Mots et langages

Ex. 1 - Préfixes et suffixes

Proposer une fonction plpsc de signature string -> string prenant en entrée une
chaine de caracteres correspondant a un mot w sur 'alphabet ASCII et retournant le plus
long mot v qui soit a la fois un préfixe et un suffixe de w. Quelle est sa complexité dans le
pire des cas?

Ex. 2 - Langage binaire
On s’intéresse a I’alphabet binaire ~ = {0, 1}.

On définit le langage L comme la représentation binaire la plus courte des éléments de
I'ensemble IN des entiers positifs.

1. Définir formellement le langage L.
On définit le langage L, sur I'alphabet X par w € L, < |wlo = |wl;.

2. Déterminer |=" nLNL,| en fonction de n.

Ex. 3 — Codes binaires

On considere 'alphabet X. On s’'intéresse a un langage L sur X tel que, pour tout mots
w, w' € Lx L, si w est un préfixe de w’, alors w = w'. Un tel langage est qualifié de code.

1. Déterminer une relation entre max, . (|wl), |L| et |Z].
On se place dans le cadre de I’alphabet binaire X = {0, 1}.
2. Proposer un langage L tel que |L| = 4.

3. Méme question pour |[L| =5.

Ex. 4 - Langages
Soit un alphabet X non vide. Décrire les langages définis par :
L Li={weZ*|IneN\{0,1} et w'eZ* telsquel w=w"}
2. Ly ={weZ* | ez lwl. =0}
3. Ly={weX* Mees lwl. =1}
4. 1]
5. L3

Ex. 5 - Fonction génératrice

La fonction génératrice d'un langage L sur un alphabet X est la série formelle @1, définie
par

(o)
O, : x— ) [LnZ"|x"
i=0

1. Déterminer @ pour L = {€}
2. Méme question pour £ ={a,b,c} etL={we=*||w|<3}.

3. Soit un langage L sur I'alphabet Z, et a € X. Déterminer la fonction génératrice de aL
en fonction de @y, (x).

4. Soit deux langages L et M sur I'alphabet X tels que L N M soit le langage vide. Détermi-
ner la fonction génératrice de LU M en fonction de @ (x) et ®py(x).

Ex. 6 — Langage construit a base d’'un langage de Dyck
On considére A= {a}, > =AUA=1{a,a} et Dp le langage de Dyck sur X.
On définit le langage L par L = (Dpa)*Da(aDa)".

Déterminer L.



Ex. 7 — Suite de Thue-Morse

Soit £ un alphabet. On s’intéresse aux mots de X* ne contenant pas deux facteurs
consécutifs égaux, ¢’ est-a-dire aux mots qui ne peuvent pas s'écrire sous la forme w = xy*z
oux,zeX* xX*etyext,

1. Montrer que si |Z| = 2, alors il n’existe aucun mot de quatre lettres ou plus respectant
la condition précédente.

On suppose dans la suite X = {a, b}. On considére le morphisme o défini par o(a) = ab
eto(b) = ba.

2. Montrer que pour tout n € N, " (a) est préfixe de 0" (a).

On définit le mot infini de Thue-Morse m comme le mot de longueur infinie dont tous
les 0" (a) sont des préfixes.

On pose Ly ={ab, ba}.
3. Montrer que aLjanL] =g et bLbNL] =@
4. Montrer que Vn € IN*, 0" (a) € L].

2

5. En déduire que m ne possede pas de facteur de la forme r“c ot r € Z* et c € X, ¢ étant

le premier symbole de r.

On consideére a présent le mot infini p défini comme la suite du nombre de b compris
entre deux a consécutifs dans le mot m.

6. Justifier que I'alphabet {0, 1,2} est suffisant pour écrire .
7. Montrer qu’il ne contient pas de facteur carré.

8. Proposer une fonction Caml qui affiche le mot p (de facon évidente, la fonction ne
terminera pas!)

Ex. 8 — Codes et algorithme de Sardinas-Patterson

Un code sur 'alphabet X est un langage L sur X tel que, pour tout mot w € L*, il existe
une unique suite de mots wy, wy,...,w, (n€IN)deLtelsque w=w;-w>-...- wy.

1. Justifierquee ¢ L
2. Justifier que si Vu, v € L x L, u n’est pas un préfixe de v, alors L est un code.
3. Lelangage L = {a, ab} est-il un code?

Si L est fini, on dispose d'un algorithme, dit de Sardinas-Patterson, pour vérifier si L est
un code.

Onrappelleque M 'L={veZ*|JueM telque uvel}

L'algorithme fonctionne de la facon suivante :
e on définitS; = LIL\ {¢};

¢ puis on construit itérativement les S; = L71s;_;u S;}1L; si € apparait dans un des S;,
alors L n’est pas un code, et s'il existe i # j tels que S; =S, alors L est un code.

4. Justifier que I'algorithme termine (on admettra sa validité)

5. Vérifier avec I'algorithme précédent si les langages suivants sont des codes (si ce n'est
pas le cas, on cherchera un mot de L* qui peut se décomposer de deux facons différentes
en une concaténation de motsdeL) :

e [.={00,01,1,10};
e [L.={011,10,1001,11011};
e L.={000,010,01001,011}.

On représente en Caml un langage fini sur I'alphabet ASCII par une liste de chaines de
caracteres correspondant aux mots de L (chaque mot apparaissant une fois et une seule.

6. Proposer une fonction contientEpsilon de signature string list -> bool indi-
quant si le langage fini passé en parametre contient €.

7. Ecrire une fonction estPrefixe de signature string -> string -> bool indiquant
sila premiere chaine de caracteres passée en argument est un préfixe de la seconde.

8. FEcrire une fonction reste de signature string -> string -> string prenant en
argument deux chaines de caracteres u et v telles que v = u.w (on supposera que u est
bien un préfixe de v) et retournant la chaine de caracteres w.

9. Proposer une fonction union de signature string list -> string list -> string list

prenant en argument deux langages finis L et M et retournant M U M.

10. Proposer une fonction quotient de signature string list -> string list -> string lis

prenant en argument deux langages finis L et M et retournant ML,

11. Ecrire une fonction egaux de signature string list -> string list -> bool
indiquant si les deux langages finis passés en argument sont identiques.

12. En déduire une fonction estCode de signature string list -> bool indiquant si
le langage fini passé en argument est un code ou non, grace a I’algorithme de Sardinas-
Patterson.



