X 2014 — Arbres croissants —

n Structure d’arbre croissant

1. La premiere question ne pose pas de difficulté, on vérifie la bonne compréhension de
la structure d’arbre croissant et la connaissance des bases de Caml :

let minimum = function
| E -> failwith "Arbre vide”
I N, x,) =>x

2. Pour qu'un arbre non-vide soit croissant, il faut et suffit qu’il soit une feuille, ou
que ses sous-arbres soient croissants, et que 1’élément a la racine soit plus petit que les
éléments a la racine des sous-arbres non réduits a une feuille :

let rec est_un_arbre_croissant = function
| E => true
| N (g, x, d) >
(g = E || x <= minimum g) && est_un_arbre_croissant g
8 (d = E || x <= minimum d) && est_un_arbre_croissant d

3. Dans un arbre croissant étiqueté par les entiers de 1 a n, le 1 se trouve nécessairement
dans la racine. Les autres entiers peuvent indifféremment se trouver dans le sous-arbre
droit et le sous-arbre gauche.

S’ily a p entiers dans le sous-arbre gauche et g = n —1 — p dans le sous-arbre droit, le
nombre de sous-arbres gauches possibles est le méme que le nombre d’arbres croissants
étiquetés par les entiers de 1 a p (resp. g a droite). Le nombre d’arbres croissants étiquetés
par les entiers de 1 a n vérifie donc :

N(m:ni (n;l)N(p)N(n P :"g ;n 11)'p)

p=0

N(p)N(n-1-p)

Un calcul pour de petits 7 donne /(1) = 1, N'(2) = 2 (le 2 peut étre le fils gauche ou le
fils droit), '(3) = 6 (deux arbres de hauteur 2, deux abres avec seulement un fils gauche
au niveau de la racine, deux arbres avec seulement un fils droit au niveau de la racine), et
N (4) = 24. Montrons par récurrence que N(@n) =nl.

C’est vrai pour n =0 (U'arbre vide) et n = 1 (un unique arbre étiqueté par 1).

Supposons que N (k) = k! pour tout entier k inférieur strictement a . On a alors
=l (n-DlpY(n-1-p)! 7l

N = m-D!'=nxn-!'=n!
pgo pl(n-1-p)! Zo

Corrigé

C’est donc également vrai pour k = n. Par récurrence, on a donc bien, pour tout entier
strictement positif k, A/ (k) =

Alternativement, on peut, toujours par récurrence, voir qu'un arbre croissant construit
avec les entiers 1 a n est nécessairement tel que le noeud étiqueté par n ne peut avoir que E
comme fils. En remplacant ce nceud par un nceud E, on obtient un arbre croissant étiqueté
par les entiers de 1 a n—1. Il y a, par récurrence, (n — 1)! tels arbres. Or, ces arbres ont n—1
nceuds internes, et donc 7 feuilles E. Il y a donc n endroits ol1 le sommet N(E, n, E) pouvait
se trouver, et donc n x (n — 1)! = n! arbres croissants étiquetés par les entiers de 1 a n.

Opérations sur les arbres croissants

4. Larbre obtenu par la fusion des deux arbres donnés est :

5. On peut montrer ce résultat (a savoir que la fusion d’arbres croissants #; et t, donne
un arbre croissant t, et que les occurrences de x dans ¢ correspondent a la somme des
occurrences de x dans f; et de x dans t) par induction structurelle.

C’est vrai si #; =E, puisque t = t, est donc nécessairement un arbre croissant, et le
nombre d’occurrences de x dans #; étant nulle, celles de x dans ¢ est bien la somme de
celles de x dans #; (zéro, donc) et dans £,. Il en est de méme si £, =E.

Pour les deux autres situations, supposons que le minimum x; de #; et le minimum x,
de 1, vérifient x; < x» (soit le troisieme cas proposé, le quatrieme cas se vérifiera de la
méme facon). Supposons #; =N(g1,x1,d1), et t le résultat de la fusion proposée.

g1, le fils gauche de f; est un arbre croissant (puisque sous-arbre de #;). La fusion de
'arbre croissant d; avec1’arbre croissant £, est un arbre croissant par induction structurelle.
Notons t' le résultat de cette fusion.

Le minimum de g; est nécessairement supérieur ou égal a x;, puisque sous-arbre de
’arbre croissant #; dont x; est le minimum. Les éléments de ¢’ correspondent a I'union

de ceux de 1, et ceux de d;. Le minimum de ¢’ est donc supérieur ou égal a x; car tous les
éléments de £, sont supérieurs ou égaux a x,, lui-méme supérieur a x, et tous les éléments
de d; sont supérieurs ou égaux a x; puisque d; est un sous-arbre de I'arbre croissant #;
dont x; estle minimum. Par conséquent, I’arbre constitué d'un nceud étiqueté par x; et
dont les fils sont ¢’ et g; est bien un arbre croissant.

Pour un x quelconque, le nombre d’occurrences de x dans ¢ estle nombre d’occurrences
dans g; et dans ¢/, plus 1 si x = x;. Par induction structurelle, le nombre d’occurrences
de x dans ¢’ est égal a la somme des nombre d’occurrences de x dans d; et dans t,. Par
conséquent, le nombre d’occurrences dans ¢ est égale au nombre d’occurence dans %,
plus la somme du nombre d’occurrences dans g et dans dj, plus 1 si x = x;, soit le nombre
d’occurrences dans ¢;. La fusion conserve donc bien le nombre d’occurrences dans I’arbre
d’un entier x quelconque.

6. On commence par définir la fonction fusion proposée :

let rec fusion t1 t2 = match (t1, t2) with
| t1, E -> t1
| E, t2 -> t2
| N (g1, x1, d1), N (_, x2, _) when x1 <= x2
-> N (fusion d1 t2, x1, gl)
| _, N (g2, x2, d2) -> N (fusion d2 t1, x2, g2)

Pour ajouter un élément a un arbre croissant, il suffit alors de fusionner ’arbre avec un
arbre réduit a une feuille étiquetée par x, soit :

let ajoute x = fusion (N (E, x, E)) }

7. Lidée est de supprimer la racine de I'arbre croissant, mais on se retrouve avec deux
arbres : les sous-arbres gauche et droit, que 'on fusionne en un seul arbre croissant :

let supprime_minimum = function
| E -> failwith "Arbre vide”
| N (g, _, d) -> fusion g d

8. On implémente la fonction comme demandé, comme une fusion successive d’arbres
réduits a une unique feuille :

let ajouts_successifs x =
let t = ref E in
for i = 0 to Array.length x -
do t := ajoute x.(i) !t done;
't

On remarquera que l'on fait ici usage de la fonction ajoute déja écrite pour éviter les

doublons! On peut aussi écrire une version plus succinte avec un Array.fold_left:

let ajouts_successifs =
Array.fold_left (fun arbre x -> ajoute x arbre) E

9. Sil’'on prend une suite décroissante d’entiers pour xy, ..., X;—1, les ajouts successifs
des x; construisent des arbres dans lesquels le x; se retrouve a la racine (puisque plus petit
que x;_1, laracine de I’arbre a I'étape précédente), avec E pour fils droit et I'arbre de I'étape
précédente pour fils gauche. On construit ainsi un arbre de hauteur 7.

10. Pour tout k, notons gy et dy. les fils respectivement gauche et droits de 'arbre .

Puisque xy est le plus petit élément de la suite des éléments insérés dans |'arbre :
e gy est obtenu par insertion de x; dans dy_1;
o di=8k-1-
Par conséquent, les éléments xy, x1, ..., X; sont insérés alternativement dans deux arbres :

I'un recoit xp, xo,..., 'autre x1, x3,.... Les deux sous-arbres de ;. different donc au plus
d’un élément ('arbre de gauche ayant une taille supérieure ou égale a celui de droite).

Mais sil'on s’intéresse a ces sous-arbres, les séquences d’éléments Xy, X2, Xk+4,... SONt
également croissantes, dont il se passe le méme phénomeéne : les deux sous-arbres de
chacun de ces sous-arbres ont une taille qui ne differe également que d'un seul élément.

Montrons donc par récurrence la propriété (légerement plus générale que celle deman-
dée) «la hauteur d’un arbre t,, construit en insérant n > 0 éléments xg, ..., x;_1 dans 1’ ordre
croissant est 1 + |log, (n) | »:

e Clestvraipour n=1 (arbreN (E, x, E), dehauteur 1).
« Supposons Yk < n, h(ty) =1+ [log, (k).

Pour t,, son fils gauche contient [(n —1)/2] éléments et son fils droit [(rn—1)/2].
Par récurrence, la hauteur de 'arbre , est donc 1+ (1 + |log, ([(n—1)/21)])
Mais [(n—1)/2] < n/2, donc h(t,) <2+ |log,(n/2)| =1+ |log, n].

Seulement, la hauteur d'un arbre binaire a #n noeuds internes ne peut étre stric-
tement inférieure a 1+ |log,(n)|. On a donc h(z,) = 1+ |log,(n)], ce qui vérifie la
récurrence.

Analyse

11. Pour obtenir la complexité demandée, on écrit une fonction auxiliaire
potentiel_et_taille de signature arbre -> int * int, qui retourne le potentiel en
meéme temps que la taille de arbre passé en argument. On ne gardera que le premier de ces
deux éléments comme dernier résultat :

let potentiel arbre =
let rec potentiel_et_taille = function
| E -> (0, 1)
| N(g, _, d) -> let pg, tg = potentiel_et_taille g
and pd, td = potentiel_et_taille d
in (pgt+pd+(if tg<td then 1 else 0),
tg+td+1)
in fst (potentiel_et_taille arbre)

12. On vérifie le résultat par induction structurelle :
e sif; =Eouf =E, C(#], 1) =0, et ®(£7) + P(£2) — P(#) = 0, donc I'inégalité est vérifiée.
e sinon, notons #; =N(g1,x1,d1) et r, =N(g2,x2,d2) et supposons par exemple que
l'ona x; < xp.

Le résultat de la fusion de 1; et 1, est 'arbre £t =N(t',x1,g1) ou ¢’ estle résultat de
la fusion des arbres d; et 1,. On a donc C(#1, t2) =1 + C(d, t2).

Par induction C(d), tz) < ®(d)) + (1) — ®(t') + 2(log(ds) +log(t2)).
On a par ailleurs ®(11) = ®(g1) + (dy) + g, |<|ay) €L Q1) =

En outre, |d;| < ||, donc trois cas sont possibles :
— |g1] <ldil: 11, 1) < D(17) + D(82) — D(1) +2(log|dy | +log] 12)

Etdonc C(11, &) < @(t1) + @ (t;) — (1) +2(log|t1| +log| L)
— ldil<|g@| <|']|: C(r1,) < @(17) + P(12) — P(1) + 1 +2(log|ds | +log|t,])

Or1+2logld;| <2log(2|d;|) <2log(ldi| +|g1|) <2logln]|

Donc C(f1, &) < D(#1) + @ (f2) — D(1) +2(log| 11| +log|22])
— || <|g1] : Clt1, 12) < D(11) + D(t2) — D(2) + 2 +2(log|d | +10g] 12])

La aussi, 2 +2log|d;| < 2log(2|d:|) < 2log(|d1| + |g1]) < 2log|]
Donc C(#1,) < ®(1) + P(12) — P(1) + 2(log| 11| +log | 12])

Linégalité est donc vérifiée dans chacun des trois cas.

Ce qui prouve I'inégalité demandé par le principe d’'induction structurelle.

(1) +@(g1) + 1<) |-

13. Soit ¢ le cofit de la construction d’un arbre f; a k nceuds internes (et donc 2k + 1
neceuds). fy =E, et pour k > 0, t; est obtenu par la fusion de I'arbre #;._; avec N(E, x,E) (ol
x correspond a Xj_.

On a donc, pour k >0, ¢ < c—1 + P (x—1) +0— D(1) +2(log, (2(k— 1) + 1) +1log, (3)).

n
Soit ¢, < ¢ + @(1p) +2nlog,(3) +2) _ log, 2k - 1).
k=1

Avec ¢ = 0 et D(fp) =0, on a bien ¢, <2(nlog, (3) +log, (n})).

Soit une complexité en O(nlog(n)).

14. 1l s’agit ici de construire un arbre de hauteur de I'ordre de n/2 avec n éléments,
puis d’ajouter un élément qui devra étre inséré n/2 fois. Il s’agit en fait de montrer que la

complexité d'une fusion peut étre linéaire en n, donc on supposera n pair, construire un
exemple pour 7 impair ne poserait pas de probleme particulier.

Posons p = n/2 et commencons par construire un arbre croissant de hauteur p = n/2.
Pour ce faire, on peut remarquer que la construction d'un arbre via la succession d’entiers
2p-1,2p,2p-3,2p—-2,...,3,4,1,2 conduit a I'arbre ci-dessous a gauche (par souci de
lisibilité, les feuilles E n’ont pas été représentées). En effet, les ajouts des entiers impairs
construisent un nouvel étage (ils sont plus petits que les précédents), les pairs sont ajoutés
a droite de la racine a la place d’'une feuille E, avant que les enfants en soient permutés, et
donc se retrouvent a gauche, ce qui replace la branche a droite.

L'ajout de 2p+1 a un tel arbre nécessite de parcourir toute la branche de droite, et donne
ultimement I'arbre de droite, apres n/2 fusions.

.’

.....

de n éléments étant en O(nlog(n)), en moyenne, I'ajout d'un element a bien un cofit
logarithmique O(log(n)).

15. Ona C(g,‘,di) < (D(gi) +®(d;) — D(t;+1) +2(10g2 |gi| +log, |dl'|).
Mais ®(g;) + ©(d;) < (1), |gi| <Itol, Id;i| < tol et |fo] =2n +1.
Donc C(g;, d;) < @(t;) — P(ti+1) +4log, 2n+1).

La complexité totale ¢, vérifie donc ¢, < ®(fp) — P(¢,) +4nlog,(2n+1).

Soit, avec ®(fy) < n et ®(#,) = 0, ¢, est une complexité en O(nlog(n)).

I3 Applications

16. On construit dans un premier temps un arbre croissant avec la fonction
ajouts_successifs, puis, n fois (autant qu'’il y a d’élément dans I'arbre), on retire le
plus petit des éléments restant dans ’arbre et on le replace dans le tableau (en utilisant de
préférences les fonctions déja programmeées, cela rend les choses plus lisibles) :

let tri v =
let arbre = ref (ajouts_successifs v) in
for i = 0 to Array.length v - 1 do
v.(i) <- minimum !arbre;
arbre := supprime_minimum !arbre
done;

17. Le colt en temps des fusions est directement lié au nombre de comparaisons qui
sont effectuées entre les racines des arbres a fusionner. On peut donc dénombrer les
comparaisons lors des fusions des différents arbres.

Pour deux arbres de hauteur & et i/, le nombre de comparaisons est inférieur a b+ h'.

On effectue, en posant n = 2" :
« n/2=2"" fusions d’arbres de hauteur inférieure a 1, donc avec au plus 2 comparai-
son;
« n/4=2""2fusions d’arbres de hauteur inférieure a 2, donc avec au plus 4 comparai-
sons;

o n/2F = 2" fusions d’arbres de hauteur inférieure a k, donc avec au plus 2k compa-
raisons;

¢ 1 fusion d’arbre de hauteur inférieure a log, (n), donc avec au plus 2/ comparaisons.

On effectue donc moins de

log, (1) log, (n) k
Y k2hF=2" Y — comparaisons
- — 2k
k=1 k=1
Pk
Pour tout p, Z ﬁ <2, donc on a bien O(Zh) = O(n) comparaisons.
k=1

18. On construit simplement 'arbre tg grace a une fonction récursive foo de signature
int -> int -> arbre, qui utilise les relations fournies. Plutdt que de mettre en parametre
j et k, on passe j et n = 2%, Il est ainsi plus simple d’effectuer le premier appel, puisqu'’il
n’est plus nécessaire de calculer log, (n). Et pour k' = k — 1, il suffit de prendre n’ = n/2.

let construire t =
let rec foo j = function
| 1T ->N(, t.(3), BE)
| n => fusion (foo (2*j) (n/2)) (foo (2%j+1) (n/2))
in foo 0 (Array.length t)

19. Il n’y a pratiquement rien a changer si ce n’est mettre un arbre vide plutot qu'une
feuille si on sort du tableau (c’est beaucoup plus facile que de mettre des valeurs spéciales
et d’essayer ensuite de les retirer!). Attention quand méme a la valeur initiale du second
parametre : on prend deux fois la longueur du tableau moins 1 pour correspondre a
k = [log,(n)]) :

let construire t =
let n = Array.length t in
let rec foo j = function
| -> if j >= n then E else N (E, t.(j), E)
| n => fusion (foo (2xj) (n/2)) (foo (2%j+1) (n/2))
in foo 0 (2xn-1)

	Structure d'arbre croissant
	Opérations sur les arbres croissants
	Analyse
	Applications

