
Implémentation d’un automate fini non déterministe

1 Implémentation

On s’intéresse à un automate fini non déterministe à n états, numérotés de 0 à n −1. Un
ensemble d’états sera représentée par une liste triée, sans doublons, des entiers représen-
tant les états de l’ensemble (par exemple, l’ensemble d’états {1,5,2} sera représenté par la
liste OCaml [1; 2; 5]).

type etat = int;;
type liste_etats = etat list;;

Les symboles de Σ sont assimilés à des entiers (de 0 à p −1).

type symbole = int;

Un mot est quant à lui représenté par une liste de symboles :

type mot = symbole list;

On définit un tel AFND en OCaml par le type suivant :

type afnd = { initiaux : liste_etats;
terminaux : liste_etats;
delta : liste_etats array array };;

Les définitions (et ébauches des fonctions) peuvent être récupérés sur llg.sci-phy.org
.

Dans cette définition, delta est un tableau de tableaux à n entiers, de sorte que si e est
un état et c un symbole, la fonction d’évolution de l’automate δ(e,c) appliquée à cet état e
pour le symbole c sera delta.(e).(c).

1. Proposer une fonction union (liste_etats -> liste_etats -> liste_etats),
prenant en argument deux liste d’états (respectant les invariants choisis) et renvoyant une
liste d’états (toujours respectant les invariants choisis) représenant leur union. On pourra
se baser sur cette ébauche :

let union lst1 lst2 = match lst2 with
| [] -> ...
| t::q when List.mem t lst1 -> ...
| t::q -> ...

Remarque : la signature sera a priori 'a list -> 'a list -> 'a list.

2. Proposer de même une fonction intersection déterminant l’intersection de deux
listes d’états.

3. Proposer une fonction lit_car de signature afnd -> liste_etats -> symbole
-> liste_etats prenant en argument un automate A, une liste d’états L et un symbole c
et renvoyant ⋃

q∈L
δ
(
q,c

)
Remarque : la signature sera a priori afnd -> int list -> int -> int list.

4. À partir de lit_car, créer une fonction lit_mot de signature
afnd -> liste_etats -> mot -> liste_etats prenant en argument un automate
A, une liste d’états L et un mot w et renvoyant⋃

q∈L
δ∗

(
q, w

)

5. En déduire une fonction teste de signature afnd -> mot -> bool prenant un au-
tomate et un mot, et renvoyant un booléen indiquant si le mot a été accepté ou non par
l’automate.

6. Quelle est la complexité de la fonction précédente en fonction de n, p et |w |?

2 Construction à partir d’un langage local

On considère un langage local L ne contenant pas de mot vide, défini par les ensembles
P, S et F (ensemble des facteurs permis). Par exemple, le langage L1 des mots non vides sur
Σ= {0,1,2} ne commençant pas par 0, se terminant par 0 et ne contenant pas les facteurs
11, 22 ou 33 est défini par P = {1,2}, S = {0} et F = {01,02,10,12,20,22}.

On représentera P et S par des symbole list, et F par des (symbole * symbole) list.

7. Proposer une fonction construit_local de signature int ->
symbole list -> symbole list -> (symbole * symbole list) -> afnd construi-
sant un automate local reconnaissant le langage local défini par p, P, S et F fournis en
paramètres, où p = |Σ|. On associera à un symbole l’état identifié par le même entier (l’état
associé au symbole désigné par « 1 » sera numéroté « 1 »). L’état supplémentaire nécessaire
sera identifié par p.

8. Vérifier son bon fonctionnement avec L1 (on construira l’automate associé, et on
vérifiera que 10, 210, 231321310 sont reconnus, mais pas ϵ, 12, 012 et 012210 par exemple).

9. On fournit des fonctions permettant, à partir d’une expression régulière linéaire, de

1

llg.sci-phy.org

construire P, S et F (adaptés d’après le cours). En déduire une fonction compile_regex de
signature regexp -> afnd.

10. Tester la fonction sur l’expression régulière linéaire fournie, qui s’interprète en un
langage L2, en vérifiant que les mots reconnus sont les bons.

3 Déterminisation

On souhaite obtenir un automate fini déterministe équivalent. On représente un auto-
mate fini déterministe par

type afd = { initial : etat;
terminaux : liste_etats;
delta : etat array array };;

11. Écrire une fonction determinise de signature afnd -> afd qui construit l’automate
des parties de façon à déterminister l’automate non-déterministe fourni en argument. On
remarquera que l’on peut comparer deux listes d’états respectant nos invariants avec = ! Les
listes d’états peuvent par ailleurs être utilisées comme clés de dictionnaire. Aussi utilisera-t-
on un dictionnaire pour associer des listes d’états atteints dans l’automate fini déterministe
à un entier représentant l’état correspondant dans l’automate fini déterministe (on peut
utiliser Hashtbl.length pour savoir combien d’états ont déjà été construits).

12. Déterminiser les deux automates fournis.

13. On fourni une fonction teste_afd. L’utiliser pour vérifier que les automates déter-
minisés reconnaissent les mêmes langages que leurs homologues non déterministes.

Pour construire un outil prenant une expression régulière quelconque et fournissant un
automate fini déterministe qui en reconnaît l’interprétation, il ne reste donc qu’à ajouter
une étape de linéarisation et l’étape permettant de l’inverser avant la déterminisation.

14. Quelle est la complexité de la transformation?

2

	Implémentation
	Construction à partir d'un langage local
	Déterminisation

