
X 2014 – Arbres croissants – Corrigé

1 Structure d’arbre croissant

1. La première question ne pose pas de difficulté, on vérifie la bonne compréhension de
la structure d’arbre croissant et la connaissance des bases de Caml :

let minimum = function
| E -> failwith "Arbre vide"
| N (_, x, _) -> x

2. Pour qu’un arbre non-vide soit croissant, il faut et suffit qu’il soit une feuille, ou
que ses sous-arbres soient croissants, et que l’élément à la racine soit plus petit que les
éléments à la racine des sous-arbres non réduits à une feuille :

let rec est_un_arbre_croissant = function
| E -> true
| N (g, x, d) ->

(g = E || x <= minimum g) && est_un_arbre_croissant g
&& (d = E || x <= minimum d) && est_un_arbre_croissant d

3. Dans un arbre croissant étiqueté par les entiers de 1 à n, le 1 se trouve nécessairement
dans la racine. Les autres entiers peuvent indifféremment se trouver dans le sous-arbre
droit et le sous-arbre gauche.

S’il y a p entiers dans le sous-arbre gauche et q = n −1−p dans le sous-arbre droit, le
nombre de sous-arbres gauches possibles est le même que le nombre d’arbres croissants
étiquetés par les entiers de 1 à p (resp. q à droite). Le nombre d’arbres croissants étiquetés
par les entiers de 1 à n vérifie donc :

N (n) =
n−1∑
p=0

(
n −1

p

)
N

(
p

)
N

(
n −1−p

)= n−1∑
p=0

(n −1)!

p !
(
n −1−p

)
!
N

(
p

)
N

(
n −1−p

)
Un calcul pour de petits n donne N (1) = 1, N (2) = 2 (le 2 peut être le fils gauche ou le

fils droit), N (3) = 6 (deux arbres de hauteur 2, deux abres avec seulement un fils gauche
au niveau de la racine, deux arbres avec seulement un fils droit au niveau de la racine), et
N (4) = 24. Montrons par récurrence que N (n) = n!.

C’est vrai pour n = 0 (l’arbre vide) et n = 1 (un unique arbre étiqueté par 1).

Supposons que N (k) = k ! pour tout entier k inférieur strictement à n. On a alors

N (n) =
n−1∑
p=0

(n −1)!p !
(
n −1−p

)
!

p !
(
n −1−p

)
!

=
n−1∑
p=0

(n −1)! = n × (n −1)! = n!

C’est donc également vrai pour k = n. Par récurrence, on a donc bien, pour tout entier
strictement positif k, N (k) = k !.

Alternativement, on peut, toujours par récurrence, voir qu’un arbre croissant construit
avec les entiers 1 à n est nécessairement tel que le nœud étiqueté par n ne peut avoir que E
comme fils. En remplaçant ce nœud par un nœud E, on obtient un arbre croissant étiqueté
par les entiers de 1 à n −1. Il y a, par récurrence, (n −1)! tels arbres. Or, ces arbres ont n −1
nœuds internes, et donc n feuilles E. Il y a donc n endroits où le sommet N(E,n,E) pouvait
se trouver, et donc n × (n −1)! = n! arbres croissants étiquetés par les entiers de 1 à n.

2 Opérations sur les arbres croissants

4. L’arbre obtenu par la fusion des deux arbres donnés est :

1

3 2

4 5

6

5. On peut montrer ce résultat (à savoir que la fusion d’arbres croissants t1 et t2 donne
un arbre croissant t , et que les occurrences de x dans t correspondent à la somme des
occurrences de x dans t1 et de x dans t2) par induction structurelle.

C’est vrai si t1 =E, puisque t = t2 est donc nécessairement un arbre croissant, et le
nombre d’occurrences de x dans t1 étant nulle, celles de x dans t est bien la somme de
celles de x dans t1 (zéro, donc) et dans t2. Il en est de même si t2 =E.

Pour les deux autres situations, supposons que le minimum x1 de t1 et le minimum x2

de t2 vérifient x1 É x2 (soit le troisième cas proposé, le quatrième cas se vérifiera de la
même façon). Supposons t1 =N(g1, x1,d1), et t le résultat de la fusion proposée.

g1, le fils gauche de t1 est un arbre croissant (puisque sous-arbre de t1). La fusion de
l’arbre croissant d1 avec l’arbre croissant t2 est un arbre croissant par induction structurelle.
Notons t ′ le résultat de cette fusion.

Le minimum de g1 est nécessairement supérieur ou égal à x1, puisque sous-arbre de
l’arbre croissant t1 dont x1 est le minimum. Les éléments de t ′ correspondent à l’union

1

de ceux de t2 et ceux de d1. Le minimum de t ′ est donc supérieur ou égal à x1 car tous les
éléments de t2 sont supérieurs ou égaux à x2, lui-même supérieur à x1, et tous les éléments
de d1 sont supérieurs ou égaux à x1 puisque d1 est un sous-arbre de l’arbre croissant t1

dont x1 est le minimum. Par conséquent, l’arbre constitué d’un nœud étiqueté par x1 et
dont les fils sont t ′ et g1 est bien un arbre croissant.

Pour un x quelconque, le nombre d’occurrences de x dans t est le nombre d’occurrences
dans g1 et dans t ′, plus 1 si x = x1. Par induction structurelle, le nombre d’occurrences
de x dans t ′ est égal à la somme des nombre d’occurrences de x dans d1 et dans t2. Par
conséquent, le nombre d’occurrences dans t est égale au nombre d’occurence dans t2,
plus la somme du nombre d’occurrences dans g1 et dans d1, plus 1 si x = x1, soit le nombre
d’occurrences dans t1. La fusion conserve donc bien le nombre d’occurrences dans l’arbre
d’un entier x quelconque.

6. On commence par définir la fonction fusion proposée :

let rec fusion t1 t2 = match (t1, t2) with
| t1, E -> t1
| E, t2 -> t2
| N (g1, x1, d1), N (_, x2, _) when x1 <= x2
-> N (fusion d1 t2, x1, g1)

| _, N (g2, x2, d2) -> N (fusion d2 t1, x2, g2)

Pour ajouter un élément à un arbre croissant, il suffit alors de fusionner l’arbre avec un
arbre réduit à une feuille étiquetée par x, soit :

let ajoute x = fusion (N (E, x, E))

7. L’idée est de supprimer la racine de l’arbre croissant, mais on se retrouve avec deux
arbres : les sous-arbres gauche et droit, que l’on fusionne en un seul arbre croissant :

let supprime_minimum = function
| E -> failwith "Arbre vide"
| N (g, _, d) -> fusion g d

8. On implémente la fonction comme demandé, comme une fusion successive d’arbres
réduits à une unique feuille :

let ajouts_successifs x =
let t = ref E in
for i = 0 to Array.length x - 1
do t := ajoute x.(i) !t done;

!t

On remarquera que l’on fait ici usage de la fonction ajoute déjà écrite pour éviter les

doublons ! On peut aussi écrire une version plus succinte avec un Array.fold_left :

let ajouts_successifs =
Array.fold_left (fun arbre x -> ajoute x arbre) E

9. Si l’on prend une suite décroissante d’entiers pour x0, . . . , xn−1, les ajouts successifs
des xi construisent des arbres dans lesquels le xi se retrouve à la racine (puisque plus petit
que xi−1, la racine de l’arbre à l’étape précédente), avec E pour fils droit et l’arbre de l’étape
précédente pour fils gauche. On construit ainsi un arbre de hauteur n.

10. Pour tout k, notons gk et dk les fils respectivement gauche et droits de l’arbre tk .

Puisque x0 est le plus petit élément de la suite des éléments insérés dans l’arbre :
• gk est obtenu par insertion de xk dans dk−1 ;
• dk = gk−1.

Par conséquent, les éléments x0, x1, . . . , xk sont insérés alternativement dans deux arbres :
l’un reçoit x0, x2, . . . , l’autre x1, x3, Les deux sous-arbres de tk diffèrent donc au plus
d’un élément (l’arbre de gauche ayant une taille supérieure ou égale à celui de droite).

Mais si l’on s’intéresse à ces sous-arbres, les séquences d’éléments xk , xk+2, xk+4, . . . sont
également croissantes, dont il se passe le même phénomène : les deux sous-arbres de
chacun de ces sous-arbres ont une taille qui ne diffère également que d’un seul élément.

Montrons donc par récurrence la propriété (légèrement plus générale que celle deman-
dée) « la hauteur d’un arbre tn construit en insérant n > 0 éléments x0, . . . , xn−1 dans l’ordre
croissant est 1+⌊

log2(n)
⌋

» :
• C’est vrai pour n = 1 (arbre N (E, x, E), de hauteur 1).
• Supposons ∀k < n, h(tk) = 1+⌊

log2(k)
⌋

.

Pour tn , son fils gauche contient ⌈(n −1)/2⌉ éléments et son fils droit ⌊(n −1)/2⌋.

Par récurrence, la hauteur de l’arbre tn est donc 1+ (
1+⌊

log2(⌈(n −1)/2⌉)
⌋)

Mais ⌈(n −1)/2⌉ É n/2, donc h(tn) É 2+⌊
log2(n/2)

⌋= 1+⌊
log2 n

⌋
.

Seulement, la hauteur d’un arbre binaire à n noeuds internes ne peut être stric-
tement inférieure à 1+ ⌊

log2(n)
⌋

. On a donc h(tn) = 1+ ⌊
log2(n)

⌋
, ce qui vérifie la

récurrence.

2

3 Analyse

11. Pour obtenir la complexité demandée, on écrit une fonction auxiliaire
potentiel_et_taille de signature arbre -> int * int, qui retourne le potentiel en
même temps que la taille de arbre passé en argument. On ne gardera que le premier de ces
deux éléments comme dernier résultat :

let potentiel arbre =
let rec potentiel_et_taille = function
| E -> (0, 1)
| N(g, _, d) -> let pg, tg = potentiel_et_taille g

and pd, td = potentiel_et_taille d
in (pg+pd+(if tg<td then 1 else 0),

tg+td+1)
in fst (potentiel_et_taille arbre)

12. On vérifie le résultat par induction structurelle :
• si t1 =E ou t2 =E, C(t1, t2) = 0, etΦ(t1)+Φ(t2)−Φ(t) = 0, donc l’inégalité est vérifiée.
• sinon, notons t1 =N(g1,x1,d1) et t2 =N(g2,x2,d2) et supposons par exemple que

l’on a x1 É x2.

Le résultat de la fusion de t1 et t2 est l’arbre t =N(t',x1,g1) où t ′ est le résultat de
la fusion des arbres d1 et t2. On a donc C(t1, t2) = 1+C(d1, t2).

Par induction C(d1, t2) ÉΦ(d1)+Φ(t2)−Φ(
t ′

)+2
(
log(d1)+ log(t2)

)
.

On a par ailleursΦ(t1) =Φ(
g1

)+Φ(d1)+1|g1|<|d1| etΦ(t) =Φ(
t ′

)+Φ(
g1

)+1|t ′|<|g1|.

En outre, |d1| <
∣∣t ′∣∣, donc trois cas sont possibles :

—
∣∣g1

∣∣< |d1| : C(t1, t2) ÉΦ(t1)+Φ(t2)−Φ(t)+2
(
log |d1|+ log |t2|

)
Et donc C(t1, t2) ÉΦ(t1)+Φ(t2)−Φ(t)+2

(
log |t1|+ log |t2|

)
— |d1| É

∣∣g1
∣∣É ∣∣t ′∣∣ : C(t1, t2) ÉΦ(t1)+Φ(t2)−Φ(t)+1+2

(
log |d1|+ log |t2|

)
Or 1+2log |d1| É 2log(2 |d1|) É 2log

(|d1|+
∣∣g1

∣∣)É 2log |t1|
Donc C(t1, t2) ÉΦ(t1)+Φ(t2)−Φ(t)+2

(
log |t1|+ log |t2|

)
—

∣∣t ′∣∣É ∣∣g1
∣∣ : C(t1, t2) ÉΦ(t1)+Φ(t2)−Φ(t)+2+2

(
log |d1|+ log |t2|

)
Là aussi, 2+2log |d1| É 2log(2 |d1|) É 2log

(|d1|+
∣∣g1

∣∣)É 2log |t1|
Donc C(t1, t2) ÉΦ(t1)+Φ(t2)−Φ(t)+2

(
log |t1|+ log |t2|

)
L’inégalité est donc vérifiée dans chacun des trois cas.

Ce qui prouve l’inégalité demandé par le principe d’induction structurelle.

13. Soit ck le coût de la construction d’un arbre tk à k nœuds internes (et donc 2k +1
nœuds). t0 =E, et pour k > 0, tk est obtenu par la fusion de l’arbre tk−1 avec N(E,x,E) (où
x correspond à xk−1.

On a donc, pour k > 0, ck É ck−1 +Φ(tk−1)+0−Φ(tk)+2
(
log2(2(k −1)+1)+ log2(3)

)
.

Soit cn É c0 +Φ(t0)+2n log2(3)+2
n∑

k=1
log2(2k −1).

Avec c0 = 0 etΦ(t0) = 0, on a bien cn É 2
(
n log2(3)+ log2(n!)

)
.

Soit une complexité en O
(
n log(n)

)
.

14. Il s’agit ici de construire un arbre de hauteur de l’ordre de n/2 avec n éléments,
puis d’ajouter un élément qui devra être inséré n/2 fois. Il s’agit en fait de montrer que la
complexité d’une fusion peut être linéaire en n, donc on supposera n pair, construire un
exemple pour n impair ne poserait pas de problème particulier.

Posons p = n/2 et commençons par construire un arbre croissant de hauteur p = n/2.
Pour ce faire, on peut remarquer que la construction d’un arbre via la succession d’entiers
2p −1,2p,2p −3,2p −2, . . . ,3,4,1,2 conduit à l’arbre ci-dessous à gauche (par souci de
lisibilité, les feuilles E n’ont pas été représentées). En effet, les ajouts des entiers impairs
construisent un nouvel étage (ils sont plus petits que les précédents), les pairs sont ajoutés
à droite de la racine à la place d’une feuille E, avant que les enfants en soient permutés, et
donc se retrouvent à gauche, ce qui replace la branche à droite.

L’ajout de 2p+1 à un tel arbre nécessite de parcourir toute la branche de droite, et donne
ultimement l’arbre de droite, après n/2 fusions.

1

3

2p −1

2

4

2p

1

3

2p −1

2p +1

2

4

2p

La complexité de l’ajout est ici linéaire en p, donc en la taille de l’arbre. Toutefois, l’ajout
de n éléments étant en O

(
n log(n)

)
, en moyenne, l’ajout d’un élément a bien un coût

logarithmique O
(
log(n)

)
.

15. On a C
(
gi ,di

)ÉΦ(
gi

)+Φ(di)−Φ(ti+1)+2
(
log2

∣∣gi
∣∣+ log2 |di |

)
.

MaisΦ
(
gi

)+Φ(di) ÉΦ(ti),
∣∣gi

∣∣É |t0|, |di | É |t0| et |t0| = 2n +1.

Donc C
(
gi ,di

)ÉΦ(ti)−Φ(ti+1)+4log2(2n +1).

La complexité totale cn vérifie donc cn ÉΦ(t0)−Φ(tn)+4n log2(2n +1).

3

Soit, avecΦ(t0) É n etΦ(tn) = 0, cn est une complexité en O
(
n log(n)

)
.

4 Applications

16. On construit dans un premier temps un arbre croissant avec la fonction
ajouts_successifs, puis, n fois (autant qu’il y a d’élément dans l’arbre), on retire le
plus petit des éléments restant dans l’arbre et on le replace dans le tableau (en utilisant de
préférences les fonctions déjà programmées, cela rend les choses plus lisibles) :

let tri v =
let arbre = ref (ajouts_successifs v) in
for i = 0 to Array.length v - 1 do
v.(i) <- minimum !arbre;
arbre := supprime_minimum !arbre

done;

17. Le coût en temps des fusions est directement lié au nombre de comparaisons qui
sont effectuées entre les racines des arbres à fusionner. On peut donc dénombrer les
comparaisons lors des fusions des différents arbres.

Pour deux arbres de hauteur h et h′, le nombre de comparaisons est inférieur à h +h′.

On effectue, en posant n = 2h :
• n/2 = 2h−1 fusions d’arbres de hauteur inférieure à 1, donc avec au plus 2 comparai-

son;
• n/4 = 2h−2 fusions d’arbres de hauteur inférieure à 2, donc avec au plus 4 comparai-

sons;
• ...
• n/2k = 2h−k fusions d’arbres de hauteur inférieure à k, donc avec au plus 2k compa-

raisons;
• ...
• 1 fusion d’arbre de hauteur inférieure à log2(n), donc avec au plus 2h comparaisons.

On effectue donc moins de

log2(n)∑
k=1

k2h−k = 2h
log2(n)∑

k=1

k

2k
comparaisons

Pour tout p,
p∑

k=1

k

2k
É 2, donc on a bien O

(
2h

)= O (n) comparaisons.

18. On construit simplement l’arbre t 0
k grâce à une fonction récursive foo de signature

int -> int -> arbre, qui utilise les relations fournies. Plutôt que de mettre en paramètre
j et k, on passe j et n = 2k . Il est ainsi plus simple d’effectuer le premier appel, puisqu’il
n’est plus nécessaire de calculer log2(n). Et pour k ′ = k −1, il suffit de prendre n′ = n/2.

let construire t =
let rec foo j = function

| 1 -> N (E, t.(j), E)
| n -> fusion (foo (2*j) (n/2)) (foo (2*j+1) (n/2))

in foo 0 (Array.length t)

19. Il n’y a pratiquement rien à changer si ce n’est mettre un arbre vide plutôt qu’une
feuille si on sort du tableau (c’est beaucoup plus facile que de mettre des valeurs spéciales
et d’essayer ensuite de les retirer!). Attention quand même à la valeur initiale du second
paramètre : on prend deux fois la longueur du tableau moins 1 pour correspondre à
k = ⌈

log2(n)
⌉

) :

let construire t =
let n = Array.length t in
let rec foo j = function
| 1 -> if j >= n then E else N (E, t.(j), E)
| n -> fusion (foo (2*j) (n/2)) (foo (2*j+1) (n/2))

in foo 0 (2*n-1)

4

	Structure d'arbre croissant
	Opérations sur les arbres croissants
	Analyse
	Applications

