Implémentation d’un automate fini non déterministe

Implémentation

On s’intéresse a un automate fini non déterministe a n états, numérotés de 0 a n—1. Un
ensemble d’états sera représentée par une liste triée, sans doublons, des entiers représen-
tant les états de I’ensemble (par exemple, 'ensemble d’états {1,5,2} sera représenté par la
liste OCaml [1; 2; 5]).

type etat = int;;
type liste_etats = etat list;;

Les symboles de X sont assimilés a des entiers (de0a p —1).

type symbole = int; J

Un mot est quant a lui représenté par une liste de symboles :

type mot = symbole list; J

On définit un tel AFND en OCaml par le type suivant :

type afnd = { initiaux : liste_etats;
terminaux : liste_etats;
delta : liste_etats array array };;

Les définitions (et ébauches des fonctions) peuvent étre récupérés sur 11g.sci-phy.org

Dans cette définition, delta est un tableau de tableaux a n entiers, de sorte que si e est
un état et ¢ un symbole, la fonction d’évolution de 'automate d(e, ¢) appliquée a cet état e
pour le symbole c seradelta. (e). (c).

1. Proposer une fonction union (liste_etats -> liste_etats -> liste_etats),
prenant en argument deux liste d’états (respectant les invariants choisis) et renvoyant une
liste d’états (toujours respectant les invariants choisis) représenant leur union. On pourra
se baser sur cette ébauche :

let union 1st1 1st2 = match 1st2 with

| [1 > ...
| t::q when List.mem t 1st1l -> ...
| t::qg > ...

Remarque : la signature sera a priori 'a list -> 'a list -> 'a list.

2. Proposer de méme une fonction intersection déterminant l'intersection de deux
listes d’états.

3. Proposer une fonction lit_car de signature afnd -> liste_etats -> symbole
-> liste_etats prenant en argument un automate .4, une liste d’états £ et un symbole ¢

et renvoyant
U 8(a.¢)
qgel
Remarque : la signature sera a priori afnd -> int list -> int -> int list.

4. A partir de lit_car, créer une fonction lit_mot de signature
afnd -> liste_etats -> mot -> liste_etats prenant en argument un automate
A, une liste d’états £ et un mot w et renvoyant

U 8"(q, w)

qel

5. En déduire une fonction teste de signature afnd -> mot -> bool prenant un au-
tomate et un mot, et renvoyant un booléen indiquant sile mot a été accepté ou non par
I'automate.

6. Quelle estla complexité de la fonction précédente en fonction de n, p et |w|?

Construction a partir d’'un langage local

On considere un langage local L ne contenant pas de mot vide, défini par les ensembles
P, S et F (ensemble des facteurs permis). Par exemple, le langage L; des mots non vides sur
> ={0,1,2} ne commencant pas par 0, se terminant par 0 et ne contenant pas les facteurs
11, 22 ou 33 est défini par P ={1,2},S = {0} et F={01,02,10, 12,20,22}.

On représentera P et S par des symbole list, et F par des (symbole * symbole) list.

7. Proposer une fonction construit_local de signature int ->
symbole list -> symbole list -> (symbole * symbole list) -> afnd construi-
sant un automate local reconnaissant le langage local défini par p, P, S et F fournis en
parameétres, ou p = |Z|. On associera a un symbole I'état identifié par le méme entier (I'état
associé au symbole désigné par « 1 » sera numéroté « 1 »). L'état supplémentaire nécessaire
sera identifié par p.

8. Vérifier son bon fonctionnement avec L; (on construira I’automate associé, et on
vérifiera que 10, 210, 231321310 sont reconnus, mais pas €, 12, 012 et 012210 par exemple).

9. On fournit des fonctions permettant, a partir d’'une expression réguliére linéaire, de

llg.sci-phy.org

construire P, S et F (adaptés d’aprés le cours). En déduire une fonction compile_regex de
signature regexp —-> afnd.

10. Tester la fonction sur I'expression réguliere linéaire fournie, qui s’interprete en un
langage Lo, en vérifiant que les mots reconnus sont les bons.

Déterminisation

On souhaite obtenir un automate fini déterministe équivalent. On représente un auto-
mate fini déterministe par

type afd = { initial : etat;
terminaux : liste_etats;
delta : etat array array };;

11. Ecrire une fonction determinise de signature afnd -> afd qui construit'automate
des parties de facon a déterminister I'automate non-déterministe fourni en argument. On
remarquera que I'on peut comparer deux listes d’états respectant nos invariants avec =! Les
listes d’états peuvent par ailleurs étre utilisées comme clés de dictionnaire. Aussi utilisera-t-
on un dictionnaire pour associer des listes d’états atteints dans ’automate fini déterministe
a un entier représentant I’état correspondant dans 'automate fini déterministe (on peut
utiliser Hashtbl.length pour savoir combien d’états ont déja été construits).

12. Déterminiser les deux automates fournis.

13. On fourni une fonction teste_afd. Lutiliser pour vérifier que les automates déter-
minisés reconnaissent les mémes langages que leurs homologues non déterministes.

Pour construire un outil prenant une expression réguliere quelconque et fournissant un
automate fini déterministe qui en reconnait I'interprétation, il ne reste donc qu’a ajouter
une étape de linéarisation et I'étape permettant de I'inverser avant la déterminisation.

14. Quelle est la complexité de la transformation ?

	Implémentation
	Construction à partir d'un langage local
	Déterminisation

