liste dans la liste de listes de littéraux
fournie en argument. Cela s’écrit par exemple :

let rec dim = function
| [] -> 0
| t::q -> max (List.length t) (dim q)

Il n’est pas indispensable de redéfinir List.length ici car c’est une (des deux !) fonctions
OCaml à connaître sans rappel et ce n’est pas le but de la question.

3. On cherche cette fois le plus grand entier i figurant parmi les V i et NV i dans la liste
de lists de littéraux fournie en argument. Le sujet ne précise pas ce qu’il faut faire si la
formule est vide (mais c’est une situation toujours satisfiable, sans intérêt concret), on a
choisi ici de renvoyer −1 dans ce cas. Par exemple :

let rec var_max = function
| [] -> -1 (* renvoie -1 pour une formule vide *)
| (V i::q)::r
| (NV i::q)::r -> max i (var_max (q::r))
| []::r -> var_max r

On aurait aussi pu commencer par déterminer le plus grand entier dans une clause :

let rec var_max_clause = function
| [] -> -1 (* renvoie -1 pour une clause vide *)
| V i::q
| NV i::q -> max i (var_max_clause q)

let rec var_max = function
| [] -> -1 (* renvoie -1 pour une formule vide *)
| t::q -> var_max (var_max_clause t) (var_max q)

4. On peut commencer à déterminer la taille d’une clause. S’il s’agit d’une k-clause, il
doit y avoir k feuilles, autant de nœuds « ¬ » que de littéraux de la forme ¬xi et k−1 nœuds
« ∨ ». Cela donne :

let rec taille_clause = function
| [] -> failwith "Erreur: clause vide"
| [V _] -> 1
| [NV _] -> 2
| V _::q -> 2 + taille_clause q (* 1 + 1 + taille_clause q *)
| NV _::q -> 3 + taille_clause q (* 2 + 1 + taille_clause q *)

Ou bien :

let rec taille_clause c =
let somme_lst lst = List.fold_left (+) 0 lst in
List.length c - 1 + somme_lst (List.map (fun V _ -> 1 | NV _ -> 2) c)

Puis, s’il y a p clauses, il faut prendre la taille des p clauses et p −1 nœuds « ∧ », soit :

let rec taille = function
| [] -> failwith "Erreur: formule vide"
| [t] -> taille_clause t
| t::q -> taille_clause t + 1 + taille q

Ou bien

let rec taille f =
let somme_lst lst = List.fold_left (+) 0 lst in
List.length f - 1 + somme_lst (List.map taille_clause f)

Si l’on part du principe qu’une formule ne peut pas être vide et qu’une clause ne peut
pas l’être non plus, on peut simplifier en :

let rec taille_clause = function
| [] -> -1
| V _::q -> 2 + taille_clause q
| NV _::q -> 3 + taille_clause q

let rec taille = function
| [] -> -1
| t::q -> taille_clause t + 1 + taille q

1

2 Résolution de 1−SAT

5. On construit un tableau tab contenant une distribution de vérité de taille adéquate
(attention à ne pas oublier le +1 !), initialisé à Indetermine, puis on parcourt les 1-clauses
pour chercher un éventuel conflit qui rendrait la formule insatisfiable. Si on n’en trouve
pas, c’est satisfiable.

On a choisi ici, pour les variables n’apparaissant pas dans la formule, de les mettre à
false lors de la conversion du tableau de triléens en tableau de booléens effectuée par le
Array.map.

let un_sat f =
let tab = Array.make (var_max f + 1) Indetermine in
let rec itere = function
| [] -> Some (Array.map (function tril -> tril = Vrai) tab)
| [V i]::q -> if tab.(i) = Faux then None

else (tab.(i) <- Vrai; itere q)
| [NV i]::q -> if tab.(i) = Vrai then None

else (tab.(i) <- Faux; itere q)
| _ -> failwith "Erreur: pas une 1-clause"

in itere f

3 Résolution de k−SAT pour k arbitraire

6. Cela donne en logique triléenne :

a ∨b a =Vrai a =Indet. a =Faux
b =Vrai Vrai Vrai Vrai

b =Indet. Vrai Indet. Indet.
b =Faux Vrai Indet. Faux

7. Rien de bien compliqué ici (attention, on parle de et, donc pas de la fonction dont on
vient d’écrire le tableau de vérité !) :

let et u v = match u, v with
| Faux, _
| _, Faux -> Faux
| Vrai, Vrai -> Vrai
| _ -> Indetermine

8. On commence, comme suggéré par l’énoncé, par écrire une fonction pour une clause :

let rec eval_clause t = function
| V i::q -> ou t.(i) (eval_clause t q)
| NV i::q -> ou (non t.(i)) (eval_clause t q)
| [] -> Faux

Puis on en déduit une fonction pour une fnc :

let rec eval t = function
| clause::q -> et (eval_clause t clause) (eval t q)
| [] -> Vrai

Notons que de la sorte, on perd le caractère paresseux (on va poursuivre l’évaluation
jusqu’au bout de la dernière clause quoi qu’il arrive). Pour le retrouver, on peut écrire :

let rec eval_clause t = function
| V i::q -> if t.(i) = Vrai then Vrai

else ou t.(i) (eval_clause t q)
| NV i::q -> if t.(i) = Faux then Vrai

else ou (non t.(i)) (eval_clause t q)
| [] -> Faux

let rec eval t = function
| clause::q -> let b = eval_clause t in

if b = Faux then Faux
else et b (eval t q)

| [] -> Vrai

9. On implémente ici un retour sur trace. On stocke l’état courant des variables propo-
sitionnelles dans un tableau t, initialisé (1) avec des Indetermine. La fonction explorant
l’arbre des possibilités (sans le construire) est la fonction essaie, qui prend en paramètre
le nombre de variables booléennes déjà fixées dans la distribution de vérité (2). Elle renvoie
true si elle trouve un modèle (qui sera, en logique triléenne, dans t), et false sinon.

Pour savoir si la branche est intéressante, on effectue (3) une évaluation partielle avec
eval. Vrai signifie que l’on a un modèle (3.a), Faux que toutes les branches dans cette
direction seront des échecs et qu’il faut donc essayer l’autre branche (3.b), Indetermine
que la branche peut contenir un modèle (et donc continue à être explorée, (3.c)), mais si
ce n’est pas le cas, il faut essayer l’autre branche (3.d).

Si l’exploration détermine que la formule est satisfiable (essaie renvoie true), alors
on fixe toutes les variables encore indéterminées arbitrairement à false pour obtenir un
modèle (4).

2

Cela donne donc :

let k_sat f =
let t = Array.make (var_max f + 1) Indetermine in (* 1 *)
let rec essaie i = (* 2 *)
if i = Array.length t then eval t f = Vrai else (* 5 *)
begin
t.(i) <- Vrai;
match eval t f with (* 3 *)
| Vrai -> true (* 3.a *)
| Faux -> t.(i) <- Faux; essaie (i+1) (* 3.b *)
| Indetermine -> essaie (i+1) (* 3.c *)

|| (t.(i) <- Faux; essaie (i+1)) (* 3.d *)
end

in if essaie 0
then Some (Array.map (function tril -> tril = Vrai) t) (* 4 *)
else None

On notera la condition d’arrêt de l’exploration (5)... Si on y parvient, toutes les variables
ont été fixées, donc l’évaluation ne peut plus être indéterminée, mais si la dernière variable
a été fixée à Faux, on n’a pas encore testé la distribution de vérité courante !

On aurait pu éviter ce cas en évaluant directement la fnc après t.(i) <- Faux au (3.d) :
Vrai, on renvoie true, Faux, on renvoie false, et Indetermine, on poursuit l’exploration
de l’arbre de possibilités). La complexité est la même, de tout façon, mais cette approche
donne une fonction légèrement plus brève.

Cela étant dit, on peut jouer avec une garde et le fonctionnement du filtrage en OCaml
pour obtenir une solution un peu plus succinte :

let k_sat f =
let t = Array.make (var_max f + 1) Indetermine in
let rec essaie i =

t.(i) <- Vrai;
match eval t f with
| Vrai -> true
| Indetermine when essaie (i+1)-> true
| _ -> t.(i) <- Faux; i+1 < Array.length t && essaie (i+1)

in if essaie 0
then Some (Array.map (function tril -> tril = Vrai) t)
else None

4 Problème SAT

10. On obtient
a) (x1 ∨¬x0)∧ (¬x4 ∨x3)∧ (¬x4 ∨x2) ;
b) (x0 ∨x2 ∨x4) ∧ (x0 ∨x2 ∨x5) ∧ (x0 ∨x3 ∨x4) ∧ (x0 ∨x3 ∨x5) ∧ (x1 ∨x2 ∨x4) ∧

(x1 ∨x2 ∨x5)∧ (x1 ∨x3 ∨x4)∧ (x1 ∨x3 ∨x5).

11. Attention ici à ne pas confondre formules équisatisfiable et équivalentes. Par exemple,
si f est une formule ne faisant pas intervenir xk , f et f ∧xk sont équisatisfiables, mais pas
équivalentes !

Le point à préciser est celui lié à la disjonction, car toutes les autres transformations
remplacent une formule propositionnelle par une formule propositionnelle équivalente
(donc nécessairement équisatisfiable). Avec l’introduction d’une nouvelle variable, ce n’est
pas trivial pour la disjonction. On va montrer successivement que f ∗ satisfiable implique
f ′ satisfiable et inversement en utilisant le principe d’induction.

Si f ∗ est satisfiable, on a nécessairement au moins ϕ∗ satisfiable ou ψ∗ est satisfiable.
Supposonsϕ∗ satisfiable. Par induction,ϕ′ est satisfiable, et f ′ est satisfiable avec le même
modèle auquel on rajoute µ(x) = F. Sinon, ψ∗ est satisfiable, donc ψ′ est satisfiable, et f ′
est satisfiable avec le même modèle auquel on rajoute µ(x) = V.

Inversement, si f ′ est satisfiable, alors si le modèle vérifie µ(x) = F, on a nécessairement
ϕ′ satisfiable, donc ϕ∗ satisfiable, donc f ∗ satisfiable. Même raisonnement avec ψ si
µ(x) = F.

12. Attention à ne pas oublier de cas !

let rec negs_en_bas = function
| Non (Non f) -> negs_en_bas f
| Non (Et (f1, f2)) -> Ou (negs_en_bas (Non f1),

negs_en_bas (Non f2))
| Non (Ou (f1, f2)) -> Et (negs_en_bas (Non f1),

negs_en_bas (Non f2))
| Et (f1, f2) -> Et (negs_en_bas f1, negs_en_bas f2)
| Ou (f1, f2) -> Ou (negs_en_bas f1, negs_en_bas f2)
| f -> f

On fera par ailleurs attention de ne pas mélanger les constructeurs Et et Ou et les fonc-
tions et et ou introduites tantôt !

3

13. On applique les transformations proposés, en utilisant une référence indiquant
le plus grand indice actuellement utilisé pour les variables afin de pouvoir en créer de
nouvelles lorsque cela est nécessaire.

let formule_vers_fnc f =
let k = ref (var_max_ f) in (* Dernier indice utilisé *)
let rec transf = function
| Var x -> [[V x]]
| Non (Var x) -> [[NV x]]
| Et (f1, f2) -> transf f1 @ transf f2
| Ou (f1, f2) -> incr k;

List.map (fun clause -> V !k::clause) (transf f1)
@
List.map (fun clause -> NV !k::clause) (transf f2)

| _ -> failwith "Cas impossible"
in transforme (negs_en_bas f)

14. Les complexités ne sont pas triviales. Dans le cas de negs_en_bas, on peut voir que
la complexité est majorée par la taille de l’arbre obtenu. Par ailleurs, l’arbre obtenu est
similaire à l’arbre fourni en argument, avec uniquement des changements entre nœuds
Et et nœuds Ou (ce qui ne change pas la taille) et la descente de nœuds Non. À cause de
ce dernier changement, la taille de l’arbre augmente, mais l’augmentation de la taille est
majorée par le nombre final de nœuds Non, lui-même majoré par le nombre de feuilles,
à son tour majoré par la taille de l’arbre. Donc la complexité reste linéaire en la taille de
l’arbre fourni en argument.

Pour la fonction formule_vers_fnc, c’est encore plus subtil. La complexité est majorée
par la taille de la fnc produite. Mais la fnc est potentiellement bien plus grande que la
formule initiale (comme on le voit sur l’exemple b) précédent !) ***

15. Pour déterminer le modèle, il faut mémoriser les disjonctions qui ont produit l’appa-
rition de nouvelles variables x. Si l’algorithme de retour sur trace détermine que µ(x) = F,
il faut trouver un modèle compatible avec le ϕ∗ correspondant (ce qui peut se faire avec le
même principe, en exploitant par ailleurs les informations déjà collectées sur la distribu-
tion). Sinon, il faut trouver un modèle compatible avec ψ∗.

4

	Introduction
	Problème SAT

	Résolution de 1-SAT
	Résolution de k-SAT pour k arbitraire
	Problème SAT

