
Mots et langages

Ex. 1 – Préfixes et suffixes

Proposer une fonction plpsc de signature string -> string prenant en entrée une
chaîne de caractères correspondant à un mot w sur l’alphabet ASCII et retournant le plus
long mot v qui soit à la fois un préfixe et un suffixe de w . Quelle est sa complexité dans le
pire des cas?

Ex. 2 – Langage binaire

On s’intéresse à l’alphabet binaire Σ= {0,1}.

On définit le langage L comme la représentation binaire la plus courte des éléments de
l’ensemble N des entiers positifs.

1. Définir formellement le langage L.

On définit le langage Le sur l’alphabet Σ par w ∈ Le ⇐⇒|w |0 = |w |1.

2. Déterminer |Σn ∩L∩Le | en fonction de n.

Ex. 3 – Codes binaires

On considère l’alphabet Σ. On s’intéresse à un langage L sur Σ tel que, pour tout mots
w, w ′ ∈ L×L, si w est un préfixe de w ′, alors w = w ′. Un tel langage est qualifié de code.

1. Déterminer une relation entre maxw∈L(|w |), |L| et |Σ|.
On se place dans le cadre de l’alphabet binaire Σ= {0,1}.

2. Proposer un langage L tel que |L| = 4.

3. Même question pour |L| = 5.

Ex. 4 – Langages

Soit un alphabet Σ non vide. Décrire les langages définis par :

1. L1 =
{

w ∈Σ∗ | ∃n ∈N \ {0,1} et w ′ ∈Σ∗ tels quel w = w ′n }
2. L2 =

{
w ∈Σ∗ |Πc∈Σ |w |c = 0

}
3. L3 =

{
w ∈Σ∗ |Πc∈Σ |w |c = 1

}
4. L∗

2

5. L∗
3

Ex. 5 – Fonction génératrice

La fonction génératrice d’un langage L sur un alphabet Σ est la série formelle ΦL définie
par

ΦL : x 7−→
∞∑

i=0

∣∣L∩Σn∣∣ xn

1. Déterminer ΦL pour L = {ε }

2. Même question pour Σ= { a,b,c } et L = {
w ∈Σ∗ | |w | É 3

}
.

3. Soit un langage L sur l’alphabet Σ, et a ∈Σ. Déterminer la fonction génératrice de a L
en fonction de ΦL(x).

4. Soit deux langages L et M sur l’alphabet Σ tels que L∩M soit le langage vide. Détermi-
ner la fonction génératrice de L∪M en fonction de ΦL(x) et ΦM(x).

Ex. 6 – Langage construit à base d’un langage de Dyck

On considère A = {a }, Σ= A∪A = {a,a } et DA le langage de Dyck sur Σ.

On définit le langage L par L = (DAa)∗DA(aDA)∗.

Déterminer L.

1

Ex. 7 – Suite de Thue-Morse

Soit Σ un alphabet. On s’intéresse aux mots de Σ∗ ne contenant pas deux facteurs
consécutifs égaux, c’est-à-dire aux mots qui ne peuvent pas s’écrire sous la forme w = x y2z
où x, z ∈Σ∗×Σ∗ et y ∈Σ+.

1. Montrer que si |Σ| = 2, alors il n’existe aucun mot de quatre lettres ou plus respectant
la condition précédente.

On suppose dans la suite Σ= { a,b }. On considère le morphisme σ défini par σ(a) = ab
et σ(b) = ba.

2. Montrer que pour tout n ∈N, σn−1(a) est préfixe de σn(a).

On définit le mot infini de Thue-Morse m comme le mot de longueur infinie dont tous
les σn(a) sont des préfixes.

On pose L1 = { ab,ba }.

3. Montrer que aL∗
1 a ∩L∗

1 =; et bL∗
1 b ∩L∗

1 =;
4. Montrer que ∀n ∈N∗, σn(a) ∈ L∗

1 .

5. En déduire que m ne possède pas de facteur de la forme r 2c où r ∈Σ+ et c ∈Σ, c étant
le premier symbole de r .

On considère à présent le mot infini µ défini comme la suite du nombre de b compris
entre deux a consécutifs dans le mot m.

6. Justifier que l’alphabet {0,1,2} est suffisant pour écrire µ.

7. Montrer qu’il ne contient pas de facteur carré.

8. Proposer une fonction Caml qui affiche le mot µ (de façon évidente, la fonction ne
terminera pas !)

Ex. 8 – Codes et algorithme de Sardinas-Patterson

Un code sur l’alphabet Σ est un langage L sur Σ tel que, pour tout mot w ∈ L∗, il existe
une unique suite de mots w1, w2, . . . , wn (n ∈N) de L tels que w = w1 ·w2 · . . . ·wn .

1. Justifier que ε ∉ L

2. Justifier que si ∀u, v ∈ L×L, u n’est pas un préfixe de v , alors L est un code.

3. Le langage L = {a,ab } est-il un code ?

Si L est fini, on dispose d’un algorithme, dit de Sardinas-Patterson, pour vérifier si L est
un code.

On rappelle que M−1L = {
v ∈Σ∗ | ∃u ∈ M tel que uv ∈ L

}
L’algorithme fonctionne de la façon suivante :
• on définit S1 = L−1L \ {ε } ;

• puis on construit itérativement les Si = L−1Si−1 ∪S−1
i−1L ; si ε apparaît dans un des Si ,

alors L n’est pas un code, et s’il existe i ̸= j tels que Si = S j , alors L est un code.

4. Justifier que l’algorithme termine (on admettra sa validité)

5. Vérifier avec l’algorithme précédent si les langages suivants sont des codes (si ce n’est
pas le cas, on cherchera un mot de L∗ qui peut se décomposer de deux façons différentes
en une concaténation de mots de L) :

• L = {00,01,1,10} ;
• L = {011,10,1001,11011} ;
• L = {000,010,01001,011}.

On représente en Caml un langage fini sur l’alphabet ASCII par une liste de chaînes de
caractères correspondant aux mots de L (chaque mot apparaissant une fois et une seule.

6. Proposer une fonction contientEpsilon de signature string list -> bool indi-
quant si le langage fini passé en paramètre contient ε.

7. Écrire une fonction estPrefixe de signature string -> string -> bool indiquant
si la première chaîne de caractères passée en argument est un préfixe de la seconde.

8. Écrire une fonction reste de signature string -> string -> string prenant en
argument deux chaines de caractères u et v telles que v = u.w (on supposera que u est
bien un préfixe de v) et retournant la chaîne de caractères w .

9. Proposer une fonction unionde signature string list -> string list -> string list
prenant en argument deux langages finis L et M et retournant M∪M.

10. Proposer une fonction quotientde signature string list -> string list -> string list
prenant en argument deux langages finis L et M et retournant M−1L.

11. Écrire une fonction egaux de signature string list -> string list -> bool
indiquant si les deux langages finis passés en argument sont identiques.

12. En déduire une fonction estCode de signature string list -> bool indiquant si
le langage fini passé en argument est un code ou non, grâce à l’algorithme de Sardinas-
Patterson.

2

