Entrainement a la programmation OCaml

Note : on s’efforcera de ne pas convertir les tableaux en listes et les listes en tableau, tout
particulierement lorsqu’il s’agit d’écrire deux fonctions similaires, I'une sur les listes et
l'autre sur les tableaux.

Il est en revanche permis, pour répondre a une question, d’utiliser une fonction d'une
autre question, mais si cela vous semble bienvenu, n’hésitez pas a spontanément décom-
poser le probleme de la méme fagon la prochaine fois que vous le rencontrerez!

1. somme_chiffres n (int -> int)

Prend en argument un entier n positif ou nul, et renvoie la somme de ses chiffres dans
son écriture décimale. On évitera de passer par des chaines de caracteres.

Complexité O(logn).

2. nombre_bits_1 n (int -> int)

Prend en argument un entier » positif ou nul, et renvoie le nombre de ses bits a 1 dans
son écriture binaire. On évitera de passer par des chaines de caracteres.

Complexité O(logn).

3. retourne n (int -> int)

Prend en argument un entier n positif ou nul, et renvoie le nombre correspondant au
retournement de ses chiffres dans son écriture décimale (par exemple, 123 donnera 321,
240 donnera 42). On évitera de passer par des chaines de caracteres.

Complexité O(logn).

4. decompose b n (int -> int -> int list)

Prend en argument une base b (entier > 2) et un entier n positif ou nul, et renvoie la liste
[ag,ay,...,ay] tellequeles ap € [0..b—1], n=) akbk eta, #0sin>0 (onrenverra [] si
n=0).

Complexité O(logn).

5. recompose b lst (int -> int list -> int)

Effectue 'opération inverse de la fonction précédente. On n'utilisera pas de flottants, et
on respectera la complexité (ce qui signifie ne pas calculer a chaque itération les b¥).

Complexité O(|lst]).

6. carre f (('a ->'a) -> 'a -> 'a)
Prend en argument une fonction f et renvoie la fonction f o f.

Complexité O(1).

7. compose f g (('"b =>'c) > ('a->"'b) > 'a > "0
Prend en argument deux fonction f et g et renvoie leur composée fo g.

Complexité O(1).

8. puissance n f ((‘a => 'a) -> int -> 'a > 'a)

Prend en argument une fonction f et renvoie la fonction f" = fo f... f. On pourra
chercher une solution de complexité O(logn) (plus difficile).

Complexité O(n) (ou O(logn)).

9. applique x ('a-> ('a->"'b) -> 'b)

Prend en argument un objet x et renvoie une fonction prenant en argument une fonction
f etretournant f(x).

Complexité O(1).

10. depasse f g ((int -> 'a) -> (int -> 'a) -> int)

Prend en argument deux fonctions f et g et renvoie le plus petit entier positif k tel que
fk) > g(k).

Complexité en O(k).

11. avant_dernier 1st ('a list -> 'a)

Renvoie I’avant-dernier élément d’une liste (et une erreur sila liste contient moins de
deux éléments).

Complexité O(|1st]).

12. premiers n 1st (int -> 'a list -> 'a list)

Renvoie la liste des n premiers éléments de 1st (on renverra 'intégralité de la liste sin
est supérieur a la longueur de 1st, et une liste vide si n est négatif).

Complexité O(n).

13. saute n lst (int -> 'a list -> 'a list)

Renvoie la liste 1st privée de ses n premiers éléments (on renverra une liste vide si n est
supérieur a la longueur de 1st, et la liste originale si n est négatif).

Complexité O(n).

14. retire i 1st (int -> 'a list -> 'a list)

Renvoie une liste correspondant a 1st privée de I'élément a la position i (si i est stricte-
ment négatif ou si la liste contient moins de i éléments, on renverra la liste originale).

Complexité O(i).

15. index_pairs Ist ('a list -> 'a list)
Renvoie la liste des éléments de 1st situés a des positions d’indices pairs.

Complexité O(|1st]).

16. separe lst (‘a list -> 'a list * 'a list)

Renvoie la liste des éléments de 1st situés a des positions d’indices pairs et celle des
éléments situés a des positions d’indice pair. On s’efforcera de ne parcourir la liste qu'une
seule fois.

Complexité O(|1st]).

17. entremele 1st1 1st2 ('a list -> 'a list -> 'a list)

Effectue I'opération inverse de la fonction précédente. Si une des deux listes est plus
longue que I'autre, on rassemblera les éléments surnuméraires en fin de liste.

Complexité O(|1stl] +|1st2]).

18. derniers n 1st (int -> 'a list -> 'a list)

Renvoie la liste des n derniers éléments de 1st (on renverra l'intégralité de la liste si n est
supérieur a la longueur de 1st, et une liste vide si n est négatif). On s’efforcera de trouver
une solution qui ne nécessite pas de retourner la liste.

Complexité O(|1st]).

19. retourne_l 1st (‘a list -> 'a list)

Renvoie une liste contenant les éléments de 1st mais dans I’ordre inverse, sans utiliser
List.rev.

Complexité O(|1st]).

20. retourne_t tab ("a array -> unit)
Renverse 'ordre des éléments a I'intérieur d’un tableau.

Complexité O(|tabl).

21. compte_l x 1st ("a => 'a list -> int)
Renvoie le nombre d’éléments dans la liste 1st qui sont égaux a x.

Complexité O(|1st]).

22, compte_t x tab ('a -> 'a array -> int)
Renvoie le nombre d’éléments dans le tableau tab qui sont égaux a x.

Complexité O(|tabl).

23. symetrique tab ('a array -> bool)

Détermine si les valeurs d'un tableau sont symétriques (le premier élément est égal au
dernier, le second a I’avant-dernier, etc.).

Complexité O(|tabl).

24. duplique 1st ("a list -> 'a list)

Renvoie une liste ou chaque élément est doublé (par exemple, une liste
[1; 2; 3; 2; 2; 1]doitdonner [1; 1; 2; 2; 3; 3; 2; 2; 2; 2; 1; 10).

Complexité O(|1st]).

25. repete 1lst1 1st2 ('a list -> int list -> 'a list)

Renvoie une liste chaque élément x; de 1st1 est répété y; fois, y; étant I’élément corres-

pondant de 1st2 (par exemple, avecleslistes['a'; 'b'; 'a'; 'c'let[2; 1; 3; 1],

ondoitobtenir['a'; 'a'; 'b'; 'a'; 'a'; 'a'; 'c'J).Onsupposeleslistes de méme
longueur, on pourra lever une erreur si ce n’est pas le cas.

Complexité O(|1st1]).

26. decompose 1st ('a list -> 'a list % int list)
Effectue la transformation inverse de la fonction précédente.

Complexité O(|1st]).

27. longueur_plateau_t tab ('a array -> int)

Prend en argument un tableau et renvoie la longueur de la plus longue séquence de
valeurs consécutives égales deux a deux.

Complexité O(|tabl).

28. longueur_plateau_l 1lst ('a list -> int)

Prend en argument une liste et renvoie la longueur de la plus longue séquence de valeurs
consécutives égales deux a deux.

Complexité O(|1st]).

29. retire_repetitions 1st (‘a list -> 'a list)

Renvoie une liste ou les répétitions ont été supprimées (par exemple, une liste
Ll 25 25 15 15 15 3; 25 25 15 31doitdonner [15 25 15 3; 2; 1; 31).

Complexité O(|1st]).

30. cherche f a b ((int -> bool) -> int -> int -> int option)

Prend en argument une fonction f et deux entiers a et b et renvoie Some x ol x est un
entier dans [a .. b] tel que f(x) est vrai il existe un tel x, et None sinon. On renverra None
sia>b.

Complexité O(lmax(1,b— a)l).

31. trouve f a b ((int -> bool) -> int -> int -> int list)

Prend en argument une fonction f et deux entiers a et b et renvoie la liste des x entiers
dans [a.. b], triés par ordre croissant, tels que f(x) est vrai.

Complexité O(lmax(1,b— a)l).

32. anti_filtre f 1st (('a => bool) -> 'a list -> 'a list)

Renvoie une liste contenant les éléments de 1st qui ne vérifient pas le prédicat f (les élé-
ments x pour lesquels f(x) est false). Les éléments doivent conserver leur ordre original.

Complexité O(|1st]).

33. denombre_1 f 1st ((‘a -> 'a -> bool) -> 'a list -> int)

Dénombre le nombre de couples d’éléments distincts x; et x; de la liste tels que f (xi,x j)
est vrai.

Complexité O(|1st|?).

34. denombre_t f tab (('a -> 'a -> bool) -> 'a array -> int)

Dénombre le nombre de couples d’éléments distincts x; et x; du tableau tels que
f(xi,x;) estvrai.

Complexité O(|tabl?).

35. doublon_1 1st1 1st2 ('a list -> 'a list -> 'a option)

Renvoie Some x ol1 x est un élément présent dans les deux listes, et None s’il n’en existe
aucun.

Complexité O(|1st1]| x [1st2]).

36. doublon_t 1st1 1st2 ('a list -> 'a list -> 'a option)

Méme question que précédemment, mais on suppose 1st1 et 1st2 toutes deux triées
par ordre croissant.

Complexité O(|1st1] +[1st2]).

37. egaux lst ("a list -> bool)

Renvoie un booléen indiquant si les éléments de 1st sont égaux deux a deux. On renverra
true pour une liste vide ou a un seul élément.

Complexité O(|1st]).

38. images_egales f 1st (('a => 'b) -> 'a list -> bool)

Renvoie un booléen indiquant si les f(x;), ou les x; sont les éléments de 1st, sont égaux
deux a deux. On renverra true pour une liste vide ou a un seul élément.

Complexité O(|1st]).

39. tri_l Ist ('a list -> 'a list)

Renvoie une liste contenant les éléments de 1st triés par ordre croissant. On ne demande
pas une méthode de tri particuliere.

Complexité O(|1st|?), et si possible O(|1st|log|1st|).

40. tri_t tab ('a array -> unit)

Trie les éléments de tab par ordre croissant (en place). On ne demande pas une méthode
de tri particuliere.

Complexité O([tabl?), et si possible O(|tab|log|tabl).

41. eval_poly coeffs x (int list -> int -> int)

Calcule P(x) ot P est un polynome dont les coefficients sont donnés dans la liste coeff
par ordre croissant de degrés (@2 X + a1 x + ag est représenté par [a0; al; a2l). Onn'uti-
lisera pas de flottants, et on s’efforcera de respecter la complexité indiquée.

Complexité O(|coeffs]).

42. produit 1lst n ('a list -> int -> 'a list list)

Prend un ensemble 1st d’éléments et un entier positif n et renvoie la liste de

toutes les listes de n éléments de 1lst avec remise (['a'; 'b'; 'c'] et 2 donne
[[|al; laI]; [|al; lbl]; [|al; ‘C']; [|bl; |al]; [Ibl; |bl]; [Ibl; ‘C'];
['c'; 'a'l; ['c'; 'b'1; ['c'; 'c'1]). Lordre des listes n’est pas imposée.

Complexité O(|1st|™).

