
Problèmes d’échecs

1 Introduction

Au-delà du jeu d’échecs, qui fourmille de problèmes complexes à résoudre, l’échiquier
et les déplacement des pièces sont à l’origine de centaines de problèmes de combinatoire
qui ont alimenté la réflexion de mathématiciens depuis des siècles.

Si les problèmes ont généralement été posés pour un échiquier de taille normale (8×8
cases), il est aisé de moduler la difficulté de ces problèmes en ajustant la taille de l’échiquier.

On s’intéresse dans cette séance de travaux pratiques à deux problèmes très populaires,
que l’on va essayer de résoudre, en OCaml, en utilisant le principe du retour sur trace : le
problème des N reines et le tour du cavalier d’Euler.

On utilisera fréquemment, dans ces problèmes, le type OCaml 'a option qui est déjà
défini comme un type somme :

type 'a option = None | Some of 'a

Ce type permet à une fonction de retourner un résultat (sous la forme Some x) si elle est
capable d’en trouver un, ou None si elle n’en trouve pas. Il s’agit d’un mécanisme un peu
plus simple et efficace que d’utiliser des exceptions en cas d’échec à trouver une solution.

2 Problème des N reines

Dans ce premier problème, on cherche à placer N reines sur un échiquier de taille
N×N de façon à ce qu’aucune reine ne menace aucune autre (les reines se déplacent sur
l’échiquier d’un nombre quelconque de cases dans les quatre principales directions de
l’échiquier ou en diagonale).

De façon évidente, les N reines doivent chacune être sur une ligne (et une colonne)
différente. Il n’y a pas de solution pour N = 2 et N = 3, mais la solution ci-dessous convient
pour N = 4 :

Q

Q

Q

Q

On représentera une solution sous la forme d’une liste d’index de colonnes, correspon-
dant à chaque reine pris dans l’ordre de leurs lignes. La solution ci-dessus, par exemple,

sera représentée par la liste [1; 3; 0; 2] (la reine sur la première ligne se trouve dans la
colonne d’index 1, celle sur la seconde ligne dans la colonne d’index 3, et ainsi de suite).

On fournit la fonction suivante pour afficher, à partir d’une liste représentant une (pos-
sible) solution, une représentation du placement des pièces :

let affiche lst =
let n = List.length lst in
List.iter (fun i ->

let rec aux = function
| 0 -> print_newline ()
| j -> print_char (if i+j=n then 'X' else '.'); aux (j-1)

in aux n) lst

Pour construire une solution, nous allons utiliser le principe du retour sur trace, en
construisant la liste de droite à gauche (donc en plaçant les reines de haut en bas).

Supposons que l’on travaille sur un échiquier de taille 8×8, et que les positions des reines
sur les deux dernières lignes sont décrites par la liste [2, 6], c’est-à-dire positionnées
comme sur le graphe ci-dessous :

Q

Q

1. Quelles sont les positions autorisées (index de colonne) pour placer une reine sur
l’antépénulptième ligne ?

2. Proposer une fonction permis de type int list -> int -> bool prenant en argu-
ment une liste de k index de colonnes, correspondant aux positions des reines sur les
k dernières lignes du plateau (numérotées de n-k à n-1), et un index de colonne j et

1



renvoyant un booléen indiquant s’il est permis de mettre une reine dans la colonne i de
la ligne n-k-1. On pourra tester la fonction avec l’exemple de la question précédente. On
pourra remarquer que la position j est permise si et seulement si :

• le premier terme de la liste doit être différent de j −1, j et j +1 ;
• le second terme de la liste doit être différent de j −2, j et j +2 ;
• et ainsi de suite.

On pourra donc utiliser une fonction auxilière pour parcourir la liste afin de pouvoir
disposer de j et de la position de l’élément considéré dans la liste, par exemple sur ce
modèle :

let permis lst j =
let rec teste k reste = match reste with
| [] -> ...
| t::q -> ... && teste (k+1) q

in teste 1 lst

3. En déduire une fonction possibles de signature int -> int list -> int list
prenant en argument la taille n de l’échiquier, une liste de k k index de colonnes, corres-
pondant aux positions des reines sur les k dernières lignes du plateau, et retournant la
liste des index de colonne permis pour le placement d’une reine à la ligne les précédant.

4. En déduire une fonction solution de signature int -> int list option utilisant le
principe du retour sur trace pour prendre en argument la taille de l’échiquier n et renvoyer
None s’il n’y a pas de solution, et Some lst s’il existe au moins une solution, lst étant
une telle solution. On propose une ébauche de structure, utilisant une fonction auxiliaire
récursive prenant deux arguments, un nombre de reines déjà placées (sur les lignes en
partant du bas) et la liste de leurs index de colonne :

let solution n =
let rec explore nb_placees lst =
if nb_placees = ... then ... else
let possibilites = possibles n lst in
let rec essaie = function
| [] -> ...
| t::q -> ...

in essaie possibilites
in explore 0 []

5. Jusqu’à quel taille d’échiquier peut-on résoudre le problème en un temps raisonnable ?

6. Modifier la fonction précédente pour qu’elle retourne le nombre de solutions au
problème.

3 Problème du cavalier d’Euler

On s’intéresse à présent à un problème proposé par Léonard Euler. Il consiste à essayer
de trouver un chemin, pour un cavalier d’échec, lui permettant de passer une fois et une
seul par toutes les cases. On se propose à nouveau d’utiliser une approche par retour sur
trace pour des raisons d’efficacité. On supposera par ailleurs, pour simplifier 1, que le
cavalier débute sur la case (0,0) en haut à gauche de l’échiquier.

Pour mémoriser les cases qui ont été visitées et celles qui ne l’ont pas été, nous allons
utiliser un tableau d’entiers (int array array) de taille N×N, dont les cases contiendront
−1 si elles n’ont pas encore été visitées, et k si elles ont été visitées après k déplacements
du cavalier (la case (0,0) contiendra la valeur 0).

7. Proposer une fonction init de signature int -> int array array qui prend en
argument une taille n et retourne le tableau correctement initialisé (−1 dans toutes les
cases, à l’exception de la case (0,0) qui contient 0).

Pour les tests, on fournit une fonction affichant un tableau d’entiers passé en argument :

let affiche =
Array.iter (fun lgn ->
Array.iter (fun x -> Printf.printf "%4d " x) lgn;
print_newline ())

8. Proposer une fonction possibles de signature int array array -> int * int
-> (int * int) list qui, pour un tableau et une position (i , j ) donné (i indiquant le
numéro de ligne sur l’échiquier et j le numéro de colonne), retourne la liste des positions
accessibles qui n’ont pas encore été visitées.

9. Écrire une fonction explore qui de signature int -> int * int
-> int array array -> int array array option qui prend en argument le nombre k
de déplacements déjà effectués par le cavalier, sa position (i , j ) et le tableau contenant
les positions visitées lors des étapes précédentes (la case correspondant à (i , j ) contient
encore −1 pour le moment) et :

• place k dans la case (i , j ) ;
• si k = n2 −1, retourne Some tab où tab est le tableau, normalement rempli avec des

valeurs de 0 à n2 −1
• sinon,

— détermine la liste des cases où un déplacement est possible ;
— appelle, successivement pour chacun des déplacements possibles, récursivement

la fonction explore avec les bons paramètres, et si un appel retourne Some sol,
alors retourne Some sol (sans envisager les autres déplacements) et, si tous les
appels retournent None, place −1 dans la case (i , j ) et retourne None.

1. Ce n’est généralement pas une contrainte importante car, sur un échiquier de taille standard, il existe des
chemins cycliques, donc le point de départ n’a pas d’importance

2



10. Justifier que la fonction précédente permet de trouver une solution au pro-
blème si une telle solution existe, et en déduire une fonction tour de signature
int -> int array array option qui prend en argument la taille n de l’échiquier et
retourne une solution s’il en existe une, et None sinon.

11. Pour quelles tailles d’échiquier l’approche précédente donne-t-elle des résultats
satisfaisants?

L’ennui, c’est que l’espace à explorer reste trop grand, et les solutions trop rares, pour
que l’on puisse résoudre ce problème pour des n même modestes. Il convient donc d’être
un peu plus malins.

Pour l’instant, le retour sur trace effectue une exploration en profondeur de l’arbre des
possibilités, mais les enfants de chacun des nœuds de l’arbre ne sont pas ordonnés. Une
idée intéressante est d’utiliser une heuristique pour explorer en priorité les solutions les
plus prometteuses.

Pour évaluer la qualité d’un coup, on va écrire une fonction heur de signature
int array array -> int * int -> int prenant en argument un tableau représentant
les cases visitées et un couple (i , j ) représentant une position et retournant un entier, dont
on souhaite qu’il soit d’autant plus grand que possible si le coup semble intéressant.

On se propose, dans un premier temps, d’utiliser l’heuristique suivante : un déplacement
est d’autant plus intéressant que le nombre de déplacements disponible pour le coup
suivant est faible. L’idée est ici d’aller tout de suite dans les cases pour lesquelles il sera
plus difficile de repartir ensuite.

12. Proposer une fonction heur tab (i,j) retournant l’opposé du nombre de possibi-
lités de déplacement disponibles depuis la case (i , j ).

Pour trier une liste de possibilitiés en fonction de l’heuristique, par ordre décroissant, on
utilisera la fonction suivante :

let ordonne heur tab =
List.sort (fun x y -> compare (heur tab y) (heur tab x))

Cette fonction, de signature (int array array -> int * int -> int)
-> int array array -> (int * int) list -> (int * int) list prend en argu-
ment une fonction heuristique, le tableau indiquant les déplacements effectués, et une
liste de déplacements possibles, et retourne la liste de déplacements possibles ordonnés
par ordre décroissant de leur heuristique.

13. Modifier 2 la fonction explore ainsi que la fonction tour, pour
qu’elles acceptent un argument supplémentaire, une heuristique de type
int array array -> int * int -> int, et qu’elles l’utilisent pour trier les dépla-
cements possible par ordre décroissant d’intérêt avant d’itérer sur ceux-ci.

2. On sera avisé de conserver l’ancienne version à titre de référence.

Note : pour des raisons d’efficacité, on peut accélérer le calcul de l’heuristique en mémori-
sant, à tout instant, dans un second tableau, le nombre de déplacements possibles qu’il
reste pour chaque case. On ne se souciera pas ici de cette optimisation.

14. Vérifier que cela permet de résoudre le problème pour de plus grands n. Quelle
limite peut-on atteindre 3 ?

15. On a choisi pour heuristique d’aller vers les cases avec le moins de possibilités.
Modifier la fonction heur pour privilégier les cases avec le plus de possibilités (on pensera
à redéfinir les fonctions possibles_ordonnes, explore et tour qui en dépendent) et
regarder si cette approche fonctionne.

16. Proposer une heuristique qui privilégie les coups en fonction de leur distance aux
bords (plus une case est proche d’un bord, plus elle est intéressante). Est-elle efficace?
Comparer les résultats avec l’heuristique liée au nombre de possibilités disponibles.

17. Est-il possible de trouver un chemin où les déplacements dans les seize cases
centrales sont sont toutes congrues à la même valeur modulo 4 (par exemple, on ne
pénètre dans les cases centrales qu’aux déplacements 2, 6, 10, 14, etc.) ?

Pour aller plus loin, on pourra réfléchir à d’autres heuristiques, ou à imposer des
contraintes supplémentaires sur le chemin, toutes possibles notamment pour n = 8 :

• chemin fermé ;
• chemin avec des symétries ;
• chemin tel que le tableau retourné est un quasi-carré magique (il est impossible

d’obtenir un vrai carré magique sur un échiquier 8×8, mais il est possible d’obtenir
un tableau où chaque ligne et chaque diagonale ont la même somme, et même où
chaque demi-ligne et chaque demi-colonne ont la même somme ; il faudra envisager
un point de départ quelconque)

3. On peut montrer que pour de très grands n, l’heuristique devient moins bonne.

3


	Introduction
	Problème des N reines
	Problème du cavalier d'Euler

