
Révisions : dictionnaires, arbres binaires de recherche et équilibrage

1 Introduction

Dans ce sujet, on souhaite créer un dictionnaire, implémenté par un arbre binaire de
recherche. Pour ce faire, on définit le type suivant :

type ('a, 'b) dict =
Node of ('a, 'b) dict (* fils gauche *)

* 'a (* clé *)
* 'b (* valeur *)
* int (* taille *)
* ('a, 'b) dict (* fils droit *)

| Empty

On suppose qu’il est possible de trier les clés avec les opérateurs de comparaison usuels,
et que l’arbre manipulé est un arbre binaire de recherche pour les clés (toutes les clés
dans le sous-arbre gauche sont inférieures ou égales à la clé de la racine, toutes celles du
sous-arbre droit sont supérieures ou égales à la clé de la racine). On impose par ailleurs les
invariants suivants :

• toutes les clés sont distinctes ;
• le quatrième élément d’un objet Node contient toujours un entier représentant la

taille du sous-arbre enraciné qu’il représente (le nombre de couples clé-valeurs).

Pour les tests vous trouverez à l’adresse cdn.sci-phy.org/mp/dictionnaires.ml un
fichier contenant la déclaration du type et un dictionnaire contenant onze couples, dont
les clés sont les chaînes de caractères contenant les mots « zéro », « un », ... « dix » et les
valeurs sont les entiers correspondant auxdits mots.

2 Implémentation élémentaire

1. Proposer une fonction taille de signature ('a, 'b) dict -> int prenant en ar-
gument un dictionnaire et renvoyant le nombre de couples clé-valeur qu’il contient. On
attend une complexité constante.

2. Proposer une fonction mini_cle de signature ('a, 'b) dict -> 'a retournant la
plus petite clé. Quelle est sa complexité ? On testera la fonction sur le dictionnaire fourni.

3. On suppose (pour cette question uniquement) les valeurs du dictionnaires compa-
rables avec l’opérateur de comparaison usuel. Proposer une fonction mini_val de signa-
ture ('a, 'b) dict -> 'b retournant la plus petite valeur. Quelle est sa complexité ? On
testera la fonction sur le dictionnaire fourni.

4. Proposer une fonction membre de signature ('a, 'b) dict -> 'a -> bool prenant

en argument une clé et renvoyant un booléen indiquant si la clé est présente dans le
dictionnaire. On attend une complexité en la hauteur de l’arbre représentant le dictionnaire.
Tester la fonction avec quelques clés.

5. Proposer une fonction valeur de signature ('a, 'b) dict -> 'a -> 'b prenant en
argument une clé et renvoyant la valeur associée si la clé est présente, et levant une erreur
sinon. On attend une complexité en la hauteur de l’arbre représentant le dictionnaire.
Tester la fonction avec quelques clés.

6. Proposer une fonction ajoutede signature ('a, 'b) dict -> 'a -> 'b -> ('a, 'b) dict
prenant un dictionnaire, une clé, une valeur et renvoyant un dictionnaire dans lequel le
couple a été ajouté (si la clé n’était pas présente) ou la valeur a été mise à jour (si la clé était
déjà présente). On attend une complexité en la hauteur de l’arbre, et on prendra garde à
assurer les invariants attendus. Ajouter les couples clés-valeur pour « onze » et « douze », et
vérifier que les fonctions taille et valeur donnent bien les résultats attenus.

7. Proposer une fonction construit de signature ('a * 'b) list -> ('a, 'b) dict
prenant en argument une liste de couples et construisant et renvoyant un dictionnaire
représentant cette liste. Quelle est sa complexité dans le pire des cas ? En moyenne ? Tester
la fonction avec une liste de couples de votre choix.

8. On suppose à présent que la liste contient uniquement des clés distinctes, et qu’elles
sont rangées par ordre croissant. Proposer une fonction construit_eq qui effectue la
même tâche que construit, mais garantit que la hauteur de l’arbre construit est inférieure
ou égale à log(n) où n est la longueur de la liste. Quelle est sa complexité ? Tester la fonction
ainsi écrite.

9. Proposer une fonction vers_listede signature ('a, 'b) dict -> ('a * 'b) list
prenant en argument un arbre représentant un dictionnaire et retournant une liste de
couples clé-valeur. On s’efforcera d’écrire une fonction de complexité linéaire en le
nombre n de couples. Tester cette fonction avec le dictionnaire fourni et avec celui que
vous avez construit vous-même.

3 Équilibrage

Pour garantir que les opérations sur le dictionnaire ont une complexité en O
(
n logn

)
où

n représente le nombre de couples présents dans le dictionnaire, il nous faut nous assurer
que les arbres binaires de recherche restent suffisamment « équilibrés ». Il existe différentes
solutions pour y parvenir (arbres AVL, arbres rouge-noir...) La solution que nous allons
mettre en œuvre aujourd’hui est celle des arbres « bouc-émissaires ».

Pour ce faire, il nous faut choisir un paramètre d’équilibrage α ∈ ]0.5,1[. On prendra
α= 2/3.

1

cdn.sci-phy.org/mp/dictionnaires.ml


Un nœud d’un arbre est dit α−équilibré en taille si la taille de ses sous-arbres gauche et
droit sont tous deux strictement inférieurs à α fois la taille du sous-arbre enraciné en ce
nœud.

10. Proposer une fonction est_equil_t de signature ('a, 'b) dict -> bool prenant
en argument arbre représentant un dictionnaire non-vide et retournant un booléen indi-
quant si sa racine est α−équilibrée en temps constant.

Un arbre est dit α−équilibré en taille s’il est α−équilibré pour tous ses nœuds. Un arbre
bouc-émissaire n’est pas nécessairement toujours α−équilibré mais on garantit en re-
vanche que sa hauteur ne sera jamais « trop grande » en s’assurant qu’elle est toujours
inférieure où égale à ⌊

log1/αn
⌋+1

où n est la taille de l’arbre (le nombre de couples mémorisés dans le dictionnaire), ce qui
suffit à garantir 1 que la recherche d’une clé est bien de complexité logarithmique en le
nombre de couples mémorisés.

La recherche d’une clé, qui ne touche pas à l’arbre, n’est pas modifiée. En revanche, on
va modifier l’opération consistant à ajouter une clé pour garantir que cette propriété reste
vraie, de la façon suivante :

• L’insertion se fait au niveau des feuilles de l’arbre.
• Lors de l’insertion, on détermine la hauteur du nouvel arbre. Si après cette insertion

la condition n’est plus vérifiée, alors on cherche, en remontant, un nœud, parmi les
ancêtres du nouveau nœud, qui ne soit pas α−équilibré 2, et on remplace l’ensemble
du sous-arbre enraciné en ce nœud par un nouveau sous-arbre bien équilibré, en ex-
trayant une liste tous les couples clés-valeurs par ordre croissant et en reconstruisant
un arbre équilibré à partir de cette liste (on utilisera les fonctions précédentes).

11. Proposer une nouvelle fonction ajoute qui implémente cette stratégie, et vérifier
son bon fonctionnement avec quelques tests.

On peut aisément montrer que, après cette opération, la hauteur de l’arbre respecte
à nouveau la condition (la hauteur de l’arbre a nécessairement été réduit) et que, si la
complexité de ajoute est linéaire en la taille de l’arbre dans le pire des cas, elle est loga-
rithmique en moyenne.

1. Le but de cette séance de TP est de s’entraîner à la programmation OCaml, donc on l’admettra, mais vous
êtes invités à réfléchir à cette preuve.

2. On peut montrer qu’il existe, ce n’est pas le but de cette séance de TP, mais c’est un bon entraînement !

2


	Introduction
	Implémentation élémentaire
	Équilibrage

