
Retour sur trace et révisions de logique propositionnelle

1 Sudoku

Une grille de Sudoku est une grille de taille 9×9, contenant dans chaque case un entier
de 1 à 9, telle que :

• chaque ligne ne contient pas deux fois la même valeur
• chaque colonne ne contient pas deux fois la même valeur
• si l’on décompose la grille en neuf sous-grille de taille 3×3, chaque sous-grille ne

contient pas deux fois la même valeur

Initialement, certaines cases sont remplies, et leur contenu ne doit pas être modifié. Le
but est de remplir les cases restantes en respectant les contraintes.

On représentera, à un moment donné, la grille par un tableau à deux dimensions d’en-
tiers (int array array) où 0 indiquera une case encore non remplie.

1. Proposer une fonction possibles de signature int array array -> int -> int
-> int list prenant en argument une grille en cours de remplissage et des coordonnées
d’une case contenant un 0, et retournant la liste des valeurs qu’il est permis de mettre dans
la case.

2. En déduire une fonction resout de signature int array array -> bool indiquant si
la grille fournie en paramètre peut être résolue (si c’est le cas, la grille fournie en paramètre
contiendra la solution). On pourra tester la fonction sur la grille de gauche ci-dessous :

8 4 3

4 2

7 3

6 2 8 5

7 6

1 5 3

2 7

6 4

8 2 9 5

3. Modifier la fonction pour déterminer le nombre de solutions qui existent pour la grille
fournie en paramètre.

4. Envisager des stratégies pour gagner en rapidité (on ne demande pas d’implémenta-
tion).

2 Arbres logiques

On dispose d’un arbre représentant une formule propositionnelle f , dont les feuilles
sont les variables logiques et/ou les constant ⊤ et ⊥, et les nœuds interne les opérateurs ∧,
∨ et ¬.

1. Proposer une méthode permettant de construire l’arbre représantant ¬ f .

2. Implémenter cette négation en OCaml pour une formule propositionnelle de type

type 'a form =
| V | F | Var of 'a
| Conj of 'a form * 'a form
| Disj of 'a form * 'a form
| Neg of 'a form

3 Tables de vérité

1. Construire la table de vérité de (A ∨B∧C)→ (B↔¬C).

2. En déduire une formule propositionnelle équivalente sous forme normale conjonctive
et une formule propositionnelle équivalente sous forme normale disjonctive.

3. Quelle est la hauteur logique et la taille de chacune des formules propositionnelles
construites?

4 Tautologies, Antilogies

Dans la liste suivante, déterminer lesquelles sont des tautologies, lesquelles sont des
antilogies, lesquelles sont satisfiables, et proposer un modèle dans le cas des formules
satisfiables.

• B→ (A →B) ;
• ¬((A →B)∨ (A⊕));
• ¬((((A →B)→C)↔ (A → (B→C)))) ;
• (A →B)∨ (B→C) ;

5 Preuve

Montrer que

{A ∧B→C , A , ¬C } Í ¬B

1

6 Systèmes complets

Un système complet est un ensemble d’opérateurs (et possiblement de constantes) lo-
giques tel que pour toute formule propositionnelle f sur des variables logiques vi on puisse
trouver une formule propositionnelle f ′ équivalente sur ces mêmes variables logiques vi

n’utilisant que ces opérateurs et constantes.

1. Justifier que {→,⊥ } est un système complet.

2. Justifier que {⊕,⊤ } est un système complet.

7 Algorithme de Quine

On définit le type suivant pour des formules propositionnelle (en utilisant le fait que
{∧,¬ } est un système complet)

type form = V | F | Var of int
| Conj of form * form | Neg of form

1. Proposer une fonction simplifie de signature form -> form prenant en argument
une formule propositionnelle et retournant une formule propositionnelle équivalente qui
soit ⊤, ⊥, ou ne contienne ni V, ni F.

2. Proposer une fonction substitue de signature form -> int -> bool -> form pre-
nant en argument une formule propositionnelle, un entier i et un booléen, et renvoie la
formule propositionnelle dans laquelle vi a été substitué par le booléen fourni.

3. Proposer une fonction sat de signature form -> int -> bool list option pre-
nant en argument une formule propositionnelle sur des variables propositionnelles vi

indicées de 0 à n −1 et un entier n, et renvoyant None si la formule propositionnelle n’est
pas satisfiable, et un modèle sinon, sous forme d’un liste de longueur n de booléens où le
booléen en position j correspond à la valeur de v j dans le modèle.

On notera que l’on peut voir l’algorithme de Quine comme une méthode de retour sur
trace où l’on effectue une simplification de la formule à chaque étape de l’exploration.

8 Preuves

Soit f , g et h trois formules propositionnelles.

1. Montrer que f → (¬h →¬g
)

est une tautologie et et seulement si g → (
f →h

)
en est

une.

2. Montrer que
(

f → g
)∧ (

f →h
)

est une tautologie et et seulement si f → (
g ∧h

)
en est

une.

2

	Sudoku
	Arbres logiques
	Tables de vérité
	Tautologies, Antilogies
	Preuve
	Systèmes complets
	Algorithme de Quine
	Preuves

